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Abstract: We show that the Monte Carlo feature selection al-
gorithm for supervised classification proposed, by Dramiriski et al.
(2008), is not biased towards features with many categories (levels
or values). While the algorithm, later extended to include the func-
tionality of discovering interdependencies between features, is sur-
prisingly simple and has been successfully used on many biological
data and transactional data of commercial origin, and it has never
revealed any bias of the type mentioned, the alleged property of
its unbiasedness required a closer scrutiny which is thus provided
here. Admittedly, the algorithm does reveal some bias coming from
another source, but it is negligible. Hence our final claim is that the
algorithm is practically unbiased and the results it provides can be
considered fully reliable.

Keywords: supervised classification, feature selection, fea-
ture interactions, high-dimensional problems, applications to ge-
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1. Introduction

Preselection of informative features or attributes for supervised classification
is a crucial task whenever observations (records, samples) include a very large
number of features and only a few of them contribute to a given classification
problem, while all the remaining ones are essentially a noise or a nuisance.
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The task becomes particularly challenging when data sets contain a very small
number of observations, say, of the order of tens, versus thousands of features per
observation. Typical examples include genomic and proteomic data. Another
obvious example is some transactional data of commercial origin.

No wonder that feature selection for supervised classification has attracted
much attention and that a significant progress in this area of research has
been achieved in recent years; for a brief account, up to 2002, see Dudoit and
Fridlyand (2003), and for an extensive survey and later developments see Saeys
et al. (2007) (an early successful method, not mentioned by Saeys et al., 2007,
and called nearest shrunken centroids, was developed by Tibshirani et al., 2002
and 2003). Recently, a Bayesian technique of automatic relevance determina-
tion, the use of support vector machines, and the use of ensembles of classifiers,
all these either alone or in combination, have proved particularly promising.
For further details see Li et al. (2002), Lu at al. (2007), Chrysostomou et al.
(2008) and the literature there. In the context of feature selection, the last de-
velopments by the late Leo Breiman deserve special attention. In his Random
Forests (RFs), he proposed to make use of the so-called variable (i.e. feature)
importance for feature selection (see Breiman and Cutler, 2008, and, e.g., Diaz-
Uriarte and de Andres, 2006). While feature selection by measuring variable
importance in RFs should be seen as a very promising method, the problem with
this approach is that variable importance as originally defined is biased towards
variables with many categories (levels or values) and variables that are corre-
lated; see Strobl et al. (2007), Archer and Kimes (2008). Accordingly, proper
debiasing is needed in order to obtain true ranking of features; see Strobl et
al. (2008). The problem is real, not just academic, as examples in Strobl et
al. (2007) show; indeed, it arises when, e.g., both genetic and environmental
variables are considered as potential predictors.

Generally speaking, feature selection may be performed either prior to build-
ing the classifier, or as an inherent part of this process. The first of these two
approaches is referred to as filter methods. One potential advantage of the filter
approach is that it provides a subset of features that contribute the most to a
given classification task, and therefore are informative or "relatively important"
to the task regardless of the classifier that will be used. In other words, the filter
approach should be seen as a way of providing an objective measure of relative
importance of each feature for a particular classification task. Of course, for
this to be the case, a filter method used for feature selection should be capable
of incorporating interdependencies between the features. Indeed, the fact that a
feature may prove informative only in conjunction with some other features, but
not alone, should be taken into account. Clearly, the aforementioned algorithms
for measuring variable importance in RFs possess this capability.

In 2008, a novel and effective filter method for ranking features according to
their importance for a given supervised classification task has been introduced
by Dramiriski et al. (2008). The method, based on Monte Carlo approach and
termed accordingly the Monte Carlo Feature Selection (or MCFS) algorithm,
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takes into account interdependencies between features when building the rank-
ing. It bears some remote similarity to the RF methodology, but differs entirely
in the way feature ranking is performed. Specifically, the method is concep-
tually simpler. A more important property of the MCFS algorithm is that
it provides explicit information about interdependencies among informative fea-
tures; see Draminski et al. (2010) for the MCFS-ID algorithm (with ID standing
for Interdependency Discovery), in which the functionality of discovering inter-
dependencies among informative features is included.

The MCFS and MCFS-ID algorithms have been successfully used on many
biological data as well as transactional data of commercial origin, geological and
U.S. Census data; see Draminski et al. (2008, 2010), Kierczak et al. (2009, 2010),
Kierczak (2009). While they have never revealed any bias towards features with
many categories, the alleged property of the algorithm unbiasedness called for
a systematic verification. Indeed, the bias observed for the RFs of Breiman
stems, among others, from the fact that they are based on constructing many
decision trees and that each separate tree is known to be a biased classifier
in the sense mentioned (see Strobl et al., 2007). And, although built in a
completely different way, the MCFS-ID algorithm is also based on constructing
many decision trees (it is worth a note here that while the other source of the
RFs bias is their reliance on sampling with replacement, the MCFS-ID relies on
sampling without replacement which is known to introduce no bias).

The MCFS algorithm from Draminski et al. (2008) is briefly recapitulated in
Section 2. In Section 3, an experimental study is presented, which shows that the
MCFS (and, thus, the MCFS-ID) algorithm is not biased towards features with
many categories, although it does reveal a mild bias from some other source.
Since the latter is negligible, we can rely on the ranking of features provided by
the algorithm and we claim the MCFS-ID to be practically unbiased. We close
with concluding remarks in Section 4.

2. Monte Carlo feature selection

The Monte Carlo feature selection (MCFS) part of the algorithm is conceptually
simple, although computer-intensive. We consider a particular feature to be
important, or informative, if it is likely to take part in the process of classifying
samples into classes "more often than not". This "readiness" of a feature to
take part in the classification process, termed relative importance of a feature, is
measured via intensive use of classification trees. We emphasize that the method
utilizes thousands of classifiers, not in order to build an overall general classifier
but rather to identify which features are important for the given classification
task. Once the subset of such features is known, we may (but do not necessarily
have to) proceed to build a general classifier.

In the main step of the procedure, we estimate relative importance of features
by constructing trees for randomly selected subsets of features. More precisely,
out of all d features, we select s subsets of m features, m being fixed and m << d,
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Figure 1. Block diagram of the main step of the MCFS procedure

and for each subset of features, t trees are constructed and their performance
assessed. Each of the t trees in the inner loop is trained and evaluated on a
different, randomly selected training and test data sets. These sets come from
a random split of the full data set into two subsets. Every time, about 66% out
of all n samples, is used for training and the remaining samples are used for
testing. The split is performed in a stratified manner, i.e., the proportions of
classes in the original data set are preserved. See Fig. 1 for a block diagram of
the procedure.

Eventually, s -t trees are constructed and evaluated in the main step of the
procedure. Both s and ¢ should be sufficiently large, so that each feature has
a chance to appear in many different subsets of features and that randomness
due to inherent variability in the data is properly accounted for. A crude (and
biased) measure of relative importance of a particular feature could be defined
as the overall number of splits made on that feature in all nodes of all the s - ¢
trees. However, it is clear that for any particular split, its contribution to the
overall relative importance of the feature should be weighted by the information
gain achieved by the split, the number of samples in the split node and by the
classification ability of the whole tree.

In order to determine relative importance of a particular feature, let us first
recall weighted accuracy of a tree as a means to assess classification ability of
the tree on a test set. For a classification problem with c classes, let n;; denote
the number of samples from class i classified as those from class j; clearly,
i,7,=1,2,...,c and Z” ni; = n, the number of all samples. Now, we define
weighted accuracy as

c

wAce = 1 Z i (1)

3
i mint izt A+ Nic

i.e., as the mean of ¢ true positive rates.
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The relative importance of feature g, Rlg, , is defined as

R, =3 (wdce,)* 3 1G(ng, (1) (M) , @)

no. in 7
=1 ngk (T)

where summation is over all the s -t trees, wAcec, stands for the weighted
accuracy of the 7-th tree and, within each 7-th tree, the summation is over all
nodes ng, (1) of the tree on which the split is made on feature gi, I1G(ng, (7))
stands for information gain for node ngy, (7), (no. in ng, (7)) denotes the number
of samples in node ng, (7), (no. in 7) denotes the number of samples in the root
of the 7-th tree, and v and v are fixed positive reals. Information gain can be
measured, e.g., by Gini Index, entropy or Gain Ratio (in our implementations
we use j48 tree from WEKA, which is a version of C4.5 tree with Gain Ratio,
this ratio being a way to reduce the bias of the tree towards features with many
categories).

Note that by taking, say, u = 2, trees with low wAcc are penalized more
severely than when taking v = 1. Similarly, the greater the v, the smaller the
influence of node ng, (7) with a given ratio (no. in ng, (7))/(no. in 7) on Rl ,
unless ng, (7) is the root of the tree. And, for any fixed positive v, the influence
of any particular node on RI,, decreases monotonically with the number of
samples in this node. In this way, and especially for low-level nodes in a tree,
the fact that information gains can be very high is taken into account, while
only very small subsets of data are split.

In the experimental study described in the next section (as well as in our
current applications of the method) we use a normalized version of Rl,, for
feature gy, in which "raw" Rl is divided by the number of these sets out of
all the s randomly selected subsets of features which include feature gy.

In the procedure, there are five parameters, m, s, t, v and v to be set by an
experimenter. A detailed discussion on how to set values of these parameters
can be found in Draminski et al. (2008). Our experience suggests to use u and
v set to 1 as the default value. The choice of subset size m of features selected
for each series of ¢t experiments should take into account the trade-off between
the need to prevent informative features from being masked too severely by the
relatively most important ones and the natural requirement that s be not too
large. Indeed, the smaller m, the smaller the chance of masking the occurrence
of a feature. However, a larger s is then needed, since all features should have a
high chance of being selected into many subsets of the features. For classification
problems of dimension d ranging from several thousands to tens of thousands,
we have found that taking m equal to a few hundred (say, m = 300 to 500) and
t equal to maximum 20 (even ¢ = 5 usually suffices) is a good choice in terms
of reliability and overall computational cost of the procedure.

Now, for a given m, s can be made a running parameter of the procedure,
and the procedure executed for s = s1, 1 + 10, s1 + 20, ... until the rankings of
the top scoring v% features prove (almost) the same for successive values of s.
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Minimal number of subsets, s;, should in fact be random and such that the
ranking based on these subsets includes v% of all the features present in the full
data sample.

A distance between two successive rankings has to be defined, and the pro-
cedure is then run until the values of the distance stabilize at some acceptably
low level, i.e., close to zero. The distance between the ranking obtained after s
subsets of m features have been used in the procedure and the ranking reached
after using s — 10 subsets is defined as follows:

1
Dist(s,s — 10) = T Z [rank(gg, s) — rank(gg, s — 10)], (3)

9k

where summation is over top v% features obtained after having used s — 10
subsets; rank(gg, r) is the rank of feature gi after having used r subsets, and d,,
is the normalizing constant equal to the number of features taken into account
(d, = dv/100). Parameter v should not be too large and it is suggested that it
lies between 5 and 20.

Note that ranking by relative importance does not enable one to discern
between informative and uninformative features. A cut-off between these two
types of features is needed. We address this issue by comparing the ranking of
features obtained for the original data with that obtained for the data modified
in such a way that the class attribute (label) becomes independent of the vector
of all features. Such a data set is obtained via a random permutation of the
values of the class attribute (i.e. of the class labels of the samples). We omit
the details regarding this issue and refer the reader to Draminski et al. (2010).
A special statistical test is proposed there and, at a predetermined significance
level, feature g, is declared informative if its relative importance Rlg, in the
original ranking (without any permutation) exceeds the corresponding critical
value for this test. However, in the reference cited, no recommendation is made
concerning the desired significance level of the test. According to our experience,
this level should be chosen adaptively, on the basis of classification results ob-
tained for different significance levels. Clearly, the larger the significance level,
the smaller the corresponding critical value and the greater number of features
is deemed informative. We suggest using 0.05 as a default or an initial value
of significance level, but then verify if increasing this level and thus enlarging
the set of allegedly informative features does not lead to an improvement of
classification results.

Let us conclude this section by adding that in Draminiski et al. (2008) we
describe statistical tests to verify first, prior to the whole analysis, that the data
are informative (i.e., that they indeed provide information on the classification
problem of interest); then to verify that the features found as most informative
are such indeed; and finally statistical significance of the results is confirmed.
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3. Experimental study

Here we attempt to verify whether the MCFS algorithm is biased towards fea-
tures with many categories (levels or values). In our study we build on the sim-
ulation study performed earlier by Strobl et al. (2007) for the original Breiman
RFs as well as for modified RFs which differ from those of Breiman in that, most
notably, CART trees are replaced by unbiased classification trees based on the
conditional inference framework as developed by Hothorn et al. (2006). Actu-
ally, we repeat that earlier study, which was performed for samples of size 5,
and extend it by a study with samples of size 50.

First, as in Strobl et al. (2007), let the data set consist of 120 independent
samples (observations), each containing 5 features and a class or decision at-
tribute (label); in this section, for greater clarity of figures which follow, we
denote feature gy by Xk, k = 1,...,d. Values of the first feature, X1, are
drawn at random from a standard normal distribution and the remaining four
features, X2,..., X5, are drawn from discrete uniform distributions, U{0, 1},
U{o, 1, 2, 3}, U{0, 1, 2, ..., 9} and U{0, 1, 2, ..., 19}, respectively, where U{0,
.y p— 1}, p=2,4,10, 20, stands for a uniform distribution on p integers from 0
to p — 1. Values of the five features are drawn independently. Each observation
belongs either to class 0 or to class 1. The class label is also drawn at random:
if, for a given observation, X2 = 0, then the class of this observation is 0 with
probability 0.5+ r; if X2 = 1, then the class is 0 with probability 0.5 — r; within
one experiment, r, termed the relevance parameter, assumes a fixed value from
the set {0, 0.05, 0.1, 0.15, 0.2}. For each r € {0,0.05,0.1,0.15,0.2}, 1000 simu-
lation runs are performed, i.e., 1000 data sets are drawn at random (each data
set containing 120 labeled observations).

Clearly, for 7 = 0 no feature is informative and for r > 0 only one feature,
X2, which assumes one of just two possible values, is informative. It is easily
seen that in such an experiment the correlation coefficient between X2 and
the class attribute is equal to 2r (regardless of the number of uninformative
features).

The MCFS algorithm was run with the following parameters: m = 3, s = 100
and ¢t = 10 (default value 1 was used for u and v). Note that for d = 5 and
m = 3 there are only 10 different subsets of 3 out of 5 features, but we take
s = 100 to add some more randomness to the whole ranking process (otherwise,
we could run the algorithm for just 10 different subsets of features, but use
t = 100).

In Figs. 2 and 3 mean values (over 1000 simulation runs) of normalized
Rlxy’s, k =1,...,5 are shown for r = 0,0.05,0.1, 0.2, respectively (the whiskers
on top of each bar show + one standard deviation of the observed values of
normalized relative importance). The results obtained suggest that there exists
no bias of the MCFS algorithm towards features with many categories, at least
for positive r (even mildly bounded away from zero). One should note here that,
in view of the remarks at the end of the preceding section, we are equipped with



206 M. DRAMINSKI ET AL.

RI RI

0,016 0,02

0,014
e 0,015
0,01 { X
0,01 T

0,008 I

0,006
0,005
0,004

0,002 5

0

0,002 0,005

Figure 2. Mean values of normalized RIxy’s for r = 0 (left) and » = 0.05 (right);
bar Xk corresponds to normalized RIx (recall that the correlation coefficient
between X2 and the class attribute is 2r and such correlations for all other
features are 0)

RI Rl

Figure 3. Mean values of normalized RlIxg’s, 7 = 0.1 and » = 0.2; bar Xk
corresponds to normalized RIxy (recall that the correlation coefficient between
X2 and the class attribute is 2r and such correlations for all other features are 0)

a means to recognize that in a given problem there are no informative features
and hence, under the circumstances, we should not make any ranking of features
using the MCFS algorithm. Still, we have included the case with r = 0 to show
that although the MCFS is not reliable then and some mild bias can perhaps
be supposed, the values of normalized RIxj are almost one order of magnitude
smaller from those when an informative feature does exist (to put it otherwise,
the case with informative features present in the data can be readily recognized,
and then the MCF'S can be used and trusted).

It is instructive to compare the simulation results obtained with those from
Strobl et al. (2007). For r = 0, the MCFS provides results markedly different
from those obtained by Breiman’s RF. Only the latter reveals an obvious bias
towards features with many categories. In turn, for positive r, the MCFS pro-
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vides results comparable to those for the modified RF, although the former is
much simpler than the latter.

At the same time, the MCFS cannot be claimed to be completely unbiased,
although the bias is of a more complex type and can best be described as that
against features with the smallest number of categories. Its source can, perhaps,
be tied to the way relative importance (2) is calculated. Most importantly,
however, this bias is negligible whenever the relationship between the features
and the decision attribute is not negligible.

Actually, the MCFS algorithm should not be used on any data with only five
features. It has been designed to discover a few informative features among hun-
dreds or, rather, thousands of noninformative ones. The experiments described
have been performed for comparative purposes - to show that the algorithm per-
forms reasonably well even on such simple data as used in the otherwise most
revealing and thorough study of Strobl et al. (2007).

In order to get closer to problems of our real interest which concern first and
foremost data from life sciences, but to somehow stay within the framework
set up by Strobl et al. (2007), we have performed another set of experiments,
which differs from the former one in just two respects. First, we draw randomly
not 5 but 50 features, where each successive 10 features are drawn exactly in the
same way as X1, X2, ..., X5 were drawn, respectively. That is, X1,..., X10,
are drawn independently from a standard normal distribution, X11,..., X20
from U{0, 1}, etc. And second, we have utilized the fact that we have now more
possibilities to make the observation class dependent on the features. Namely,
we performed the following experiments which differ in the way the observation
class is determined:

(a) If, for a given observation, X11 = 0, then the observation class is 0 with
probability 0.5+ r; if X11 = 1, then the observation class is 0 with prob-
ability 0.5 — r.

(b) If, for a given observation, X11 = X12 = 0, then the observation class
is 0 with probability 0.5 4+ r; otherwise, the observation class is 0 with
probability 0.5 — r.

(c) If, for a given observation, X11 = X12=0 or X13 = X14 = 0, then the
observation class is 0 with probability 0.5 4 r; otherwise, the observation
class is 0 with probability 0.5 — r.

In (a), the correlation coefficient between X 11 and the class attribute is again
equal to 2r. It can be readily found that the correlation coefficient between any
fixed informative feature and the class attribute is equal to r in case (b) and
just 0.75r in case (c).

In these three experiments, the MCFS algorithm was run with the following
parameters: m = 30, s = 1000 and ¢t = 10 (as usual, default value 1 was used
for u and v).
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Figure 4. Mean values of normalized Rlxy’s, r = 0 (left) and r = 0.1 (right)
- case (b); successive bars correspond to normalized RIxy’s, k = 1,...,50 (re-
call that the only possibly informative features are X11 and X12, and their
correlation coefficients with the class attribute are each equal to )
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Figure 5. Mean values of normalized RIx’s, 7 = 0.2 and r = 0.3 - case (b);
successive bars correspond to normalized RIxx’s, k = 1,...,50 (recall that the
only informative features are X11 and X12, and their correlation coeflicients
with the class attribute are each equal to )

In Figs. 4 and 5 bar plots are given for case (b). The mean values (over
1000 simulation runs) of normalized RIx’s, k = 1,...,50, are shown for r =
0,0.1,0.2,0.3, respectively. Similarly, for case (c¢) and the same values of r, the
mean values of normalized RlIxx’s, K = 1,...,50, are shown in Figs. 6 and 7.
Ilustrations for case (a) are skipped, since they confirm the pattern, albeit in
a much more apparent way, as the correlation between any single informative
feature and the class attribute is much greater.

It is clear that the conclusions drawn for experiments with observations
comprising just 5 features hold for the set of experiments with observations of
size 50.
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Figure 6. Mean values of normalized RIxy’s, 7 = 0 (left) and » = 0.1 (right) -
case (c¢); successive bars correspond to normalized RIxy’s, k = 1,...,50 (recall
that the only possibly informative features are X 11 to X 14, and their correlation
coefficients with the class attribute are each equal to 0.75r)
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Figure 7. Mean values of normalized RIxy’s, r = 0.2 and r = 0.3 - case (¢);
successive bars correspond to normalized RIx’s, k = 1,...,50 (recall that the
only informative features are X 11 to X 14, and their correlation coefficients with
the class attribute are each equal to 0.757)

4. Concluding remarks

It was already mentioned in the Introduction that the MCFS and MCFS-ID
algorithms have been successfully used on many data sets. We proved being
able to reproduce a number of previously obtained results. Working with one of
these sets of data, we managed to detect genes that are weakly but sufficiently
differentiated, linked to the onset of or a proclivity for the given type of cancer
(such genes were rediscovered in addition to those expressing especially dramatic
changes caused by cancer). As far as we are aware we were the first to obtain
such a result by a purely computational method; see Draminski et al. (2008).
We were able to rediscover numerous mechanisms of HIV-1 drug-resistance and
suggest several new mechanisms (stemming from interactions discovered) which
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should be further investigated; see Draminski et al. (2010), Kierczak et al. (2009,
2010), Kierczak (2009).

Clearly, such rediscoveries confirm the reliability of the method and thus
make new results provided by the method and not yet known to domain experts
truly worth further study.

Our present study has shown that the reliability of our approach is not
incidental, but is an inherent property of the MCFS and consequently also the
MCFS-ID algorithm.

Indeed then, the approach appears a promising method to reveal and ana-
lyze interaction networks that underly biological and other phenomena which
fall into the domain of supervised classification problems, in particular when im-
portant features must be identified among hundreds if not thousands of them.
We therefore consider it likely that applications of this approach for unknown
problems of systems biology will allow in silico discovery of new mechanisms
that so far avoided human explanations.
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