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Abstract: The main goal of this paper is to consider the regu-
larity and convexity properties of a given type of approximately gen-
eralized convex functions, namely approximately Breckner s-convex
functions (see the origin of the definition in Breckner, 1978).

Our main result is a Bernstein-Doetsch type one. It is proved
that the local boundedness of such a type of function from above at
a point of its domain implies approximate convexity and stronger
regularity properties of the function in question on the whole do-
main.
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1. Introduction

It is a well known fact that convexity and its generalizations play an important
role in different parts of mathematics, mainly in optimization theory. This
is one of the topmost motivations for examining the properties of generalized
convex functions. On the other hand, generalized convexity or continuity are too
strong assumptions from application point of view. So, it is common to discuss
the regularity properties of a new class of functions or a perturbed version of
the defining inequality. This will be the main point of this work.
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Probably the most significant result of the regularity theory of convex func-
tions is due to Bernstein and Doetsch (1915). They have proved that the local
upper boundedness of a Jensen convex function yields its continuity and con-
vexity as well. Breckner has proved the following Bernstein-Doetsch type result
in Breckner (1978):

Theorem 1 Let f : D → R be a rationally s-convex function (see inequality (1)
below). If it is locally bounded from above at a point of D, then it is continuous
and s-convex on D.

In Burai, Házy and Juhász (2009) the regularity properties of Breckner s-
convex functions have been examined, and the previous theorem has been gen-
eralized. We carry on this research with the investigation of the regularity and
convexity properties of approximately Breckner s-convex functions.

The concepts of s-convexity and rational s-convexity were introduced by
Breckner (1978). A real valued function f : D → R (where D is a nonempty,
convex subset of a real (complex) linear space X) is called Breckner s-convex
(or simply s-convex ), if there exists an s ∈]0, 1] such that

f (λx + (1 − λ)y) ≤ λsf(x) + (1 − λ)sf(y) (1)

for every x, y ∈ D, and λ ∈ [0, 1]. If (1) is fulfilled only for λ ∈ Q ∩ [0, 1], then
f is called rationally Breckner s-convex (or rationally s-convex ).

This concept is a generalization of convexity (case s = 1). It is an interesting
fact that the set of nonnegative s-convex functions strictly flares as s strictly de-
creases, in addition, s-convex functions have a good relationship with algebraic
operations just like the convex ones. For example, the sum of two s-convex func-
tions is s-convex and by multiplying an s-convex function with a non-negative
scalar we get an s-convex function again (see Hudzik and Maligranda, 1994, and
Burai, Házy and Juhász, 2009) for further information). Moreover, there is a
nice correspondence between convex and Breckner s-convex functions, namely,
the class of s-convex functions belongs to the class of locally s-Hölder functions
(Breckner, 1994; Pycia, 2001). The class of 1-Hölder functions coincides with
the class of locally Lipschitz functions. It is a known fact that a convex function
is also a locally Lipschitz one if it is locally bounded form above at a point of
an open domain (see, e.g., Kuczma, 1985).

Here we would like to examine the regularity and convexity properties of
approximately s-convex (more precisely, the so-called Breckner (s, d)-convex)
functions. There are several possibilities to define approximate convexity. The
two main trends are: defining it with a constant error term (see, e.g., Házy and
Páles, 2004; Házy, 2007; Luc, Ngai and Théra, 2000; Páles, 2003; Tabor and
Tabor, 2009a,b,c), or defining it with a function error term (see, e.g., Hyers and
Ulam, 1952; Ng and Nikodem, 1993).

We prefer considering the latter using a "metric like" function perturbing
equation (1), so similarly to Házy (2007) we introduce the notion of approximate
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Breckner s-convexity in the following way. Let s ∈]0, 1] be a fixed parameter
and let the function d : X × X → R be given. A function f : D → R is said to
be Breckner (s, d)-convex (or shortly (s, d)-convex ) if

f (λx + (1 − λ)y) ≤ λsf(x) + (1 − λ)sf(y) + d(x, y) (2)

for all x, y ∈ D and λ ∈ [0, 1].
A real valued function f : D → R is called Breckner rationally (s, d)-convex

(or rationally (s, d)-convex) (in notation (Q, s, d)-convex) if it fulfills (2) for all
λ ∈ Q∩ [0, 1], and it is called Breckner (λ, s, d)-convex (or (λ, s, d)-convex) if it
fulfills (2) for a fixed parameter λ ∈]0, 1[.

In what follows we make some natural assumptions about the perturbation
function d : X × X → R, namely

(i) d(x, y) ≥ 0,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y),

(iv) d(x + z, y + z) = d(x, y),

(v) if d(x, y) = 0, then d(ux, uy) = 0 for all rational u,

for all x, y, z ∈ X The first three properties declare that d is a semimetric on X ,
(iv) states the translation invariance of it. If (i)− (iv) hold, then we say that d
is a translation invariant semimetric.

It is easy to see that every nonnegative constant function satisfies the prop-
erties (i) − (v). Another important example is the one parameter family of
functions d(x, y) = ‖x − y‖p (where 0 ≤ p ≤ 1). These are also translation
invariant semimetrics which also fulfill (v). One can create another examples
from the previous. Evidently, the linear combination of translation invariant
semimetrics with nonnegative coefficients is a translation invariant semimetric,
too.

2. Main results

Henceforward (X, ‖ · ‖) denotes a real normed space, and D ⊂ X is always a
nonempty, open, convex set.

We recall that a function f : D → R is called locally bounded from above at
a point w ∈ D, if there exist positive real numbers r and K such that, f(x) ≤ K
for every x ∈ B(w, r) := { x ∈ X | ‖x − w‖ < r }.

The first main result states that, if an approximately rationally Breckner
s-convex function is bounded from above at a point of its domain, then it is
continuous on the whole domain. The second one states approximate Breckner
s-convexity of the function if similar conditions are fulfilled as above.

Theorem 2 Assume that the function d is a continuous, translation invariant
semimetric, which fulfills (v) and d(x, x) = 0. If f : D → R is Breckner
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rationally (s, d)-convex and locally bounded from above at a point of D, then it
is continuous.

Theorem 3 Assume that the function d is a continuous, translation invariant
semimetric, which fulfills (v) and d(x, x) = 0. If f : D → R is (Q, s, d)-convex
and locally bounded from above at a point of D, then it is Breckner (s, d)-convex.

3. Proofs of the main results

We need the following two theorems.

Theorem 4 Let λ ∈]0, 1[ be a given number. Assume that the function d is a
continuous, translation invariant semimetric and there exists a constant C > 0

such that d
(

1

1−λx, 1

1−λy
)

≤ Cd(x, y) for every x, y ∈ X. If f : D → R is

Breckner (λ, s, d)-convex, and locally bounded from above at a point w ∈ D,
then f is locally bounded on D.

Proof. First we prove that f is locally bounded from above on D. Define the
sequence of sets Dn by

D0 := {w}, Dn+1 := λDn + (1 − λ)D.

Then, it follows by induction that

Dn = λnw + (1 − λn)D.

Using induction on n, we prove that f is locally upper bounded at each point
of Dn. By assumption, f is locally upper bounded at w ∈ D0. Assume that f
is locally upper bounded at each point of Dn. For an arbitrary x ∈ Dn+1, there
exist x0 ∈ Dn and y0 ∈ D such that x = λx0 + (1 − λ)y0. By the inductive
assumption, there exist an r > 0 and a constant M0 ≥ 0 such that f(x′) ≤ M0

and d(x′, x0) ≤ M0 for all x′ ∈ B(x0, r). Because of the continuity of d, we can
choose r such that the previous is true. Then, by the (λ, s, d)-convexity of f ,
we have

f (λx′ + (1 − λ)y0) ≤ λsf(x′) + (1 − λ)sf(y0) + d(x′, y0)

≤ λsM0 + (1 − λ)sf(y0) + d(x′, x0) + d(x0, y0)

≤ λsM0 + (1 − λ)sf(y0) + M0 + d(x0, y0) =: M.

Therefore, for y ∈ U := λB(x0, r) + (1 − λ)y0 = B (λx0 + (1 − λ)y0, λr) =
B(x, λr), we get that f(y) ≤ M . Thus, f is locally bounded above at x ∈ Dn+1,
so f is locally bounded above on Dn+1 .

On the other hand, one can easily see that

D =

∞
⋃

n=1

Dn.
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Indeed, for fixed x ∈ D, define the sequence xn by

xn :=
x − λnw

1 − λn
.

Then xn → x if n → ∞. As the set is open, there exists an n0 ∈ N, such that
xn ∈ D if n ≥ n0. Therefore

x = λnw + (1 − λn)xn ∈ λnw + (1 − λn)D = Dn.

Thus, f is locally bounded from above on D.
We prove now that f is locally bounded from below. Let q ∈ D be arbitrary.

Since f is locally bounded from above at the point q, there exist ̺ > 0 and
M > 0 such that f(x) ≤ M and d(x, q) ≤ M if x ∈ B(q, ̺). (Just like in the
first part of the proof, we can find such a ̺, using the continuity of d.) Let
x ∈ B(q, (1 − λ)̺) and y := 1

1−λq − λ
1−λx. Then y is in B(q, λ̺) ⊂ B(q, ̺).

Then, by (λ, s, d)-convexity of f and by properties of d, we get

f(q) = f(λx + (1 − λ)y) ≤ λsf(x) + (1 − λ)sf(y) + d(x, y)

= λsf(x) + (1 − λ)sf(y) + d
(

1

1−λx − λ
1−λx, 1

1−λq − λ
1−λx

)

= λsf(x) + (1 − λ)sf(y) + d
(

1

1−λx, 1

1−λq
)

≤ λsf(x) + (1 − λ)sf(y) + Cd(x, q)

which implies

f(x) ≥
1

λs
f(q) −

(1 − λ)s

λs
f (y) −

1

λs
Cd(x, q)

≥
1

λs
f(q) −

(1 − λ)s

λs
M −

1

λs
Cd(x, q) =: M∗.

Therefore, f is locally bounded from below at any point of D.

The next result states that the local upper boundedness of a rationally (s, d)-
convex function at a point of D yields its continuity at this point as well.

Theorem 5 Assume that the function d is a continuous, translation invariant
semimetric and d(x, x) = 0. If f : D → R is (Q, s, d)-convex and locally bounded
from above at a point w ∈ D, then it is continuous at w.

Proof. Because of f being locally bounded from above at the point w ∈ D, there
exist constants r > 0 and K ≥ 0 such that f(x) ≤ K for every x ∈ B(w, r).
Let ε be an arbitrary positive constant. Then there exists n0 ∈ N such that if
n ≥ n0 is an arbitrarily fixed positive integer, then

(

1

n

)s

K +

[(

1 −
1

n

)s

− 1

]

f(w) <
ε

4
, (3)
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(

1

n − 1

)s

K +

[

1 −
1

(1 − 1

n )s

]

f(w) <
ε

4
(4)

and

2

(1 − 1

n )s
< 3. (5)

Let r1 = min{r, ε
4
}. Using the continuity of d and the assumption d(w, w) = 0,

there exists r′1 < r1 such that d(x, w) < r1 if x ∈ B(w, r′1), and let δ <
r′

1

n . We
prove that

|f(x) − f(w)| < ε (x ∈ B(w, δ)).

For x ∈ B(w, δ) there exist y, z ∈ B(w, r′1) such that

x =
1

n
y +

(

1 −
1

n

)

w, so y = nx − (n − 1)w

w =
1

n
z +

(

1 −
1

n

)

x, so z = nw − (n − 1)x.

Indeed,

‖y − w‖ = ‖nx − nw‖ = n‖x − w‖ ≤ nδ < r′1,

and similarly

‖z − w‖ = ‖(n − 1)(x − w)‖ = (n − 1)‖x − w‖ ≤ (n − 1)δ < r′1;

that is y, z ∈ B(w, r′1).
According to the (Q, s, d)-convexity of f ,

f(x) ≤

(

1

n

)s

f(y) +

(

1 −
1

n

)s

f(w) + d(y, w) (6)

≤

(

1

n

)s

K +

(

1 −
1

n

)s

f(w) + r1,

and

f(w) ≤

(

1

n

)s

f(z) +

(

1 −
1

n

)s

f(x) + d(z, x)

≤

(

1

n

)s

K +

(

1 −
1

n

)s

f(x) + d(z, w) + d(w, x) (7)

≤

(

1

n

)s

K +

(

1 −
1

n

)s

f(x) + 2r1.
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Using (6) and (3) we get

f(x) − f(w) ≤

(

1

n

)s

K +

[(

1 −
1

n

)s

− 1

]

f(w) + r1 (8)

<
ε

4
+

ε

4
< ε.

Using the inequality (7) we have

f(x) ≥
f(w) −

(

1

n

)s
K − 2r1

(1 − 1

n )s
,

which together with (4) imply that

f(x) − f(w) ≥

[

1

(1 − 1

n )s
− 1

]

f(w) −

(

1

n − 1

)s

K −
2r1

(1 − 1

n )s

> −

(

ε

4
+

2

(1 − 1

n )s

ε

4

)

.

According to (5)

f(x) − f(w) > −
(ε

4
+ 3

ε

4

)

= −ε. (9)

The inequalities (8) and (9) show that |f(x) − f(w)| < ε. Consequently, f is
continuous at w, so the proof is complete.

Remark 1 This result is not true for Breckner (λ, s, d)-convex functions. In
the case, when d(x, y) = 0 for all x, y ∈ D, an example was given in Burai, Házy
and Juhász (2009), showing that the Breckner (1/2, s, 0)-convexity and locally
upper boundedness do not imply the continuity of the function. For the reader’s
convenience we repeat this example: Let

f(x) :=

{

xs, if x ∈](2s − 1)1/s, 1[\Q;

1, if x ∈](2s − 1)1/s, 1[∩Q.

This function is Breckner (1/2, s, 0)-convex, bounded and nowhere continuous.

3.1. Proof of Theorem 2

It follows from property (v) that for every λ ∈]0, 1[ there exists a constant Cλ

such that d
(

1

1−λx, 1

1−λy
)

≤ Cλd(x, y). So, according to Theorem 4, f is locally

bounded at every point of D. So, we can use the previous theorem, which
implies the continuity of f at every point of D.
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3.2. Proof of Theorem 3

We prove that the function f is (λ, s, d)-convex for all λ ∈ [0, 1]. Let λ ∈ [0, 1] be
arbitrary. Then there exists a sequence {λn}n∈N such that λn ∈ Q and λn → λ
(when n tends to ∞). Applying (Q, s, d)-convexity of f , we get

f (λnx + (1 − λn)y) ≤ λs
nf(x) + (1 − λn)sf(y) + d(x, y). (10)

The local upper boundedness of f implies the continuity of f (according to
Theorem 2). Therefore, taking the limit n → ∞ in (10), we get

f (λx + (1 − λ)y) ≤ λsf(x) + (1 − λ)sf(y) + d(x, y),

which proves the Breckner (s, d)-convexity of f .

4. Applications

Corollary 1 If f : D → R is Breckner (Q, s, d)-convex and locally bounded
from above at a point of D (where d is a continuous, translation invariant semi-
metric which fulfills (v)), then f is locally bounded on D.

The next statement is an immediate consequence of the previous theorem
and Steinhaus’ and Piccard’s theorems (see Steinhaus, 1920; Piccard, 1942).

Corollary 2 Let D be an open convex subset of Rn and f : D → R be a
(λ, s, d)-convex (or (Q, s, d)-convex) function. Assume that the function d is a
continuous, translation invariant semimetric and there exists a constant C > 0

such that d
(

1

1−λx, 1

1−λy
)

≤ Cd(x, y) (or fulfills (v)) and there exist a Lebes-

gue-measurable set of positive measure (or a Baire-measurable set of second
category) S ⊆ D and a Lebesgue-measurable (respectively Baire-measurable)
function g : S → R such that f ≤ g on S. Then f is locally bounded on D.
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