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Abstract: The subject of the investigation presented here is
Bayes classification of imprecise multidimensional information of in-
terval type by means of patterns defined through precise data, e.g.
deterministic or sharp. For this purpose the statistical kernel esti-
mators methodology was applied, which makes the resulting algo-
rithm independent of the pattern shape. In addition, elements of
pattern sets which have insignificant or negative influence on the
correctness of classification are eliminated. The concept for realiz-
ing the procedure is based on the sensitivity method, used in the
domain of artificial neural networks. As a result of this procedure
the number of correct classifications and – above all – calculation
speed increased significantly. A further growth in quality of classifi-
cation was achieved with an algorithm for the correction of classifier
parameter values. The results of numerical verification, carried out
on pseudorandom and benchmark data, as well as a comparative
analysis with other methods of similar conditioning, have validated
the concept presented here and its positive features.

Keywords: data analysis, classification, imprecise information,
interval type information, statistical kernel estimators, reduction in
pattern size, classifier parameter correction, sensitivity method for
artificial neural networks.

1. Introduction

The current dynamic development in computer technology offers a continuous
increase in both capability and speed of contemporary calculation systems, thus
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allowing ever more frequent use of methods which up to now have only been
applied to a relatively limited extent. One of the domains of these methods is
the analysis of information which is imprecise in various – depending on the
conditioning of a problem – forms, for example uncertain (statistical methods,
e.g. Gil and Hryniewicz, 2009; Rice, 1994) or fuzzy (fuzzy logic, e.g. Kacprzyk,
1997; Klir and Yuan, 1995).

Recently, many applications showed an increase in the use of interval anal-
ysis. The basis for this concept is the assumption that the only available in-
formation on an investigated quantity is the fact that it fulfills the condition
x ≤ x ≤ x̄, and in consequence this quantity can be associated with the interval

[x, x]. (1)

Interval analysis is a separate mathematical domain, with its own formal appa-
ratus based on an axiom of the sets theory (Moore, 1966).

A fundamental application of interval analysis was to ensure the required pre-
cision of numerical calculations, through monitoring errors arising from rounding
numbers (Alefeld and Hercberger, 1986), however as a result of its continuous
development, this field is finding ever wider uses in engineering, econometrics
and other related areas (Jaulin et al., 2001). Its main advantage is the fact that
by definition it models imprecision of a studied quantity, using the simplest
possible formula. In many applications interval analysis shows to be absolutely
sufficient, yet does not require many calculations (thus enabling its application
in highly complex tasks) and is easy to follow and interpret, while also main-
taining a formalism stemming from a convenient mathematical tool. Moreover,
it can be noted that its concept is related to statistical interval estimation, and
analysis of fuzzy numbers with rectangular membership functions.

Dynamic development is also currently taking place in information technolo-
gies in the area of data analysis and exploration (Kulczycki et al., 2007; Kumar
and Tinku, 2004). This is due not only to an increase in the possibilities of
the methodology used here, but above all to an increase in the accessibility of
its algorithms, up to now a domain only available to a relatively small group
of specialists. Among the fundamental tasks of data analysis and exploration
lies that of classification (Hand, 1997). It consists of assigning a tested ele-
ment to one of several previously selected groups. They are most often given by
patterns, which are sets of elements representative for particular classes. This
means that in many problems – including those, where data containing impre-
cision are investigated – elements forming patterns are defined precisely (e.g.
deterministic in probability approach, sharp for the case of fuzzy logic, or in
relation to notation (1) fulfilling the equality x = x).

This paper offers a complete procedure for classification of imprecise infor-
mation represented by the interval vector
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, (2)

where xk ≤ xk for k = 1, 2, ..., n, when the patterns of particular classes are given
as sets of precise data (e.g. deterministic or sharp) elements, i.e. with xk = xk

(k = 1, 2, ..., n). The classification concept is based on the Bayes approach,
ensuring the minimum of potential losses occurring through classification er-
rors. For such a formulated task the statistical kernel estimators methodology
was employed, thereby freeing the above procedure from arbitrary assumptions
regarding pattern forms – their identification becomes an integral part of the
presented algorithm. A procedure was also developed for reducing the size of
pattern sets by removing the elements having negligible or negative influence on
correctness of classification. Its concept is founded on the sensitivity method,
used in the domain of artificial neural networks, although the intention is to
increase the number of accurate classifications and – above all – the calculation
speed. Furthermore, a method was designed to ensure additional improvements
in classification results, obtained by correcting the values of classifier parame-
ters. The validity and effectiveness of the algorithms used have been examined
numerically. A comparison of results obtained was also carried out against other
existing methods under analogous conditions.

The preliminary version of this paper was presented in Kulczycki and Kowal-
ski (2008).

2. Preliminaries

2.1. Statistical kernel estimators

Kernel estimators belong to the group of nonparametric statistical methods.
They allow for the calculation and clear illustration of characteristics of a ran-
dom variable distribution, without knowledge of its membership in a given class.

Consider an n-dimensional random variable X with a distribution charac-
terized by the density f . Its kernel estimator f̂ : R

n → [0,∞) is calculated on
the basis of the random sample {xi}i=1,2,...,m of size m, and defined – in the
basic form – by the formula

f̂(x) =
1

mhn

m
∑

i=1

K

(

x − xi

h

)

, (3)

where the positive coefficient h is a smoothing parameter, while the measurable
function K : R

n → [0,∞), symmetrical with respect to zero, having at this
point weak global maximum and fulfilling the condition

∫

Rn K(x) dx = 1, is
termed a kernel.
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The interpretation of the above definition is illustrated in Fig. 1 for a one-
dimensional random variable (n = 1) and an 8-element sample (m = 8). In the
case of a single realization xi, the function K (transposed along the vector xi and
scaled by the coefficient h) represents the approximation of distribution of the
random variable upon obtaining the value xi. For m independent realizations,
this approximation takes the form of a sum of these single approximations.
The constant 1/mhn enables the fulfillment of the condition

∫

Rn f̂(x) dx = 1,
required of the density of a probability distribution.
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Figure 1. Kernel estimator (3)

The choice of the form of the kernel K and of the value for the smooth-
ing parameter h is most often made based on the criterion of minimization of
integrated square error (Kulczycki, 2005; Silverman, 1986; Wand and Jones,
1994).

Thus, the form of the kernel K has practically no influence on the statistical
quality of estimation. In this paper the generalized (one-dimensional) Cauchy
kernel is applied:

K(x) =
2

π (x2 + 1)2
, (4)

in the multidimensional case defined using the product kernel concept

K(x) = K
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= K(x1) · K(x2) · ... · K(xn), (5)

where K denotes the one-dimensional kernel given by formula (4).
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The value of the smoothing parameter h can be calculated in practice with
the tried and tested algorithms available in literature. The effective and conve-
nient plug-in method (Kulczycki, 2005 – Section 3.1.5; Wand and Jones, 1994
– Section 3.6.1) is recommended here. In the multidimensional case, regarding
application of the product kernel in this paper, the smoothing parameter will be
naturally denoted as h1, h2, . . ., hn respectively for subsequent coordinates, and
can be obtained separately for each of them by the above suggested method.

In practice, one employs additional procedures to increase generally the qual-
ity of the kernel estimator, and also fit its features to those of the considered
reality. In this paper the modification of the smoothing parameter (Kulczycki,
2005 – Section 3.1.6; Silverman, 1986 – Section 5.3.1) will be applied, signif-
icantly improving the properties of the kernel estimator, particularly in areas
where it assumes small values. In classification tasks this takes place especially
near the boundaries of specific classes, which makes this procedure particularly
useful here. Consider, then, the nonnegative modifying coefficients

si =

(

f̂∗(xi)

s̄

)

−c

for i = 1, 2 . . . , m, (6)

where the constant c ≥ 0 is called modification intensity, f̂∗ denotes the kernel
estimator in its basic form (3), and s̄ – the geometrical mean of the quantities

f̂∗(xi) with i = 1, 2 . . . , m. The final definition of estimator (3) with product
kernel (5) then takes the form:

f̂(x)=
1

m h1 h2... hn

m
∑

i=1

1

sn
i

K
(

x1−xi,1

h1si

)

K
(

x2−xi,2

h2si

)

... K
(

xn−xi,n

hnsi

)

, (7)

where the natural notations
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

for i = 1, 2, ... , m (8)

are used, and together with formula (4) will be employed later on in this paper.
The case of c = 0, entailing si ≡ 1, implies the lack of smoothing parameter
modification, while with an increase of the parameter c the intensity of this
procedure grows. Corollaries resulting from the mean-square criterion primarily
point to the value

c = 0.5 . (9)

Fig. 2 shows an interpretation of the above procedure. In the areas where
elements of the random sample are dense, for the elements xi it is true that
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f̂∗(xi) > s̄, and therefore, as a result of formula (6), also si < 1. This leads
to a narrowing of the kernels assigned to them, which in turn allows for better
characterization of specific properties of the distribution. In contrast, in the
areas where the elements of the random sample are sparse, one has f̂∗(xi) < s̄
and consequently si > 1. This causes "flattening" and thus – advantageous to
estimation quality – additional smoothing of the kernel estimator in peripheral
regions (primarily the so-called "tails") of the distribution.

x
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Figure 2. Kernel estimator with smoothing parameter modification

Statistical kernel estimators are dealt with in Kulczycki (2005), Silverman
(1986), Wand and Jones (1994). Information on the subject of their applications
in standard classification tasks can be found in Devroye et al. (1996), Duda et
al. (2001), Ledl (2004), McLachlan (2004); the publication by Kulczycki (2008)
can be also recommended.

2.2. Sensitivity analysis of neural networks

When modeling multidimensional problems using artificial neural networks, par-
ticular components of an input vector are most often characterized by differen-
tiated significance of information, and in consequence influence differently the
result of the data processing. In order to eliminate redundant – from the point of
view of the problem investigated – input vector components, sensitivity analysis
of the network with respect to particular learning data is often used. The basic
factor for network reduction is sensitivity of the output function with regard to
particular input data.

The essence of the sensitivity method (Zurada, 1992) consists in defining
– after the network learning phase – the influence of the particular inputs ui
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for i = 1, 2, ..., m on the output value y, which is characterized by the real
coefficients

Si =
∂ y(u1, u2, ..., um)

∂ ui

for i = 1, 2, ..., m. (10)

Next, one aggregates the particular coefficients S
(p)
i originating from successive

iterations of the previous phase and corresponding to the sensitivity of subse-
quent learning data, with p = 1, 2, ..., P . The result is the final coefficient S̄i

given by the formula

S̄i =

√

√

√

√

√

√

P
∑

p=1

(S
(p)
i )2

P
for i = 1, 2, ..., m. (11)

After the sorting operation for the vector S̄i according to decreasing values,
analysis is performed of the relevance of particular components to the result of
network operation, and then the least important inputs are eliminated.

In the general case the above algorithm can be used repeatedly to achieve
further reduction. However, during empirical testing of the classification method
developed here, such action did not bring positive results and so was forsaken.

The application of the above method led to an increase in speed, as well
as reduction of errors of learning and generalization, while at the same time
reducing the input dimension of the artificial neural network by removing infor-
mation of little significance or even eliminating data (input vector components)
having unfavorable influence on the correctness of the obtained result. Detailed
considerations concerning the above procedure are found in Engelbrecht et al.
(1995), Zurada (1992).

3. An algorithm for interval classification

3.1. One-dimensional case

This section considers the one-dimensional case, i.e. when n = 1. Let therefore
be given the quantity having undergone the classification procedure, for the case
here considered, represented by the (one-dimensional) interval

[x, x], (12)

with x ≤ x̄; if x = x̄ then the classic case is obtained where the quantity is
precise (e.g. deterministic or sharp). Assume also that the real number sets
(patterns):
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x1
1, x

1
2, . . . , x

1
m1

(13)

x2
1, x

2
2, . . . , x

2
m2

(14)

...

xJ
1 , xJ

2 , . . . , xJ
mJ

(15)

represent subsequent J marked classes of the sizes m1, m2, ..., mJ , respectively.
The upper index, introduced in the above notation, characterizes membership of
an element in a given class. As stated before, the task of classification consists
of deciding to which of these groups the tested element (12) should be assigned.

Let now f̂1, f̂2, . . ., f̂J denote kernel estimators of a probability distribution
density, calculated successively based on sets (13)-(15) treated as random sam-
ples – a description of the methodology used for their construction is contained
in Section 2.1. In accordance with the classic Bayes approach (Duda et al.,
2001), the classified element x̃ ∈ R should then be assigned to the class, for
which the value

m1f̂1(x̃), m2f̂2(x̃), ... , mJ f̂J(x̃) (16)

is the biggest. In the case of information of interval type, represented by element
(12), one can infer that this element belongs to the class, for which the expression

m1

x − x

∫ x

x

f̂1(x) dx,
m2

x − x

∫ x

x

f̂2(x) dx, ...,
mJ

x − x

∫ x

x

f̂J(x) dx (17)

is the biggest.

Considering the limit transitions x → x̃+ and x → x̃− for a fixed x̃ ∈ R,
due to the continuity of the function K used here – given by formula (4) –

consequently implying the continuity of the kernel estimator f̂j, one obtains

lim
x → x̃−

x̄ → x̃+

1

x − x

∫ x

x

f̂j(x) dx = f̂j(x̃) for j = 1, 2, ..., J. (18)

The expressions specified in formula (17) reduce therefore to the classic type
(16).

In formula (17), the positive expression 1/(x−x) can be omitted as irrelevant
in an optimization problem, and so the compared quantities become

m1

∫ x

x

f̂1(x) dx, m2

∫ x

x

f̂2(x) dx, ..., mJ

∫ x

x

f̂J(x) dx. (19)
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Moreover, for any j = 1, 2, ..., J one can note

∫ x

x

f̂(x) dx = F̂ (x) − F̂ (x), (20)

where

F̂ (x) =

∫ x

−∞

f̂(y) dy. (21)

The above value can be analytically calculated, by substituting the equalities
defining the kernel estimator (7) (for n = 1) and kernel (4) used here, yielding

F̂ (x) =

m
∑

i=1





(x2 − 2xxi + x2
i + h2s2

i ) arctg
(

x−xi

sih

)

+ hsi(x − xi)

x2 − 2xxi + x2
i + h2s2

i

+
π

2



 , (22)

where again the positive constant 1/mπ has been omitted. Finally, it should be
acknowledged that the considered element belongs to the class, for which the
corresponding expression in formula (19) is the biggest, whereby the integral
appearing there for any j = 1, 2, ..., J can be effectively calculated using equal-
ities (20) and (22). The above completes the classification algorithm for the
one-dimensional case. For the illustration of the interpretation see Fig. 3.
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Figure 3. Interpretation for classification procedure according to formula (19)
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3.2. The multidimensional case

The concept, presented in the previous subsection, can be naturally generalized
for the multidimensional case, i.e. when n > 1. Thus, if information of interval
type is represented by the interval vector











[x1, x1]
[x2, x2]

...
[xn, xn]











(23)

and sets (13)-(15) contain the elements of the space R
n, then one can infer that

the considered element is assigned to the class with the biggest value for the
expression

m1

∫

E

f̂1(x) dx, m2

∫

E

f̂2(x) dx, ..., mJ

∫

E

f̂J(x) dx, (24)

where E = [x1, x1]× [x2, x2]× ...× [xn, xn]. This is slightly different, though, for
the algorithm for calculating the integrals appearing above. However, owing to
the properties of the product kernel used here, for any fixed j = 1, 2, ..., J and
the kernel K, the following equality is true:

∫

E

K(x) dx = [F(x1) −F(x1)][F(x2) −F(x2)] ... [F(xn) −F(xn)], (25)

where F denotes the primitive of the function K, introduced by definition (5).
Taking into account the definition of the kernel estimator with product kernel
(7), as well as the analytical form of the primitive function contained in for-
mula (22), the above completes the procedure for classification of interval type
information, for the multidimensional case, too.

3.3. Calculational complexity of the algorithm

From the point of view of calculational complexity, it is worth underlining the
two-phased nature of the method presented in this paper. The first stage con-
tains the complex procedures for constructing the classifier, which are executed
once at the beginning. The most time-consuming is the algorithm for calculat-
ing the smoothing parameter using the plug-in method of complexity O(nm2).
The same complexity characterizes the calculations of the smoothing parameter
modification procedure.

On the contrary, the procedure for calculating the values of the kernel estima-
tor has the complexity O(n m). Considering that the number of such operations
is equal to the number of assumed classes J , the calculational complexity of the
second phase is linear with respect to all three parameters: n, m and J , where
m characterizes here the size of particular patterns. This implies a relatively
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short calculation time, which, after an earlier execution of the first phase, in
most practical problems allows for the application of the investigated algorithm
in real time, in an on-line regime.

4. Procedures for increasing classification quality

4.1. Reducing pattern size

In practice, some elements of sets (13)-(15), constituting patterns of particular
classes, may have insignificant or even negative – in the sense of classification
correctness – influence on the quality of obtained results. Their elimination
should therefore imply a reduction in the number of erroneous assignments,
as well as decreasing calculation time. To this aim the sensitivity method for
learning data, used in artificial neural networks, described in Section 2.2, will
be applied.

To meet the requirements of this procedure, the definition of kernel estimator
will be generalized below with the introduction of the nonnegative coefficients
w1, w2, . . ., wm, normed by the condition

m
∑

i=1

wi = m, (26)

and mapped onto the particular elements of the random sample. The basic form
of the kernel estimator (3) then takes the form

f̂(x) =
1

mhn

m
∑

i=1

wiK

(

x − xi

h

)

. (27)

Formula (7) undergoes analogous generalization. The value of the coefficient
wi may be interpreted as indicating the significance of the i-th element of the
pattern for classification correctness. Note that if wi ≡ 1, then definition (27)
is reduced to the initial form (3).

In the method designed here, for the purpose of reduction of sets (13)-(15),
separate neural networks are built for each investigated class. In order to ensure
coherence of the notation below, let now the index j = 1, 2, . . . , J characterizing
particular classes, be arbitrarily fixed.

The constructed network has three layers and is unidirectional, with m in-
puts (corresponding to particular elements of a pattern), a hidden layer whose
size is equal to the integer part of the number

√
m, and also one output neuron.

This network is submitted to a learning process using a data set comprising of
the values of particular kernels for subsequent pattern elements, while the given
output constitutes the value of the kernel estimator calculated for the pattern
element under consideration. Apart from the above topology, as a result of
empirical research, the maximum number of epochs was assumed as 100, the
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maximum learning error 0.01, the learning speed 0.3, and the momentum coef-
ficient as 0.1. After finishing the learning process, the thus obtained network is
subject to sensitivity analysis with respect to the learning data, in accordance
with the method presented in Section 2.2. The resulting coefficients S̄i describ-
ing sensitivity, obtained on the basis of formula (11), constitute the fundament
for calculating preliminary values

w̃i =

(

1 − S̄i

m
∑

j=1

S̄j

)

, (28)

after which they are normed to

wi = m
w̃i

m
∑

i=1

w̃i

(29)

with the aim of guaranteeing fulfillment of condition (26). It is worth noting
that the form of formulas (10)-(11) guarantees in practice that not all of the
quantities S̃i are equal zero, and so the above defined operations are feasible.
The shape of formula (28) results from the fact that the network created here
is the most sensitive to atypical and redundant elements, which – taking into
account the form of kernel estimator (27) – implies a necessity to map the ap-
propriately smaller values w̃i, and in consequence wi, to them. The coefficients
(29) characterize – according to the idea presented during formulation of gener-
alized form (27) – the significance of particular elements of the pattern, for the
correctness of the classification procedure.

Empirical research confirmed the natural assumption that the pattern set
should be relieved of those elements for which wi < 1. (Note that, thanks
to normalization made with formula (29), the mean value of coefficients wi

equals 1.) Decreasing of such an assumed threshold value resulted in a significant
drop in the degree of pattern size reduction, while in the vicinity of the value 1
the influence on classification quality was practically unnoticeable, however,
considerable decrease implied a sizable rise in the number of errors. On the
other hand, an increase in this value caused a sharp fall in classification quality,
due to a loss of valuable and non-redundant information included in the pattern.

Another procedure – besides the above presented algorithm for reduction of
pattern size based on sensitivity analysis – from the group of methods dedicated
to kernel estimators is the weighted Parzen windows algorithm contained in
Babich and Camps (1996). The concept worked out in this paper was compared
with the above algorithm as well as with other methods of eliminating elements
of pattern sets, for example by the natural percentage reduction or the algorithm
of k-nearest neighbors described in Mitra et al. (2002). In all cases, the results
obtained on the basis of the sensitivity method were significantly better for
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the task of classification of interval information. An additional noteworthy
positive aspect of this concept was the lack of necessity of introducing arbitrary
parameters of fundamental relevance, which often requires laborious preliminary
research.

4.2. Correcting the smoothing parameter and modification intensity

values

The literature on the subject often presents the opinion that the classic univer-
sal methods of calculating the smoothing parameter value – most often based
on a quadratic criterion – are not proper for the classification task. For exam-
ple, in Ghosh et al. (2006) experimental research conducted on two classes was
presented showing the significant difference between the value of this parameter
when calculated by minimizing integrated square error, and when obtained by
minimizing the number of misclassifications. However, the latter method is dif-
ficult in practical use for the multidimensional case, due to an extraordinarily
long calculation time – a problem which becomes more important with the big-
ger number of classes. Available literature does not suggest a definitive solution
for such a task.

This work proposes introducing n + 1 multiplicative correcting coefficients
for the values of the parameter defining the intensity of modification proce-
dure c and smoothing parameters for particular coordinates h1, h2, . . ., hn,
with respect to the optimal ones, calculated using the integrated square error
criterion. Denote them as b0 ≥ 0, b1, b2, . . . , bn > 0, respectively. Note that
b0 = b1 = . . . = bn = 1 means, in practice, no correction. Next, through a
comprehensive search using a grid with a relatively large discretization value,
one finds the most advantageous points with respect to minimal incorrect clas-
sifications. The final phase is a static optimization procedure in the (n + 1)-
dimensional space, where the initial conditions are the points chosen above,
while the performance index is given as

J(b0, b1, . . . , bn) = #{incorrect classifications}, (30)

where # denotes the power (size) of a set. The value of the above functional for
a fixed argument is calculated with the help of the classic leave-one-out method.
This value is an integer – to find the minimum a modified Hook-Jeeves algorithm
(Kelley, 1999) was applied.

Following experimental research it was assumed that the grid used for pri-
mary search has intersections at the points 0.25, 0.5, . . ., 1.75 for every coor-
dinate. For such intersections the value of functional (30) is calculated, after
which the obtained results are sorted, and the five best become subsequent ini-
tial conditions for the Hook-Jeeves method, where the value of the initial step
is taken as 0.2. After finishing every one of the above five “runs” of this method,
the value of functional (30) for the end point is calculated, and finally the one
with the smallest value among them is shown.
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The above algorithm was comprehensively tested and compared with a re-
lated exemplary method available in literature (Marzio and Taylor, 2005), and
achieved better results in both correctness of classification and speed. This
mainly results from fixing the value calculated on the basis of the minimal in-
tegrated square error criterion as a starting point and searching for a solution
in its neighborhood, by creating a separate algorithm with features specific to
the problem under research. It is worth noting that the procedure of smoothing
parameter modification, introduced here into the classification task, greatly im-
proves the quality of the results, and was adapted in the here proposed algorithm
by merely increasing the dimension of the search-space by one. Application of
the leave-one-out method also seems to be advantageous, since – as opposed to
procedures based on additional validation samples – it does not reduce pattern
sizes.

5. Numerical verification

Verification of correctness of the method presented in this paper for classifying
interval information was conducted with numerical simulation.

First a typical one-dimensional case will be presented in detail, where the
samples representing two patterns are obtained from generators with normal
distributions N(0, 1) and N(2, 1). Note that the theoretical division point is
placed at a distance of only one standard deviation from both expected values.
Classified elements were obtained through generation by one of the aforemen-
tioned generators with normal distribution of the first pseudorandom number,
as well as the second – taken from a generator with uniform distribution – defin-
ing the location of the first as within an interval of arbitrarily assumed length.
This represents information of interval type when there are no circumstances
for the considered imprecision, although its size is known. Such an interpre-
tation seems to be the most appropriate for the majority of practical interval
analysis applications. One hundred sets of 1000 elements obtained from each
pattern were subjected to classification. The results are shown in Table 1, which
also contains in the gray column – for comparison – results for testing precise
elements.

Note that in particular columns of Table 1, as size increases, mean classifi-
cation error and its standard deviation decrease. Another tendency – natural
for tasks with interval data – is the increase in mean classification error as in-
terval length increases. This is present in all rows. Obviously, the greater the
imprecisation data, the worse the quality of analysis. However, it should also be
emphasised that standard deviation shrinks as the interval length grows – this is
the result of an ever more effective averaging, „stabilizing” the obtained results.
The above is not valid for the last columns, where the interval length equals 5,
which also seems obvious, given that the patterns have distributions N(0, 1)
and N(2, 1) – such a large inaccuracy of the classified element is inadequate for
treatment in the thus defined classification problem.
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Table 1. Results of numerical verification for patterns N(0, 1) and N(2, 1) with
notation: mean classification error ± its standard deviation

length
0.00 0.10 0.25

m

10 0.1713 ± 0.0257 0.1720 ± 0.0215 0.1720 ± 0.0215

20 0.1655 ± 0.0160 0.1669 ± 0.0175 0.1669 ± 0.0176

50 0.1602 ± 0.0126 0.1605 ± 0.0124 0.1606 ± 0.0122

100 0.1596 ± 0.0122 0.1601 ± 0.0112 0.1602 ± 0.0112

200 0.1596 ± 0.0123 0.1602 ± 0.0112 0.1604 ± 0.0112

500 0.1591 ± 0.0125 0.1595 ± 0.0114 0.1596 ± 0.0111

1000 0.1579 ± 0.0140 0.1584 ± 0.0131 0.1588 ± 0.0131

0.50 1.00 2.00 5.0

0.1723 ± 0.0215 0.1729 ± 0.0214 0.1761 ± 0.0208 0.1944 ± 0.0198

0.1672 ± 0.0174 0.1680 ± 0.0171 0.1713 ± 0.0161 0.1888 ± 0.0131

0.1609 ± 0.0122 0.1617 ± 0.0116 0.1652 ± 0.0108 0.1848 ± 0.0100

0.1604 ± 0.0113 0.1615 ± 0.0110 0.1650 ± 0.0098 0.1827 ± 0.0079

0.1609 ± 0.0111 0.1618 ± 0.0107 0.1650 ± 0.0091 0.1840 ± 0.0080

0.1602 ± 0.0110 0.1613 ± 0.0101 0.1647 ± 0.0088 0.1844 ± 0.0076

0.1591 ± 0.0127 0.1603 ± 0.0118 0.1637 ± 0.0098 0.1833 ± 0.0086

After applying the procedure for reducing pattern sets, presented in Sec-
tion 4.1, the number of wrong classifications was lowered by approximately 15%,
while the size of patterns was reduced by approximately 40%. The conjunction
of these results is particularly worth attention: while appropriately reducing
pattern sizes, which does imply a significant increase in calculation speed, the
classification quality is also importantly improved.

Figs. 4 and 5 show exemplary coefficients assigned to particular elements of
both pattern sets as a result of the use of sensitivity analysis of neural networks.
One can see that coefficients below the assumed threshold value 1 are mapped
primarily to atypical elements, but also to some elements in dense areas of
patterns, where they were treated as redundant, and their role was taken over by
elements considered to be more representative, with coefficients greater than 1.
Interpretation of these results can be a valuable aid in investigations of unusual
aspects of the problem considered, e.g. for nonstationary patterns (13)-(15).

A further subject of research was the task of correcting the smoothing param-
eter and intensity of its modification, presented in Section 4.2. This procedure
was carried out after the reduction of patterns. The obtained results caused a
further decrease in the number of classification errors to approximately 14%.
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Figure 4. Coefficients wi assigned to particular elements xi of the pattern N(0,1)
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Figure 5. Coefficients wi assigned to particular elements xi of the pattern N(2,1)
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The above tests were also carried out for the case where interval length was
defined randomly, as it was, for example, in Souza and Carvalho (2004). The
uniform distribution over the interval of the form [0, 2d], while d denotes the
respective lengths of intervals shown in Table 1, was assumed. The obtained re-
sults were comparable in relation to those previously presented for fixed lengths.
A similar situation occurred with the joining of both concepts, when both the
interval length and its “catching point” were random.

Further experiments concerned the symmetry of errors in the cases of evenly
and unevenly matched patterns. In the first of them both mean classification
error and its standard deviation are not asymmetric, even with very small pat-
tern sizes, which – although generally intuitively correct – is worth mentioning.
In the case of unevenly matched patterns, the number of elements incorrectly
classified from a class with larger pattern to a class with a smaller pattern is
lower and this tendency becomes more visible as the ratio of pattern sizes moves
away from 1 – this mainly results from a better quality of larger pattern.

The subsequent study dealt with interval classification of multidimensional
information. Generally, increasing the dimension by 1 required – in order to
maintain a given accuracy – approximately a fourfold increase in pattern size.
This is in accordance with the theoretical properties of kernel estimators, arising
from the ever present “multidimensionality curse”; see e.g. (Kulczycki, 2005 –
Section 3.1.9; Silverman, 1986 – Section 4.5.2). It is, however, worth underlining
that once the above requirement was fulfilled, the properties of the algorithm
did not become an issue.

The subject of subsequent investigations concerned multimodal patterns,
including cases of incoherent subsets, separated by fragments of other patterns.
This required an increase in sample sizes of 10-50% in practice. The result is
obvious from an intuitive point of view – every mode and subset of particular
patterns was defined by reducing the number of elements, and so the patterns
were naturally not as accurate as in the unimodal case. However, apart from
an insignificant fall in classification quality, the algorithm itself did not undergo
any change, either in the sense of its structure or calculation time, which is
characteristic for procedures based on the kernel estimators methodology.

Similar results were obtained for greater numbers of classes. These results
do not have any specific differentiating features and generally confirm the ac-
curacy of the method. This is particularly worth stressing, however, due to
the unsavory habit commonly found in subject literature of presenting methods
of classification actually dedicated only to the case of two classes and silent of
the fact that their application with respect to greater numbers is practically
impossible.

The method was also positively verified for the case with bounded support,
realized by symmetrical reflection of kernels (Kulczycki, 2005 – Section 3.1.8;
Silverman, 1986 – Section 2.10), as well as when patterns of particular classes
were obtained through clustering – then results were even slightly more advan-
tageous, especially regarding effectiveness of the pattern reduction procedure.
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Elements wrongly mapped during clustering were a minority in such obtained
pattern sets, and were successfully eliminated with the reduction algorithm.

All verification research carried out showed that increasing pattern size re-
sulted in a decrease in both mean value of classification errors as well as their
standard deviation, which in practice allows for successive improvement in qual-
ity of classification when collecting new data. Furthermore, as the length of
interval increased, so, slightly, did the classification error, to a certain extent.
From the application point of view the above features are worth underlining, as
they indicate that it is possible to enhance classification quality by increasing
the available information in terms of greater patterns as well as more accurate
interval elements being investigated. Due to the time-consuming nature of the
calculations, however, practical tasks require a compromise to be established
between the number and accuracy of information available, and the quality of
results achieved.

Another subject of study was the comparison of the procedure presented here
with other methods of corresponding conditioning, both natural in character as
well as available in literature, based on other concepts.

For the former, an algorithm was used where elements of every pattern
included in the classified interval element were counted. In this instance the
results clearly proved worse than those coming from the method presented in
this paper, especially for short intervals.

The procedure described here was also compared with another natural con-
cept consisting in replacing the classified interval element with its middle value,
and then using the Bayes classification for precise data. The results of the two
methods were similar for smaller lengths, however, as the length increased the
procedure proposed in this paper became ever more advantageous, in the sense
of both smaller mean values of classification error and their standard deviation,
especially for atypical multimodal and/or multicomponent, partly overlapping
pattern sets.

The latter group of compared concepts contained a method based on the sup-
port vector machine, according to the algorithm presented in Zhao et al. (2005).
When this procedure is used three types of decisions regarding assignment of
the tested interval element are obtained: to the first class, to the second, or none
at all. Comparing these results with those acquired through the procedures in
this paper, it must be stated that the former were worse by 5% to even 50%.
If, however, it is taken that not making a decision is a proper action, the above
ceases to be unconditionally true, although then the conditions of the problem
are different. Worth noting is the fact that the method presented here could
also be administered to them, most easily by not making a decision in the clas-
sification when none of the expressions in formulas (16) or (24) is significantly
greater than the others. It is to be underlined that the method presented in
Zhao et al. (2005) does not lend itself to generalization to the multidimensional
case or to more than two classes.
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Finally, verification was performed using benchmark data. Due to the spe-
cific conditioning of the method presented here, this type of data was not found
in public repositories or on websites. For this reason the interval data used
in the tests below was formed from precise data taken from repositories in the
same way as described at the beginning of this section – a pseudorandom num-
ber obtained from a generator with uniform distribution becomes the location
of the above mentioned precise data within an interval of arbitrarily assumed
length.

First, the benchmark data was investigated for Toy 2D, located at the web-
site http://www.cse.ust.hk/˜twinsen/assgn2.pdf. The two-dimensional random
samples – learning and testing – represent the phases of the moon. The former
contains 2 152 elements belonging to the first class (connected with the first
quarter moon) and 2 444 to the second (the third quarter moon), while the
latter was formed on the basis of a two-dimensional regular grid and includes
26 130 elements of the first class and 34 371 of the second.

The results of numerical verification are presented in Table 2. In the gray
column, for comparison – as with Table 1 – the results are shown for precise
data. It can be seen that the loss of information resulting from the introduction
of imprecision of interval type did not cause a significant increase in error of
classification (carried out here also using the method investigated in this paper)
in the first four columns corresponding to the interval lengths 0.1, 0.25, 0.5 and
1.0. However, for the lengths 2.0 and 5.0, where they are the multiples of the
range of sample data, such imprecise interval information obviously considerably
lowers the quality of classification.

Table 2. Results of numerical verification for Toy 2D data

length of 0.00 × 0.10 × 0.25 × 0.50 × 1.00 × 2.00 × 5.00 ×

interval 0.00 0.10 0.25 0.50 1.00 2.00 5.00

mean

classification 0.0681 0.0737 0.0748 0.0766 0.0828 0.1097 0.2226

error

Further research was conducted on the real data set Iris Plants Data-
base, taken from the well-known repository of the Center for Machine
Learning and Intelligent Systems at the University of California, Irvine, at
http://archive.ics.uci.edu/ml/datasets/Iris. This data set contains the lengths
and widths of petals and sepals of three species of iris setosa canadensis, versi-
color and virginica; the first two classes are linearly separable. The set of data is
composed of three classes of equal size represented by altogether 150 elements,
although here the learning and testing samples have not been defined. Because
of this, in the research described below, data was divided randomly into two
subsets: learning and test. The results presented in Table 3 are the mean of
1000 divisions performed randomly. The intervals were generated as before.
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The results obtained clearly show many advantages of the classification
method presented in this paper. The first was that its sensitivity to the “multi-
dimensionality curse” turned out to be lower in practice than theory suggested,
as classification with a 4-dimensional vector was carried out satisfactorily on
patterns of about 40 elements. Another confirmation of the effectiveness of
this method comes from the comparison with results described in Kotsiantis
and Pintelas (2005) for precise data. In that article the classification error was
never below 4.5%. A similar result was obtained for the method presented in
this paper for precise data (see gray column in Table 3). Despite a decrease in
the accuracy of information classified due to their change into imprecise data,
the results did not worsen for the interval up to 1.0 cm, which is particularly
worth underlining in conclusion.

Details of numerical verifications can be found in Kowalski (2009).

Table 3. Results of numerical verification for Iris data
length of 0.00 × 0.10 × 0.25 × 0.50 × 1.00 × 2.00 × 5.00 ×

interval 0.00 0.10 0.25 0.50 1.00 2.00 5.00

mean

classification 0.041 0.045 0.047 0.048 0.049 0.066 0.156

error

6. Summary

This paper presents the complete Bayes algorithm – thereby ensuring minimum
potential losses – for the classification of multidimensional imprecise information
of interval type, where patterns of particular classes are given on the basis of
sets of precisely defined elements, with no limits to the number of classes. In
addition, two optional procedures are provided, which improve and enhance the
quality of classification: reduction in pattern size and correction of the classifier
parameter values.

Considering the calculational complexity, it is worth underlining that the
investigated method has two phases. Time-consuming algorithms for construct-
ing the classifier are executed only once in the initial stage. The aforementioned
optional procedures may be run irregularly, depending on the computer system
free computing power. The classification itself of imprecise information is car-
ried out in a relatively short time, which may be of great practical significance
in many applicational tasks. This is achieved mainly due to the analytical form
of the formulas used.

Numerical testing wholly confirmed the positive features of the method
worked out. It was carried out with the use of pseudorandom and benchmark
data. In particular, the results show that the classifying algorithm can be used
successfully for inseparable classes of complex multimodal patterns as well as
for those consisting of incoherent subsets at alternate locations. This is due to
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the application of the statistical kernel estimators methodology, which makes
the above procedure independent of the shapes of patterns – their identifica-
tion is an integral part of the presented algorithm. As shown by numerical
verification, the algorithm has beneficial features in the multidimensional case,
too. The results also compared advantageously to those obtained by applying
support vector machines as well as by the two natural methods.

The reduction in the size of patterns proved to be especially effective in the
case of interval classification, as – apart from the obvious profits gained from
eliminating pattern elements with negative influence on classification – this type
of information is averaging in character and so removing redundant elements has
particularly insignificant influence on the quality of the procedure.

The task of classifying interval information based on precise data can be
interpreted illustratively with the example where the patterns present actual,
precisely measured quantities, while intervals being classified represent uncer-
tainties and imprecision in plans, estimations or measurements difficult to make.
In particular, pattern sets may consists of very accurate measurements, in which
errors are practically ignored, while the classified interval constitutes a measure-
ment taken from another, much less accurate apparatus or carried out in much
worse conditions. Another example of the application of this kind of classifi-
cation is the possibility of treating precise data as actual information from the
past, e.g. temperature or currency exchange rates, while the classified element
represents a prognosis, which, by its very nature, is limited in precision.
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