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Abstract: Computations in Rough-Granular Computing (RGC)
are performed on (information) granules. The rough set approach
is used in RGC for inducing granules approximating other granules
about which imperfect knowledge is given only. For modeling of
complex systems, it is important to extend the RGC approach to
Interactive Rough-Granular Computing (IRGC) based on interac-
tions of granules. In this paper, we discuss some fundamental issues
for interaction of granules such as general scheme of interactions and
the role of dynamic attributes and dynamic information systems in
modeling interactive computations.
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1. Introduction

We discuss some basic aspects of interactive computations on granules of infor-
mation. In this section, we present a short introduction to rough-granular com-
puting (RGC) and to interactive computing. Next, in the following sections we
investigate some issues important for foundations of interactive rough-granular
computing (IRGC).

Computations in granular computing are performed on granules (see, e.g.,
Pedrycz et al., 2008). Granules are constructed using granular calculi (see, e.g.,
Skowron and Stepaniuk 2008).

Granules are clumps of objects that are arranged together due to their simi-
larity, indistinguishability or functionality. From a mathematical point of view,
granules can be represented (exactly or at least to a degree) by sets, often from
quite high levels of the powerset hierarchy. Granules can have an elementary
structure (such as elementary neighborhoods of objects) or a complex structure
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(such as cognitive agents, autonomous agents, coalitions of agents in multia-
gent system (MAS) (Sycara, 1998; Shoham and Leyton-Brown, 2009), sets of
decision rules, clusters, complex patterns or classifiers in data mining). Gran-
ules sent by one agent may not be exactly “understandable” by other agents
receiving these granules. In such cases, interacting agents would attempt to
approximate the received granules. In RGC rough set tools are used for ap-
proximations of granules, such as vague concepts or classifications. Such rough
set-based approximations are induced on the basis of partial information about
objects and approximated concepts (or classifications). Granules approximat-
ing other granules are constructed using computations aiming at solving of some
optimization tasks. The optimization criteria in searching for relevant granules
are based on versions of the Rissanen minimum length principle (Pawlak and
Skowron, 2007; Skowron and Stepaniuk, 2011). In searching for (sub)optimal
solutions, it is necessary to construct compound granules using some specific
kinds of operations such as generalization, specification or fusion. Granules are
parameterized. By tuning these parameters we optimize the granules relative
to their description size and the quality of data description, i.e., two basic com-
ponents on which the optimization measures are defined. From mathematical
point of view, granules are sets of different types, e.g., represented using the
powerset hierarchy (Skowron and Stepaniuk, 2011). It is worthwhile to mention
that in RGC it is also necessary to discover relevant types of induced granules
in searching for approximations of higher order granules.

From this general description of tasks in RGC, it follows that together with
the specification of elementary granules and operations on them it is necessary
to define measures of granule quality (e.g., measures of their inclusion such
as the rough inclusion measures, covering or closeness measures, Skowron and
Stepaniuk, 2008) and tools for measuring the sizes of granules. Optimization
strategies of already constructed (parameterized) granules are also very impor-
tant.

Developing methods for the approximation of compound concepts express-
ing the result of perception is one of the main challenges of Perception Based
Computing (PBC) (Zadeh, 1999, 2001). Concepts representing perceived infor-
mation are expressed in natural language. The rough-granular approach proved
successful in approximation of such concepts from sensory data and domain
knowledge. This additional knowledge, represented by an ontology of concepts,
is used to make it feasible to search for features (condition attributes) relevant to
the approximation of concepts on different levels of the concept hierarchy defined
by a given ontology. We later report on several experiments with the proposed
methodology for the approximation of compound concepts from sensory data
and domain knowledge. The approach is illustrated by examples relative to in-
teractions of agents, ontology approximation, adaptive hierarchical learning of
compound concepts and skills, behavioral pattern identification, planning, con-
flict analysis and negotiations, and perception-based reasoning. The presented
results seem to justify the following claim of Lotfi A. Zadeh (2006):
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In coming years, granular computing is likely to play an increasingly impor-
tant role in scientific theories — especially in human-centric theories in which
human judgment, perception and emotions are of pivotal importance.

The concept approximation problem is the basic problem investigated in
machine learning, pattern recognition and data mining (Hastie et al., 2008). It
is necessary to induce approximations of concepts (models of concepts) consis-
tent (or almost consistent) with some constraints. In the most typical case, the
constraints are defined by the training sample. For more complex concepts, we
consider constraints defined by a domain ontology consisting of vague concepts
and relations between them. Information about the classified objects and con-
cepts is incomplete. In the most general case, the adaptive approximation of
concepts is performed under interaction with the dynamically changing environ-
ment. In all these cases, searching for sub-optimal models relative to the mini-
mum length principle (MLP) is performed. Notice that in the adaptive concept
approximation, one of the components of the model should be the adaptation
strategy. Components, involved in the construction of concept approximations,
which are tuned in searching for sub-optimal models relative to MLP are called
information granules. In rough granular computing (RGC), information gran-
ule calculi are used in the construction of classifier components and classifiers
themselves (see, e.g., Skowron and Stepaniuk, 2011) satisfying given constraints.
An important mechanism in RGC is related to generalization schemes making
it possible to construct complex patterns from simpler patterns. Generalization
schemes are tuned using, e.g., some evolutionary strategies.

Rough set theory, due to Zdzistaw Pawlak (1982, 1991); Pawlak and Skowron
(2007), is a mathematical approach to imperfect knowledge. The problem of im-
perfect knowledge has been tackled for a long time by philosophers, logicians
and mathematicians. Recently, it has also become a crucial issue for computer
scientists, particularly in the area of artificial intelligence. There are many ap-
proaches to the problem of understanding and manipulating imperfect knowl-
edge. The most successful one is, no doubt, the fuzzy set theory proposed by
Lotfi A. Zadeh (1965). Rough set theory is another attempt to solve this prob-
lem. It is based on the assumption that objects and concepts are perceived
through partial information about them. Due to this, some objects can be in-
discernible. From this fact it follows that some sets cannot be exactly described
by available information about objects; they are rough and not crisp. Any rough
set is characterized by its (lower and upper) approximations. The difference be-
tween the upper and lower approximation of a given set is called its boundary.
Rough set theory expresses vagueness by employing a boundary region of a set.
If the boundary region of a set is empty then the set is crisp, otherwise the
set is rough (inexact). A nonempty boundary region of a set means that our
knowledge about the set is insufficient to define the set precisely. One can rec-
ognize that rough set theory is, in a sense, a formalization of the idea presented
by Gotlob Frege (1903). There are many methods based on the combination
of the rough set approach and the fuzzy set approach, as well as on other soft
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computing methods. The hybridization often helps to obtain granules with high
quality, much higher than any single approach. Such methods are also used in
RGC.

One of the consequences of perceiving objects using only available informa-
tion about them is that for some objects one cannot decide whether they belong
to a given set or not. However, one can estimate the degree, to which objects
belong to sets. This is another crucial observation in building the foundations
for approximate reasoning. In dealing with imperfect knowledge one can only
characterize satisfiability of relations between objects to a degree, and not pre-
cisely. Among relations between objects, the rough inclusion relation, which
describes to what degree objects are parts of other objects, plays a special role.
A rough mereological approach (see, e.g., Polkowski and Skowron, 1996) is an
extension of the Le$niewski mereology (Lesniewski, 1929) and is based on the
relation to be a part to a degree.

The rough set approach offers also tools for approximate reasoning in multi-
agent systems (MAS). A typical example is one agent’s approximation of con-
cepts of an another agent. The approximation of a concept is based on a decision
system representing information about objects perceived by both agents.

The developed strategies for inducing data models are often unsatisfactory
for the approximation of compound concepts that occur in the perception pro-
cess. Researchers from different areas have recognized the necessity to work
on new methods of concept approximation (see, e.g., Breiman, 2001; Vapnik,
1998). The main reason for this is that these compound concepts are, in a
sense, too far from measurements, making the search for relevant features in
a very large space unfeasible. There are several research directions aiming to
overcome this difficulty. One of them is based on interdisciplinary research,
with knowledge pertaining to perception in psychology and neuroscience used
to help dealing with compound concepts (see, e.g., Miikkulainen et al., 2005).
There is a great effort in neuroscience towards understanding the hierarchical
structures of neural networks in living organisms (Miikkulainen et al., 2005).
Also mathematicians recognize the problem of learning as the main problem
of the current century (Poggio and Smale, 2003). These problems are closely
related to complex system modeling, as well. In such systems again the prob-
lem of concept approximation and its role in reasoning about perceptions is one
of challenges nowadays. One should take into account that modeling complex
phenomena entails the use of local models (captured by local agents, if one used
the multi-agent terminology, Sycara, 1998) to be fused afterwards. The process
involves negotiations between agents (Sycara, 1998) to resolve contradictions
and conflicts in local modeling. This kind of modeling is increasingly impor-
tant in dealing with complex real-life phenomena, which we cannot model using
traditional analytical approaches. The latter approaches lead to exact models.
However, the necessary assumptions behind them result in solutions that are
too far from reality to be accepted. New methods or even a new science should
therefore be developed for such modeling (Gell-Mann, 1994).
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One of successful research directions, based on RGC is related to approxi-
mation of ontology representing in a hierarchical form domain knowledge. Dis-
covery of relevant attributes on each level of hierarchy is supported by domain
knowledge provided, e.g., by concept ontology together with illustration of con-
cepts by means of samples of objects taken from the concepts and their com-
plements. The developed methods of ontology approximation were successfully
applied in different domains, such as risk prediction and medical therapy sup-
port from medical data and domain knowledge (see, e.g., Bazan, 2008; Bazan
and Skowron, 2005b; Bazan et al., 2006¢,b,a), prediction of the situation on the
road (e.g., Bazan, 2008; Nguyen et al., 2006; Bazan et al., 2005, 2006¢; Bazan
and Skowron 2005a), or sunspot classification (see, e.g., Nguyen et al., 2005).
Such application of domain knowledge, often taken from human experts, serves
as another example of interaction of a system (classifier) with its environment.
Additionally, for the support of relevant attributes, discovery on a given level
and on other levels of hierarchy can be found using different ontologies. These
ontologies can be described by different sets of formulas and possibly by dif-
ferent logics. Thus, description of such interaction as well as its support give
a good reason for applying fibring logics methods (Gabbay, 1977; Gabbay and
Pirri, 1997). Note that in a hierarchical modeling of relevant complex patterns
also top-down interactions of higher levels of hierarchy with lower levels should
be considered, e.g., if patterns constructed on higher levels are not relevant for
the target task the top-down interaction should inform lower levels about the
necessity of searching for new patterns. The question of how concept ontologies
can be discovered from sensory data remains one of the greatest challenges for
many interdisciplinary projects on learning of concepts.

The idea of interactive computing stems from many fields in computer science
such as concurrent processes, non-terminating reactive processes (e.g. operating
systems), distributed systems, distributed nets and objective programming. It
is still in development stage and its foundations are not clarified yet. There
are at least two main schools of thought, one pioneered by Peter Wegner and
another by Yuri Gurevich (see Goldin et al., 2006). Both schools use the notion
of algorithm but with a different approach. Wegner’s school uses it in the clas-
sical Turing’s sense, excluding interactive systems from the scope of the notion
and introducing persistent Turing machines (PTMs) for formal description of
interactive systems. Gurevich’s school expands meaning of the notion of algo-
rithm, covering interactive systems and classical algorithms. However, Gurevich
claims that the difference is based solely on terminology. For formal descriptions
of algorithms, Gurevich introduced abstract state machines (ASMs). ASMs are
more powerful than PTMs as they are capable of simulating PTMs, while the
opposite is not true. In addition to strings or matrices, ASMs also compute
non-constructive inputs as relational structures (finite graphs). PTMs can only
compute constructive inputs as strings (or matrices written as strings). There
is still no consensus between theoreticians on the statement that interactive
systems are more powerful than classical algorithms and cannot be simulated
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by Turing machines. However, the idea of interactive computing still seems to
be appealing from a practical point of view: interaction with or harnessing the
external environment is inevitable to capture (and steer) behavior of systems
acting in the real world. For unpredictive and uncontrolled environments it is
impossible to specify the exact set of input states. In data mining or machine
learning, the most common case is when we start searching for patterns or con-
structing concepts on the basis of sample of objects since the whole universe of
objects (data) is not known or it would be impractical to begin with the basis
of the whole object universe.

Interactive systems have huge learning potential and are highly adaptive.
Interactive agents adapt dynamically and harness their environment in achiev-
ing goals. Interacting algorithms can not only learn from experience (which also
the classical non-interacting learning algorithms do), they can change themselves
during the learning process in response to experience. This property opens up
room for a new technology called Wisdom technology (Wistech, Jankowski and
Skowron, 2009a,b) and, moreover, for the case of intelligent agents this tech-
nology becomes inevitable. Intelligent agents make decisions during dynamic
interactions within their environment. To meet this challenge they need to use
complex vague concepts. In Wistech, wisdom is a property of algorithms, an
adaptive ability of making correct judgments to a satisfactory degree in the
face of real-life constraints (e.g., time constraints, see Jankowski and Skowron
2009a,b). These decisions are made on the basis of knowledge of an agent.
Thus in Wistech, wisdom is expressed metaphorically by the so called wisdom
equation (see also Fig. 1):

wisdom = knowledge + adaptive judgment + interactions.

AM AJ

()

Figure 1. Illustration of the wisdom equation, where AJ denotes adaptive judg-
ment module, AM - action (plan) module, KB - knowledge base module, I -
interactions, and e - environment

Adaptive ability means the ability to improve the judgment process quality
taking into account agent experience. Adaptation to the environment on the
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basis of perceived results of interactions and agent knowledge is needed since,
e.g., agents make decisions using concepts approximated by classification algo-
rithms (classifiers) and these approximation are changed over time as a result of
classifiers acting on variable data or represented knowledge. The wisdom equa-
tion suggests also another interaction of higher order: agents making decisions
based on ongoing experience, which is particular, apply possessed knowledge,
which is general. So making decisions is a kind of logical interaction between
general knowledge and particular experience. Vague concepts in this case help
cover the gap between generality and particularity while Wistech is required to
improve decision making.

Finally, let us mention software platforms supporting the development of our
projects, i.e., Interactive Classification Engine (RoughICE) and TunedIT.

RoughlICE is a software platform supporting approximation of spatio-tem-
poral complex concepts in a given concept ontology acquired in the dialogue with
the user and is freely available at http://www.mimuw.edu.pl/~bazan/roughice.
The underlying algorithmic methods, especially for generating reducts and rules,
discretization and decomposition, are outgrows of our previous tools such as
RSES and RSES-lib project (see http://rsproject.mimuw.edu.pl). RoughICE
software and underlying computational methods have been successfully applied
in different data mining projects (e.g., in mining traffic and medical data; for
details see Bazan, 2008, and references there).

TunedIT platform, launched recently by our research group, facilitates shar-
ing, evaluation and comparison of data-mining and machine-learning algorithms.
The resources used in our experiments — algorithms and datasets in particular —
will be shared on TunedIT website. This website already contains many publicly
available datasets and algorithms, as well as performance data for nearly 100 al-
gorithms tested on numerous datasets - these include the algorithms from Weka,
RSESIib, and the datasets from UCI Machine Learning Repository. Everyone
can contribute new resources and results. TunedIT is composed of three com-
plementary modules: TunedTester, Repository and Knowledge Base. TunedIT
may help researchers design repeatable experiments and generate reproducible
results. It may be particularly useful when conducting experiments intended
for publication, as reproducibility of experimental results is the essential factor
determining the value of a paper. TunedIT helps also in dissemination of new
ideas and findings. Every researcher may upload his or her implementations,
datasets and documents into the Repository, so that other users can find them
easily and employ in their own research.

This paper presents a discussion on extension of RGC to IRGC. Some ba-
sic issues toward this goal are discussed. The paper is organized as follows.
In Section 2, we discuss a general scheme of interaction. Some generalizations
of attributes and information systems to interactive granules used in modeling
interactive computations are presented in Section 3. In Conclusions, we sum-
marize the paper contents and we present one of the main research directions
for developing IRGC in the Wistech framework.
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2. General interaction scheme

In this section, we recall the basic concepts from Skowron and Wasilewski
(2010a,b) on the general scheme of interaction. We extend this approach by
adding a discussion on computations realized by an agent or team of agents.
We use the basic notation from Pawlak and Skowron (2007). In particular, by
Infa(x) we denote the signature of an object z relative to a set of attributes
A, ie., the set {(a,a(z)): a € A)}.

The global states are defined as pairs (sq44(t), se(t)), where s44(t) and se(t)
are states of a given agent ag and an environment e at time ¢, respectively.
We now explain how the transition relation — between global states are de-
fined in the case of interactive computations. In Fig. 2, the idea of transi-
tion from the global state (sqq(t), sc(t)) to the global state (sqq(t + A), se(t +
A)) is illustrated, where A is a time necessary for performing the transition,
ie., when (sqq(t),se(t)) — (Sag(t + A),se(t + A)) holds.  A(t), E(t) de-
note a set of attributes available to the agent ag at the moment of time ¢
and a set of attributes used by the environment e at time ¢, respectively.
Infaw(sag(t),se(t)) is the signature of (sqy(t),sc(t)) relative to the set of at-
tributes A(t) and Infg)(5ag(t), sc(t)) is the signature of (sq4(), se(t)) relative
to the set of attributes E(t)!. These signatures are used as arguments of strate-
gies Sel _Int,q, Sel_Int. selecting interactions I, and I, of the agent ag with
the environment e and of the environment e with the agent ag, respectively.
I.g ® I, denotes the result of the interaction product ® on I,, and I.. Note
that the agent ag can have very incomplete information about I. as well as
about the result 1,5 @ Ic(Sq4(t + 9), se(t + 0)), where § denotes the delay nec-
essary for computing the signatures and selection of interactions (for simplicity,
we assume that these delays for ag and e are the same). Hence, information
perceived by ag about sqq(t + A) and s.(t + A) can be very incomplete, too.
Usually, ag has only estimations of s.4(t + A) and s.(t + A) during planning a
selection of the interaction I,4. These estimations can next be compared with
the perception of the global state (sqq(t + A), se(t + A)) by means of attributes
A(t+ A) at time ¢ + A. Note that I, ® I. can change the content of the agent
state and of the environment state. Assuming that the current set of attributes
A(t) is a part of the agent state s.4(t), this set can be changed, by adding, e.g.,
new attributes discovered using interactions of I,, with the adaptive judgment
module of ag, for example with the help of hierarchical modeling (Skowron and
Wasilewski, 2010a,b). Analogously, assuming that the strategy Sel Int,, is
stored in the current state of the agent sq4(t), it can be modified as the result
of interaction. In this way, sets of attributes as well as selection of strategies for
interactions can be adapted in time.

IThe fact that we consider only signatures over the set of attributes E(t) reflects one of
the basic assumptions of interactive computing, namely that interaction takes place in the
environment which can not be controlled. E(¢) may not be known to the agent ag.
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Sel_Int,

Sag(t+0) Iag ® Ie St +0)

sag(t+A)l lse(t+A)

Figure 2. Transition from global state (sqq(t), sc(t)) to global state (sqq(t +
A), se(t+ A))

Computations observed by the agent ag using the strategy Sel Int,, in
interaction with the environment e can now be defined using the transition
relation — defined on global states and signatures of global states relative to
the set of attributes of the agent ag. More formally, any sequence

SUG1, - -y SiGn, - (1)

is a computation observed by ag in interaction with e if and only if for some t, A
and for any 4, sig; is the signature of a global state (sqq(t + iA), se(t + iA))
relative to the attribute set A(t + iA)) available by ag at a moment of time
t+iA and (sqq(t +1A), sc(t +1A)) — (8ag(t + (i + 1)A), sc(t + (i + 1)A))2.
Let us assume that a quality criterion @ is given, defined on computations
observed by the agent ag, and let sig; be a given signature (relative to the
agent attributes) characterizing incomplete information of ag about his own
state sq4(t) and the environment state e(t). One of the basic problems for the
agent ag is to discover selection strategy in such a way that any computation
(e.g., with a given length [) observed by ag and starting from any global state
with the signature sig; and realized using the discovered selection strategy will
satisfy the quality criterion @ to a sufficient degree (e.g., the target goal of
computation has been reached or that the quality of performance of the agent
ag in computation is satisfactory with respect to the quality criterion). The
hardness of the selection strategy discovery problem by the agent ag is due to
the uncertainty about the finally realized interaction, i.e., the interaction being
the result of the interaction product on interactions selected by the agent ag and

2 As usual one can consider finite and infinite computations.
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the environment e. In planning the strategy, the agent ag can use (a partial)
information on history of computation stored in the state.

Let us denote by Comp(ag) the set of all computations observed by ag in
interaction with e. Then the goal of ag (realized by adaptive judgment) is to
induce an adaptive strategy Strategy such that ag using this strategy will realize
from Comp(ag) only computations of satisfactory quality relative to Q.

One may attempt to treat this problem as a search for the winning strategy
in a game between the agent ag and the environment e with highly unpredictable
behavior (Shoham and Leyton-Brown, 2009). However, let us observe that the
actions selected by the agent ag are initiated using adaptive judgment about
the satisfiability degrees of goals, which are often complex vague concepts. It is
also worthy mentioning that these goals drift in time. These are only examples
of problems making the game of ag with e different from the standard models of
game theory. These games are rather more like games mentioned by Wittgen-
stein (2001) in his discussion on natural language. Development of foundations
for such games is still a great challenge. Hierarchical modeling for inducing
patterns relevant for respective approximations is one of the research directions
toward this goal (see, e.g., Skowron and Stepaniuk 2010, 2011).

Now, let us discuss how an agent ag can perceive other agents in the en-
vironment. The agent ag is perceiving the environment using the signatures
in the current state and, possibly, the historical computations. The agent ag
identifies some parts of the signatures available at time ¢ as descriptions of other
agents in the environment. Next, by hierarchical modeling, the agent ag may
discover dynamic properties of these parts as behavioral patterns of agents. Let
us consider an illustrative example presented in Fig. 3.

In the original table (upper part of the figure), rows are labeled by time
t and p1 (i), p2(2), p3(é) denote attribute value vectors describing properties of
three agents identified in the environment agi, ags, ags, respectively, at time .
The table shown in the lower part of the figure, presents new structural objects.
In this table, paths realized by agents ag1, ags, ags and observed by ag are taken
as objects. Attributes in this table describe properties of such structural objects,
e.g., different constraints among agents at time ¢ (different moments or intervals
of time) or behavioral patterns of agents and their interaction.

Using methods for learning models of concurrent systems from data (Pawlak,
1992; Skowron and Suraj, 1993, 1995) one can consider the problem of inter-
action structure discovery. This problem is illustrated in Fig. 4. It is assumed
that from granules GG, G1, G2 representing sets of paths of processes realized by
agents ag, agi, ags, their models in the form of Petri nets PN, PNy, PNy, re-
spectively, were induced. Then, the structure of interaction between PN; and
PN can be represented by the simplest transformation of PN;, PNs into PN,
e.g., a simple synchronization of Petri nets or a more complex operation.

For modeling interactions, continuous models are widely used in science and
engineering. In the case of such models, a natural approach is based on search-
ing for models in the form of differential equations (see, e.g., Bridewell et al.,
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1 Py(1) Py(1)
2 P,(2 Py(2)
3 P3| | Py3)
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attributes of new

5 P(5) P,(5) structural objects -
agnets identified

in the environment

[P} P@
liri P2
| PN} P2 Py(5) |

Figure 3. Properties of other agents in the environment identified by ag (dotted
lines mark the global states of the observed team of agents, continuous lines
mark the paths of each agent)

-------------- PN

_______ G set of paths "~ |:> generating
of interaction of P, and P, (consistent with) G

PN

PN, PN,
generating generating
(consistent with) G, (consistent with) G,
T 1rC
.. Gisetofpaths || "G, setof paths
------- of process P; - —.....of process P, -

Figure 4. Discovery of interaction structure

2008; Feng et al., 2007). However, for more complex tasks it is hardly possible
to give directly the analytical form of the functions describing changes in time
of the agent state and the environment state. Instead of that one can search
for approximations of these functions from partial and imprecise domain knowl-
edge and experimental data using statistical or/and rough set tools (Ramsay
and Silverman, 2002; Nguyen et al., 2010; Skowron and Stepaniuk, 2010, 2011;
Bazan, 2008).
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Consider an illustrative example of Fig. 5, showing complexity of modeling
of interaction under uncertainty. In this figure, actions ac and ac’ interact in
time. Let us first consider a situation when the two actions are performed in
isolation, i.e., without interaction. Then the action ac is initiated, if during the
time period T, condition « holds. Next, this action is performed for the time
period Ty.. After the action ac is finished, condition 8 holds for the time period
Ts. Analogous conditions are shown in Fig. 5 for the action ac’. However,
when these actions start to interact, then the situation becomes much more
complicated. In Fig. 5, the case is illustrated when the initiation of action ac
starts before ac’. Then, due to action ac it may happen that condition v will
not hold for the time necessary for initiation of ac’, or even when ac’ starts, the
result of interaction of ac and ac’ will cause that neither condition 8 nor § will
hold after both of these actions are finished. We see that more knowledge is
needed to model the result of interaction in this case. Note also that information
about the time periods, such as shown in the figure, will be in most cases not
exact (crisp) but fuzzy, due to the uncertainty. However, partial and imprecise
knowledge often allows us to induce models of interaction processes. These
models will be in most cases nondeterministic rather than deterministic. One
can expect that such models can be described by, e.g., Petri nets rather than
by exact analytical formulae.

P ac’ é
| e Ts
n-------m----gg--w------!é)---n
! i ! ! t
h h B I s e Iz Ig i
R oo O J
i o Ty

Figure 5. An illustrative example for continuous interaction

3. Generalizations of attributes and information systems:
perception attributes, action attributes, information
systems, nets of information systems

In this section, we present a generalization of the attribute and information
system concepts (Pawlak, 1982, 1991; Pawlak and Skowron, 2007) to interactive
granules. This enables using them as basic concepts in modeling interactive
computations.

We distinguish perception attributes and and action attributes.
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Perception attributes. One of the main forms of interaction of an agent with
the environment is perception of the environment by an agent. Moreover, this
form is indispensable in the case of interactive systems. Without perception,
every action of an agent in the environment would be blind, and the agent would
not be able to adapt its behavior to changing conditions of the environment or
to modify dynamically its course of action as a response to results of agent’s
actions in the environment.

In order to represent the results of perception, we need a specific class of
attributes: perception attributes. The beginning of the perception process is
in the senses in the case of living organisms or in sensors in the case of arti-
ficial agents. Senses/sensors interact with the environment. To represent the
results of this interaction we use sensory attributes. These atomic attributes
depend solely on interaction with the environment and are independent of other
attributes in information system (Skowron and Wasilewski, 2011). Sensory at-
tributes are also open attributes, i.e., if a is a sensory attribute, then a is a
function not necessarily onto its value domain V,. This formal property reflects
the fact that sensors interact with the environment which cannot be controlled.
It is always possible that new stimuli appear at the senses/sensors which were
not perceived before. The value domains of sensory attributes are determined
only by sensitivity of sensors represented by these attributes.

In order to describe formally the perception processes as interactions, let
us introduce some notation. If f: X x Y — X x Y, then by m[f], m2[f] we
denote projections of f, i.e.,, m[f] : X XY — X, mo[f] : X xY — Y such that
flz,y) = (m[fl(z,y), m2[f](x,y)) for (xz,y) € X x Y. Both of the previously
introduced interactions, I,, and I., can affect the global state of a given agent
and its environment. By I.(s(t)) (Is4(s(t))) we denote the global state at time
t + A obtained from s(t) by applying I. (I,4) only. Since both I,, and I. act
over the time A they can also dynamically affect each other, the result of such
interfering interaction being denoted by /4 ® Ie.

As we mentioned above, perception is an example of interaction between
an agent and its environment. Moreover, it is a very interesting example. It
is a kind of action made by an agent, which usually does not affect the envi-
ronment?®, but in which an agent is affected by its environment. In order to
analyze the perception process, we should be more specific and introduce I44,4
- an interaction operation selected by an agent ag for performing measurement
of the value of a sensory attribute a. We assume that in s,4(t) values are stored
of sensory attributes at time ¢, i.e., as a part of s,4(t) one can distinguish (a, v),
where a is a sensory attribute and v is its value at time ¢ (or information that
this value is not available). In the described model, changes of attribute values
are recorded in discrete time with step A. For a sensory attribute a we have

3In the case of quantum level this assumption is not true.
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that

sE+A) = (Sag(t+A),8c(t+A)) = [luga ® L](s(t)) = (2)
= (mllaga @ L](s(t)), m2[Lc)(s(2))),

assuming that: sqq(t + A) differs from s,4(t) only in a part corresponding to
attribute a, i.e., a new value of a is equal to the result of sensory measurement
by Ing (in a more general case sq4(t) may be influenced by I.) at time ¢ +
A. Since [lng,q @ L] (s(t)) = (m1[Llag,a @ Le](s(t)), m2[lag,a ® Ie](s(t))) therefore
To[lag,a ®1Ie](s(t)) = malle](s(t)), i-e., se(t+A) was changed by I. but there is no
influence of I . In other words ma[lag,6](s(t)) = Ic(se(t)), €., se(t+ A), the
state of the environment e in time ¢ + A being result of interaction is obtained
from s.(t) by the dynamics of the environment only.
Any sensory attribute a of a given agent ag is represented by an interaction
operation I44  such that the following properties hold:
1. Changes in the agent state caused by interaction of I,4, with the envi-
ronment are defined using a relational structure R, and a set of formulas
L, = {ay }vev,, where V, is the set of indexes.

2. The result of interaction of a with the environment is a pair (I, v), where
[ is a label and v € V, is the index of formula «, selected in interaction.
The results of past interactions are stored in an information system A,
of the attribute a, in which all pairs (I,v) are stored obtained through
interactions recorded so far. To different interactions different labels are
assigned. Moreover, each new interaction updates the information system
A, by adding a new pair (I,v) resulting from the current interaction to

A

3. For any formula «, € L, its interpretation over R,, denoted by |ay|| =,
is given. The family {|ay||®r, }vev, is a partition of the domain of R,.
This property establishes bijection between L, and V, and allows to store
v in A, instead of «,,.

4. An attribute a may interact with the environment only if enabled by
the agent ag. This assumption allows agent ag to select different sets of
attributes for interaction with the environment in different moments of
time.

There are also other reasons for adding the relational structure R, and the
set of formulas L, to the description of the sensory attribute. We would like to
include in the sensory attribute a possibility that after the sensory measurement
some initial data preprocessing is performed, like discretization or symbolic value
grouping. Then the formulas in L, describe over R, the granulated results of
measurements, such as intervals of reals or sets of symbolic values, and the
indexes of formulas in L, denote these granulated objects.

Enabling of sensory attributes is an example of interaction of sensory at-
tributes with the agent possessing these attributes. Sensory attributes also
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interact with other components of the agent, e.g., during searching for new rel-
evant patterns for approximation of complex concepts in hierarchical learning
(Bazan, 2008; Bazan and Skowron, 2005b; Bazan et al., 2006a,b,c).

In Fig. 6, we illustrate basic features of sensory attributes.

agent ag
a
sensory
attribute
) %
Ro La
-

Figure 6. Sensory attribute. e denotes the environment, R,, L, - relational
structure of sensory attribute a and set of formulas assigned to a, respectively,
[ is a label of the environment state currently perceived by a, v is the index
such that «, € L, was selected in interaction of a with the environment. In
the shadowed area the results of past interaction are stored, the interaction of
a with the environment e is not changing e (the changes of e are caused by
dynamics of the environment only). In the agent state only a row with label I
and v was added and represents the result of sensory attribute a measurement.

In the next steps (of perception), some new attributes can be introduced on
the basis of information presented by sensory attributes. These are perception
constructible attributes and we refer to them as complex perception attributes.
They correspond to complex perceptual representations constructed in the pro-
cess of perception postulated in cognitive science (Thagard, 2005; Bara, 1995;
Cartwright, 2000). Complex perception attributes can be used in searching for
patterns or structural properties of perceived objects (Skowron and Wasilewski,
2011). They also seem to be indispensable in solving of classification problem for
complex concepts in the case of newly perceived objects. Complex perception
attributes serve as a kind of bridge between knowledge stored in an agent and
results of perception given by sensory attributes. For the same reason, they are
needed in approximation of complex vague concepts referring to an environment
perceived by a given agent and responsible for activating actions.

Action attributes. Every action is made on the basis of knowledge possessed
by an agent, results of agent’s perception of the environment, some previously



228 A. SKOWRON, P. WASILEWSKI

established objectives, and should lead to specified goals. Every goal of an ac-
tion in the environment should have observable characteristics. In a process
of planning, i.e., a selection of the chain of actions (orders to be followed by
effectors) leading to an established goal, it is also very important to consider an
expected state of the environment as an anticipated result of actions. This result
of actions is predicted on the basis of some agent’s knowledge and by comparing
to observables of specified goals it can be used in selection of an optimal ac-
tion/plan (a course of actions). In the case of dynamical interactions, the state
of the environment anticipated by a given agent can be used for comparison with
the state of the environment actually perceived during (or after) the effecting
of action in order to modify an action made (or planned) by a given agent, i.e.,
anticipated state of the environment is an element of feedback mechanism. So,
two elements are essentially connected to every action: the goal of an action
and the expected state of the environment, matching (possibly partially) the
observables of the goal.

In Artificial Intelligence actions are parts of production rules called also IF-
THEN rules. In rough sets such rules are represented by decision rules. Thus,
in rough set analysis of interactions, attributes used for representation of actions
are decision attributes. We refer to these attributes as action attributes. It fol-
lows from the discussion above that action attributes should be compound. A
value of an action attribute should not only contain information on elementary
actions (or a chain of elementary actions) but also should contain information
on the specified goal and expected perceptual results of a given action (chain
of actions). These attributes can be constructed in many ways. In the process
leading to selection of interaction I,4 4 by Sel_Int,q, where an action attribute
a represents solely a given action/actions, this attribute becomes also condition
attribute and is used together with attributes representing knowledge and per-
ception of ag for determining expected observable results in the environment.
These anticipated results are compared with observable characteristics of spec-
ified goals and decisions on selection of interactions are made on the basis of
their similarity or whether anticipated results match sufficiently the observable
properties of goals. More advanced approach can use history of interactions
for action prediction. Anticipated results of action predicted at time ¢ can be
compared to perceived states of the environment at time ¢ + A being a result
of interaction [I,g,, ® I.](s(t)). This comparison is used to modify an action in
time ¢t + A 4+ A, where A is the time needed for making comparison and plan
modification, when perceived results are too far away from anticipated ones.
The basic features of action attributes are illustrated in Fig. 7.

These notes clearly show that some methods of comparison of anticipated
states of the environment with observable characteristics of specified action goals
and the perceived states of the environment are needed as indispensable in
selection or modification of actions.

The approach discussed allows us to define the semantics of formulas from L,
relative to the set of states State. of the environment, perceived by a. A state
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agent ag

Figure 7. Action attribute. On the basis of current information on current state
of agent ag and of the environment e, the action attribute a is selecting an
action ac and predicts changes of the environment caused by ac, represented by
granule G; [, v mean the same as in Fig. 6. AJ denotes the adaptive judgment
module with the action submodule denoted AM. The action attribute a selects
an action ac to be performed (using module AM, knowledge base KB, and the
measurement results stored by sensory attributes). Changes in e caused by ac
in the form of granule G,, are predicted, too. The selected action ac determines
the interaction I,4 , of agent ag with the environment. Note that reaction of
the environment may be unpredictable and granule G,, representing change of
e in effect of 144, ® I. may be different from the predicted, described by granule
Gp.

Se € State. satisfies a,, € L, relative to a, in symbols s. € |ja = v||state, if and
only if the interaction of @ with the environment state s, updates A, by a pair
(I,v), where [ is the label of s.. Observe that all states from State. updating
in interaction with agent ag (defined by sensory attribute a) the information
system A, by a pair (I’,v), where I’ is any label, are indiscernible by the agent ag
relative to the sensory attribute a*. Using the defined semantics of the descriptor
formulas one can define semantics of compound formulas in a standard way
(see, e.g., Pawlak, 1982, 1991; Pawlak and Skowron, 2007). This allows us
to perform inductive reasoning on sets of objects not yet perceived, e.g. to
make an estimation of the inclusion degree between two granules defined by
formulas, when their satisfiability is known on a data sample only (Skowron
and Stepaniuk, 2010).

4This is the reason why we use notation se € ||a = v||stqte, instead of se € ||| state, -
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The main generalization of attributes presented in this section concerns their
dynamic structure rather than static, as in the existing approaches, i.e., they
interact as special granules with the environment. Let us note that other inter-
actions may be performed with other parts of agent ag possessing the attributes.

Now, we would like to shortly describe a generalization of information sys-
tems. Information systems in interactive computations should be dynamic gran-
ules rather than static ones. Any sensory attribute a defines dynamic informa-
tion system A, with one attribute, recording the results of interactions of a
with the environment. These information systems are updated when new in-
teractions are performed. Such information systems may be fused into a new
information system. This fusion may be based on labels of rows of fused data
tables representing information systems. For example, assuming that any con-
sidered label has as a component the moment of measurement ending, in one
row of the new data table rows are included from component data tables la-
beled by the same time moment. The new information system is updated when
information systems from which this system was obtained are updated.

Note also that the fusion of information systems corresponding to sensory
attributes may be more complex. So, the fusion may lead to new informa-
tion systems with structural objects (Skowron and Wasilewski, 2010a,b, 2011;
Skowron and Szczuka, 2009) or to nets of information systems linked by different
constraints. For example, a family of parameterized sensors may model a situa-
tion when the sensors are enabled by a judgment module for recording features
of video at different moments of time in probing the environment. This makes
possible collecting the necessary features of the environment for activating the
relevant higher level action. Parameters may be related, e.g., to positions of
camera. This is closely related to the approach from Noé (2005, p. 1):

. percewing is a way of acting. Perception is not something that happens to
us, or in us. It is something we do. Think of blind person tap-tapping his or
her way around a cluttered space, perceiving the space by touch, not all at once,
but through time, by skillful probing and movement. This is, or at least ought to
be, our paradigm of what perceiing is. The world makes itself available to the
perceiwver through physical movement and interaction.

The last example suggests that the sensory attributes may be fused using
some parameters such as time of enabling or position of sensors. Certainly, for
more complex actions it is necessary to use a net of such parameterized sensors
in which sensory attributes are linked by relevant constraints (Noé, 2005). Hier-
archical modeling may also lead to nets of information systems constructed over
information systems corresponding to sensory attributes. Nodes in these net-
works may be linked using different information, like behavioral patterns or local
theories induced from information systems in nodes, and their changes when in-
formation systems are updated. In the first case the reader may recognize some
analogy to theory of information flow (Barwise and Seligman, 1997).
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Conclusions

We discussed some basic issues of IRGC including general interaction scheme,
dynamic granules such as attributes and information systems. These granules
are important components in modeling interactive computations. Foundations
of reasoning methods for computations based on interacting granules still be-
long to challenges. This is, in particular, caused by uncertainty under which
agents should perform reasoning about granules in the environment and their
interactions. Uncertainty about the results of interactions may be caused by un-
predictable dynamics of the environment or by only partial information about
it, extracted from interacting granules representing, e.g., structures of objects.
In the last case, it is possible to construct nondeterministic soft models rather
than exact analytical ones. Intelligent (systems) agents should interact with
the environment regarding their goals, which are often complex vague concepts
(belonging to ontologies of such concepts or fragments of natural language) as
it is done by human experts in decision making. This requires development
of new methods of reasoning. For some applications it was already possible
to induce approximations of such concepts from data and domain knowledge
using hierarchical modeling. Intelligent agents behaving under existing con-
straints, should also be adaptive for improving their behavior on the way to
targets. The reasoning under uncertainty for real-life problems characterized by
the above properties is called adaptive judgment in Wistech software(Jankowski
and Skowron, 2009a,b; Skowron and Wasilewski, 2010a,b, 2011). These reasons
make the adaptive judgment quite different from the existing approaches to
reasoning under uncertainty (Jankowski and Skowron, 2009b).
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