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Abstract: The paper discusses a method of north-wise align-
ment of sonar image adopted when it is located near the quay. In
such a case, the built-in sonar’s compass is prone to erroneous indi-
cation due to the influence of metal parts of the quay. The method
is based on the determination of direction coefficient of the water
line. Additionally, it allows for defining the maximal error caused
by non-linearity of the quay, mutual blocking out by its different
parts, and multiple reflection of acoustic echo.
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1. Introduction

Sector sonar is a device used for recording the images at the sea or river floor,
and objects located under water. Depending on the application, it can be hull-
mounted or deployed in water (e.g. at the bottom). Hull-mounted sonars for
non-military purposes are used mainly in fishing, and operate in frequency band
of 60-80 kHz. High resolution sonars with frequency operating in the range
600kHz-2.3MHz are used for underwater inspections of rivers, hydro-technical
construction and supervision of underwater works. These sonars have much
greater resolution, but shorter range.

Characteristics of the sector sonar image are similar to the characteristics of
the side sonar image. This results from the fact that both operate in approxi-
mately the same frequency bands and the principle of image formation is very
similar. Consequently, many algorithms developed for side sonars can be used
for sector sonars. Due to limited availability of data from sector sonars and high
similarity of images from sector and side sonars, there is a limited number of
publications devoted to specific aspects of sector sonar data processing. Most of
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research on object recognition from sector sonar images focused on the selection
of method most suitable for specific features of such images (Ruiz, Lane and
Chantler, 1999), detection and identification of small objects (Perry and Guan,
2004a,b), detection and determination of the movement parameters of moving
objects (Chantler and Stoner, 1994; Lane, Chantler and Dai, 1998).

Sonar image is recorded sequentially, line after line, no matter whether they
are parallel or not. In the case of side sonar, it moves together with ship,
approximately along straight lines. In sector sonar, after recording each line,
the sonar’s head is slightly rotated. In order to present the recorded objects
in a correct way, it is necessary to relocate all the lines in conformance with
their orientation in the real world and fill the gaps between them by means of
interpolation. Image created in such a way is called a mosaic.

In the case of underwater inspection of hydro-technical structures, sector
sonar is located in different positions at the bottom. This makes it particularly
difficult to compose the mosaic. The most important problem is the availabil-
ity of the (approximate) geographical coordinates of sonar locations. Similar
problem arises for the side sonar located on the AUV (Autonomous Underwater
Vehicle), see Reed et al. (2006). What is specific for sector sonar is that individ-
ual recordings have the same error of determining the geographical coordinates,
while in the side sonar the error is related to individual lines.

Data of the sector sonar image contain in graphical file information about
head angles, range, geographical position and azimuth, measured by built-in
compass. If there is one location, such data are sufficient for making a mosaic.
But if there are different locations, it is difficult to create a mosaic because of
errors in geographical position. Geographical position is measured in respect
to a ship or shore, and sonar is located at the bottom. As a result, there
is a several-meter difference between the actual and estimated position. This
difference can be even greater due to the movements of the sonar caused by the
stream or bottom slope. Because the recorded images overlap partially, their
registration is possible, e.g. owing to 2D correlation between the overlapping
parts of images.

The adjustment of sector scan sonar’s images facilitates the qualification
of an image orientation in relation to the North. Unfortunately, in the case of
registration near the pier, the operation of built-in compass can be deteriorated,
most probably by the steel parts used for quay construction. Azimuth error can
be serious, as illustrated in Fig. 1. In the extreme cases, it can amount to up to
40 degrees. Such a major error in image orientation makes it difficult to adjust
images from different registrations. Taking a small distance from the quay into
account, compass readings can be compensated on the basis of information about
the quay location that is derived from the map. Software used for creating the
mosaic usually aligns the mosaic in respect to the map under the assumption
that the geographical location of quay is known. The paper presents the method
for determining the orientation of sector sonar image in relation to the North,
when the sonar is located close to the quay.
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Figure 1. Map and sector sonar image of a channel (data source: Hydrograf
XXI, Marine Academy of Szczecin)

The article also discusses the way of calculating the error of specified orien-
tation. This error is important while comparing the images. It shows the range
over which the compared images should be rotated. Calculating this error re-
quires the set of vectors to satisfy the axioms of the Abelian group. In this
case, it is not plausible to use fuzzy arithmetic for calculations. In the fuzzy
arithmetic, researchers attempted to assure its conformity with the axioms of
the aforementioned group, see e.g. Mareš (1977, 1989). He used decomposition
as fuzzy numbers and then adopted convolution as addition, and finally cre-
ated convolution representation. Nevertheless, a certain problem arises, namely
this is not in accordance with fuzzy arithmetic. As a result, the definition of
a set of fuzzy numbers is provided (the definition of the opposite element is in
line with fuzzy arithmetic but not with the axioms of the group, Mareš, 1994).
Similarly, there is a problem with classifying other sets of numbers that satisfy
Abelian group axioms (e.g. directed fuzzy numbers proposed in Kosiński and
Prokopowicz, 2004) into fuzzy arithmetic.

To make calculations, it is possible to use interval arithmetic, proposed by
Kaucher (1973, 1980). By definition, it satisfies all the axioms of the Abelian
group. Therefore, it can be employed for defining vectors in vector spaces. It re-
quires one to assume that elements opposite to intervals do not necessarily have
a physical representation, as suggested by Mikusiński in the operator calculus
(Mikusiński, 1953, 1983).
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2. Determination of azimuth

Determination of sector sonar image azimuth can be divided into the following
stages:

1. Determination of quay segment,
2. Vectorization,
3. Determination of direction coefficient of straight line representing the quay

line.
In order to determine the azimuth of the sector sonar image, it is necessary

to detect the quay line. Because the sought value is an angle of the line formed
by the quay, it is not essential to determine the line along which the quay meets
the bottom or the waterline. Both lines have the same direction but differ in
position shown by the sonar, which is not important here. The shape of the
line illustrating the contact of the quay with the bottom depends on the depth
and thus can have a very irregular shape. The line illustrating the contact of
the quay with the water surface is more regular than the aforementioned one.
Acoustic wave approaching from the water surface is strongly scattered and the
area over the surface in most cases lacks acoustic echo. In sonar image it is
shown as black colored area.

Materials used for quay construction can vary and their acoustic echo is
practically always recorded by the sonar. Exclusion can be a quay with openings
or extending parts, partially shadowing the quay. Shadowed or not visible areas
form the acoustic shadow, i.e. space lacking the acoustic echo. In the case of
a quay, acoustic shadow areas are normally the small parts of sonar image and
are practically disconnected from the water line. To create such a situation,
the shadowing object should be under the water, just over the sonar, or in its
direct vicinity. Yet, this is very unlikely because there is a risk of sonar damage
sounding is avoided in such places.

The literature discusses a number of methods for detecting the line. One of
the most popular is the Hough transform or its modifications (Aggarwal and
Karl, 2006; Ran and Chen, 2003). In this case, it is not difficult to detect the line
as it can be read from the map. It is not very important to know its location,
but its direction and uncertainty in its routing is necessary to determine the
estimate of direction error. Thus, it is not essential to use the methods for line
detection, but the vectorization of line and approximate determination of its
origin and end.

The fact that the water line separates bright area from dark area can be used
for determining its direction. When the sonar image is correctly recorded, its
intensity range can be divided into three parts: acoustic shadow area, bottom
area and area of strongly reflecting objects. If the amplification of sonar signal is
very high (as is shown in Fig. 2), then the respective areas are easily discernible,
using the intensity histogram. They form three local maxima. As the threshold
value between acoustic shadow and the bottom, the local minimum between the
intensity values in the shadow area and bottom area can be adopted.
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Figure 2. Histogram of sonar image

It is possible to find the acoustic shadow on the basis of local histogram
minima, yet only for high resolution sonars using A/D converter of word length
of 10 and more bits, or using high amplification of signal fed to the converter. If
the amplification is too low, no minimum is found between the area of acoustic
shadow and the bottom. The threshold separating the area of acoustic shadow
should be determined experimentally for various amplifications and selected in
line with the amplification used by sonar operator. Each change of sonar pa-
rameters is recorded in the sonar data file, allowing to read the set amplification
level.

Fig. 3 presents the separated area of acoustic shadow. In order to decrease
the noise level, at first the sonar image has been low-pass filtered with the use
of averaging convolution mask of size 5x5. Next, the threshold of the value of 21
was selected, based on the histogram. For the sonar images with similar values
of amplification, this is the correct value to be used for determining the acoustic
shadow area.

Theoretically, the acoustic shadow area should have zero values of acoustic
echo. But it is not true in practice because the sonar could record, instead
of the lack of echo, multiple reflections from other parts of the bottom. As a
result, the acoustic shadow area extends to echo intensity values representing
the bottom. Thresholding allows to select the parts of the bottom not belonging
to the area of acoustic shadow. However, this is not a serious problem as they do
not belong to the area of acoustic shadow representing areas over the waterline.
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Figure 3. Sonar image of the channel and the separated acoustic shadow area
(black)

Between the bottom and waterline there is the quay area for which the intensity
of acoustic echo is always greater than the intensities for bottom echo.

After delimiting the border between the bright and dark areas, pixels should
be changed into the coordinates of points. In principle, any method of vectoriza-
tion can be used to do so. As for the solution under discussion, the method in-
volves searching for consecutive border points based on the movement direction.
First, the image is scanned line by line, from left to right, looking for non-zero
point. The left vertical border and upper horizontal line are determined for this
point. Coordinates of the borders are recorded. Then, the border is looked for
to the right, in respect to the previous one, and three options are obtained. This
is illustrated in Fig. 4. After selecting the border, it is recorded and another
one is selected using the same principle, but a different method for searching
the direction. Once the border has met the already recorded coordinates, the
vectorization process is regarded as completed.

This vectorization method works for vectorizing a single object. In this
case, there are many objects, and only the first one will be vectorized. To avoid
such a situation, once vectorized, the first object is removed and replaced with
zero values. Arbitrary method of polygon filling can be used for this purpose.
The filling method by consistency, also known as the seeding algorithm, was
employed. After removing the object, the vectorization process is repeated and
each new detected contour is recorded in a separate table.

Additional white areas, forming excessive contours, are relatively small. One
should select the biggest contour corresponding to the waterline. The coordi-
nates of all points belonging to the border of sounding space are rejected. They
are located on the circle. The circle and the image have a common centre. After
rejecting these points, one line remains, in the case of sounding in the big river
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or big water reservoirs, or two lines in the case of sounding in channels. This
is illustrated in Fig. 5. As for channels, if the approximate position of sonar is
known, the identification of quay in the sonar image, for which the waterline is
determined, can be made on the basis of distance from the center of the image
to the recorded points of both lines.

The determination of sonar image azimuth requires the estimation of di-
rection coefficient of the straight line y = ax + b, being the approximation
of contour’s points. This coefficient can be estimated using the least squares
method, and the formula (Aczel, 2000):

a =

n
∑

i=1

(xi − µx) (yi − µy)

n
∑

i=1

(xi − µx)
2

, (1)

where xi and yi are the coordinates of quay contour’s points, n is the number
of points, a is the estimated straight line direction coefficient, µx, µy are mean
values of xi and yi series, respectively.

In order to determine sonar image azimuth, it is not necessary to estimate
parameter b. Fig. 6 presents the quay line with overlaid straight line approxi-
mation (broken line). Direction coefficient enables determination of the angle in
relation to the horizontal line. In the case under consideration, the angle equals
8 degrees. The azimuth angle (in the sonar images under discussion, it is at the
top) equals 278 degrees. As the map suggests, it should be actually equal 290.5
degrees. This allows to correct the azimuth of sonar image. The image should
be rotated by 12.5 degrees.

The fact that direction coefficient allows to determine the angle in the range
from -90 to 90 degrees can pose a certain problem while determining the azimuth.
A proper determination of the angle requires checking which side of the line
contains the image of the bottom. This can be established by comparing the
mean values of acoustic echo intensities, on both sides of the line. It is plausible
to identify the position of the bottom relative to the line by comparing it with
the map, which enables one to determine the angle in the full range.

Fig. 7 presents the line determined for another fragment of the quay, for
different parameters of sonar operation. Based on the histogram, the selected
threshold is 11. The angle determined in relation to the horizon is 10 degrees,
and 280 relative to the North. Thus, the sonar image should be corrected by
10.5 degrees.
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Figure 4. Object search direction during vectorization

Figure 5. Sonar image after vectorization

Figure 6. Approximation of the line
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Figure 7. Determined line of the quay (data source: Hydrograf XXI, Maritime
Academy in Szczecin)

3. Estimation of calculation of the angle error

Sonar image azimuth is determined with a certain error. It is related to the fact
that the quay is not always constructed along ideal straight line, some parts of
the quay are shadowing its other parts, and there are errors caused by multiple
reflections of acoustic echo. The estimation of angle error is particularly impor-
tant to the creation of mosaic from sector sonar images. Sonar images should
be compared after angle correction. In image comparison methods, the same
angle should be adopted. If the angle is subject to change, multiple compari-
son introducing incremental changes of the angle for one of the images can be
made. If the possible range of difference between angles is known, the number
of comparisons is limited.

Some indicator of the angle error calculation level is the maximal difference
between the actual values yi and those values obtained from the approximation
ŷi:

ǫ = max
i

|yi − ŷi| . (2)

Value ǫ determines the ranges containing the actual values yi for specific xi:

∀xi : yi ∈ [ŷi − ǫ, ŷi + ǫ] . (3)

For the sake of simplification, it was assumed that ǫ is the same for values
over the axis and below the line determined by points ŷ. [ŷi − ǫ, ŷi + ǫ] is an
interval as defined by interval arithmetic. By substituting the intervals with
values yi in the formula (1) one obtains the interval containing direction co-
efficient a. It is assumed that values xi are known, but values yi allow for a
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Figure 8. Division of vector X into vector representing the mean value Xsr and
vector representing the variable component Xzm of vector X

certain error. Error relating to xi is in this way transferred into the values of
yi. With such an assumption and with constant value of ǫ, the left bound of
the range determining the value of direction coefficient a will always equal the
right bound.

The fact that left and right bounds are equal for the direction coefficient
can be easily justified with the interpretation of the formula (1) in vector space.
Vector can be resolved into two vectors: vector representing the constant com-
ponent Xsr and vector representing the variable component Xzm of vector X

(Fig. 8). The coordinates of vector Xsr are calculated as the mean value of
coordinates of vector X . All the coordinates of vector Xsr take the same value.
On the other hand, vector Xzm is calculated as the difference between vectors
X and Xsr. These vectors are always orthogonal (Borawski, 2007). The formula
(1) is in fact used for calculating the vector component defined by coordinates
yi−µy along the vector determined by coordinates xi−µx in the n-dimensional
space. Due to the subtraction of mean value, vector representing the variable
component will amount to zero. Projection on such a vector will never take into
account the mean value of vector X , and thus the formula (1) will be identical
with the formula:

a =

n
∑

i=1

(xi − µx) yi

n
∑

i=1

(xi − µx)2
. (4)

Similarly, the projection of vector without constant component will have
zero component along the constant component of any vector, thus the above
formula will be identical with the following formula:
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a =

n
∑

i=1

xi (yi − µy)

n
∑

i=1

x2

i

, (5)

For real numbers the formulas (1), (4), and (5) will always give the same
result.

In the case of interval arithmetic, values yi will be replaced with intervals
for which subtraction may be defined as follows (Neumaier, 1990):

∀a, b ∈ IR : a − b ≡
[

a − b̄; ā − b
]

, (6)

where IR is the set of all intervals, a, b are the left, and ā, b̄ are the right bounds
of intervals.

The subtraction of mean value in the numerator of the formula (1) will
involve the following steps: the mean value of the left bounds of intervals will
be subtracted from the right bounds of intervals, and vice versa - the mean
value of the right bounds of intervals will be subtracted from the left bounds
of intervals. In this way, mean value will not be removed completely. This
value is responsible for the error of direction coefficient a. But the fact that
it has not been removed has no influence, because the formula (1) is identical
with the formula (4). Moreover, because vector xi − µx does not contain mean
value, and the error has only the mean value, it will not be taken into account
in the calculation of direction coefficient a. Consequently, the interval for this
coefficient will have zero width.

The result cannot be considered correct because the change in even one value
yi will have an impact on the value of directional coefficient a. Incorrect result is
obtained via employing the interval arithmetic in the formula developed in line
with vector calculus, which assumes operations on relative numbers. Relativity
has to be complete, i.e. negative values of all possible parameters describing the
number are allowed. In the case of interval arithmetic, one of the parameters
cannot be negative. This parameter is the range of the interval.

Instead of interval arithmetic, extended interval arithmetic can be used for
the calculation of the error range of direction coefficient values a. Moreover, for
this purpose, only definitions of the addition operation (Kaucher, 1980):

∀a, b ∈ H : a + b ≡
[

a + b; ā + b̄
]

, (7)

multiplication of the interval by the number not being an interval:

∀α ∈ R, b ∈ H : αb ≡
[

αb; αb̄
]

, (8)

and the method for obtaining the opposite element, Popova (1994):

∀a ∈ H : −a ≡ [a; ā] = [−a;−ā] , (9)
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where H is the set of all intervals in the extended interval arithmetic, including
as a subset the set IR, are required.

To enable the application of extended interval arithmetic for evaluating the
straight line direction coefficient error, based on the formula (1), it is necessary
to consider interval parts of vector space. The main condition is that the set
of intervals H, together with the operation of addition, defined by the formula
(7) be the Abelian group. Upon defining the opposite element in accordance
with the formula (9), it can be noticed all the axioms of the Abelian group are
satisfied.

Based on the set of intervals, the ordered n-tuples can be defined:

∀a1, a2, . . . , an ∈ H, B ∈ X : B ≡ (a1, a2, . . . , an) , (10)

where X is the set of all vectors.
Set of all n-tuples with the addition operation can be defined as follows:

∀A, B ∈ X : A + B ≡ (a1 + b1, a2 + b2, . . . , an + bn) , (11)

and it also forms the Abelian group.
The set X could be a set of vectors if the operation of multiplication by

scalar is defined, and all the axioms of vector space are satisfied. Based on the
formula (8) the operation of vector multiplication by the scalar can be defined
as follows:

∀a ∈ R, B ∈ X : aB ≡ (ab1, ab2, . . . , abn) . (12)

The set X and the aforementioned multiplication of vector by scalar satisfy
all the axioms of vector space, thus the elements of this set can be interpreted
as vectors.

In the formula (1) the inner product is used, thus the inner product in vector
space has to be defined as well. In the case of intervals, it is good to define the
inner product related to selected orientation in vector space. This results from
the fact that the outcome of inner product is a scalar, in other words — a value
that is not an interval. If error is calculated for some value, then it will be best
to relate the inner product to this value. In the case under discussion, it should
be the center of the interval:

(A, B) =

n
∑

i=1

(ai + āi)
(

bi + b̄i

)

4
. (13)

The aforementioned formula satisfies all the axioms of the inner product
apart from the axiom of zero value the inner product of non-zero vector with
itself. Still, there are inner products that do not meet this axiom. This applies,
for example, to inner product used in special relativity theory.

The calculation of direction coefficient a using the formula (1) has definite
interpretation in vector space. Values xi and yi are the coordinates of vectors
X and Y , respectively. The formula, Nermend (2009):
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c =
(X, Y )

(X, X)
, (14)

evaluates the component c of vector Y along vector X . This component informs
about the scalar that could be used for the multiplication by vector X in order
to make it similar to vector Y . The formula includes mean value, i.e. the value
around which the graph of the coordinates of vectors X and Y fluctuates. In
the case of sonar image, in order to calculate coefficient a and coefficient b of the
straight line y = ax + b, the coordinates of vector X are treated as subsequent
integer numbers from zero to N − 1, where N is the width of sonar image. The
sequence of these numbers creates the straight line y = x+b′. Next, vector X is
divided by the vectors: representing the constant component (Xsr and Ysr) and
representing the variable components (Xzm and Yzm). It can be assumed that:

X = Xsr + Xzm . (15)

Vector X represents the straight line y = ax + b, vector Xzm is responsible
for the direction coefficient a, and vector Xsr for the coefficient b. For the
calculation of direction coefficient, the component of vector Yzm along vector
Xzm should be determined:

czm =
(Xzm, Yzm)

(Xzm, Xzm)
, (16)

and the component of vector Ysr along vector Xzm:

csr =
(Xzm, Ysr)

(Xzm, Xzm)
. (17)

The direction coefficient a is a sum of both components:

a = czm + csr . (18)

For inner product defined by the expression:

(X, Y ) =
n

∑

i=1

xiyi , (19)

in vector space in which vectors are described by the ordered n-tuples of real
numbers:

∀x1, x2, . . . , xn ∈ R, X ∈ X : X ≡ (x1, x2, . . . , xn) , (20)

vectors Xzm and Ysr are always mutually orthogonal. This means that csr always
equals zero.

In vector space, where vectors are defined by intervals (10), the vector com-
ponents along other vectors are regular real numbers. It is plausible to determine
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Figure 9. Obtaining the interval with zero-span

direction coefficients of the line, yet they are not defined by intervals. In order
to evaluate the interval, including this coefficient, it is necessary to use a slightly
different evaluation procedure.

Calculation in vector space involves using the subtraction formula different
than formula used in interval arithmetic, (6):

∀a, b ∈ H : a − b ≡
[

a − b; ā − b̄
]

, (21)

but it is conform with extended interval arithmetic.
In the case discussed, the intervals of the determined vector Yzm will have

the left bound equal to the right bound. This results from the fact that values
ŷi have a constant span of interval. Mean value µ

ŷ
will be subtracted from the

straight line joining the left bounds of interval, and mean value as well as µ̄ŷ

will be subtracted from the straight line joining the right bounds of interval.
The intervals with zero-span are obtained in such a way (Fig. 9). Their span
will be non-zero only when there is a difference between the spans of intervals
for values of ŷi. Values czm can be considered to be exact values.

The coordinates of vector Ysr belong to certain intervals. This means that
the end of vector could be in any place within the hyper-cuboid, of the size
determined by intervals describing the vector. In this case, the spans of all
intervals are the same, thus hyper-cuboid becomes a hyper-cube (in the 2D
space a hyper-cube is a square). The edges of the hyper-cube are parallel to
the axes of the coordinate system. The vector described by central values of
the intervals of vector Ysr is perpendicular to vector Xzm, due to which its
coordinate along vector Xzm equals zero. This value is determined on the basis
of the formula (17). However, it is a special case.
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Figure 10. Component of vector Ysr along vector Xzm in the two-dimensional
space

In the case of a vector described by arbitrary values (within the intervals
of vector Ysr), its component along vector Xzm does not have to be zero. Its
maximal value will be determined by two vectors described by means of the
bounds of interval: the left of the first interval and the right of the second
interval, as well as the right of the first interval and the left of the second
interval. This is illustrated in Fig. 10. These vectors are lying on the vertices of
the square connected by the diagonal. Thus, the component csr will be inside
the interval:

csr =

[

−
√

2ǫ

‖Xzm‖ ;

√
2ǫ

‖Xzm‖

]

, (22)

where ‖Xzm‖ is the length of the vector Xzm.
In multi-dimensional spaces, exceeding 2D, calculation of csr becomes highly

complicated. For instance, in three dimensional space, the hyper-cube becomes
the cube. Because vector Xzm is perpendicular to vector Ysr it will be lying in
the plane perpendicular to vector Ysr. This plane cuts the cube in such a way
that the cutting surface is a regular hexagon (Fig. 11). Vector Xzm can have any
direction and the span of interval will depend on its orientation on this regular
hexagon surface csr. Two cases should be mentioned. In the first case, vector
Xzm is parallel to one side of the regular hexagon. With such a position, the
maximal plausible span of the interval is obtained. Interval csr is defined by the
diagonal of cube face, and is described by the formula:

csr =

[

−
√

2ǫ

‖Xzm‖ ;

√
2ǫ

‖Xzm‖

]

. (23)
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Figure 11. Component of vector Ysr along vector Xzm in the three-dimensional
space

The smallest plausible span of interval is obtained when vector Xzm is per-
pendicular to the sides of the regular hexagonal.

In four dimensional space, intersection of the hyperplane perpendicular to
vector Ysr with hypercube will be slightly different than in 3D space. On this
hyperplane, there are the vertices of hypercube and some diagonals, just as in
the case of straight line cutting the square in the 2D space. Hence, the biggest
plausible interval csr will depend on the length of the diagonal:

csr =

[

−
√

4ǫ

‖Xzm‖ ;

√
4ǫ

‖Xzm‖

]

. (24)

The case of 5D space will be analogous to the 3D case. Finally, one will
obtain a general form of the formula for determining the span of interval csr de-
pending on the dimension of space. For spaces with even number of dimensions:

csr =

[

−
√

nǫ

‖Xzm‖ ;

√
nǫ

‖Xzm‖

]

, (25)

and for those with an odd number of dimensions:

csr =

[

−
√

n − 1ǫ

‖Xzm‖ ;

√
n − 1ǫ

‖Xzm‖

]

. (26)

Direction coefficient a is a sum of components czm and csr and in the case of
space with an even number of dimensions it will take the following form:
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a =

n
∑

i=1

xi (yi − µy)

n
∑

i=1

x2

i

±
√

nǫ
√

√

√

√

n
∑

i=1

(xi − µx)
2

, (27)

and in space with odd number of dimensions:

a =

n
∑

i=1

xi (yi − µy)

n
∑

i=1

x2

i

±
√

n − 1ǫ
√

√

√

√

n
∑

i=1

(xi − µx)
2

. (28)

Left and right bounds of the direction coefficient a can be recalculated into
the value of angles, determining the left and right bounds for the angle of quay
line with the horizon. With the aid of map, these values can be recalculated into
the left and right bounds of the angle of sonar image with the North (azimuth).

The range of angles with the horizon determined from the sonar image of
Fig. 3 is [3.1; 13] degrees, and for the image in Fig. 7 it is [6.5; 14].

4. Conclusion

The paper discussed the method for determining the azimuth of sector sonar
image. Additionally, the range of plausible error, which is of practical impor-
tance to the creation of mosaic, requires images to have the same azimuth. The
determination of the range of angles allows for comparing two images by intro-
ducing small changes into the azimuth. The method can be applied to images
containing a part of quay. Yet, such a case poses a problem with erroneous
indications of built-in sonar compass, resulting from the metal parts the quay.
If the sonar is located far from the quay, the compass reading is precise enough,
and azimuth value need not be corrected.
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