
Control and Cybernetics

vol. 40 (2011) No. 2

Random graphs for performance evaluation of

recommender systems∗

by

Szymon Chojnacki and Mieczys law A. K lopotek

Institute of Computer Science, Polish Academy of Sciences
Warsaw, Poland

Abstract: The purpose of this article is to introduce a new
analytical framework dedicated to measuring performance of rec-
ommender systems. A standard approach is to assess the quality
of a system by means of accuracy related statistics. However, the
specificity of the environments in which recommender systems are
deployed requires paying much attention to speed and memory re-
quirements of the algorithms. Unfortunately, it is implausible to
assess accurately the complexity of various algorithms with formal
tools. This can be attributed to the fact that such analyses are
usually based on an assumption of dense representation of underly-
ing data structures. In real life, though, the algorithms operate on
sparse data and are implemented with collections dedicated for them.
Therefore, we propose to measure the complexity of recommender
systems with artificial datasets that posses real-life properties. We
utilize a recently developed bipartite graph generator to evaluate
how the state-of-art recommender system behavior is determined
and diversified by topological properties of the generated datasets.

Keywords: recommender systems, performance evaluation,
random graphs, bipartite complex networks.

1. Introduction

Recommender systems are an important component of the Intelligent Web.
These systems make information retrieval easier and push users from typing
queries towards clicking at suggested links. We experience real-life recommender
systems when browsing for books, movies, news or music. Such engines are an
essential part of such websites as Amazon, MovieLens or Last.fm. Recommender
systems are used to deal with the tasks that are typical for statistical classifi-
cation methods. They fit especially the scenarios in which the number of at-
tributes, classes or missing values is large. Classic data-mining techniques like

∗Submitted: October 2010; Accepted: June 2011.

238 S. CHOJNACKI, M. K LOPOTEK

logistic regression or decision trees are well suited to predict which category of
news is the most interesting for a particular customer. Recommender systems
are used to output more fine-grained results and point at concrete stories.

In recent years we have observed a surge of interest among the research
community in recommender systems. One of the events that was responsible
for this phenomenon was the Netflix Prize challenge1. The competition was
organized by a large DVD retailer in US. The prize of 1 million dollars was
awarded to the team that managed to improve RMSE (root mean standard
error) of the retailer’s Cinematch algorithm by more than 10%. The lesson
we learned during the Netflix Prize is that the difference between the quality
of simple methods and the sophisticated ones is not as significant as we could
have expected. Moreover, in order to lower RMSE an ensemble of complex
and computationally intensive methods has to be implemented. Even though
the organizers made much effort to deliver realistic and huge data sets, the
setting did not envision the problems that we need to face in diverse real-life
recommender systems applications, such as:

• the Cold Start problem, i.e. an arrival of new users with short history (e.g.
restricted to the last HTTP session)

• instant creation of new items (e.g. news, auction items or photos)

• real-time feedback from users about our performance.

These drawbacks were overcome during the Online Task of the Discovery
Challenge organized as a part of the ECML 2009 (see Jäschke et al., 2009). The
owners of the www.BibSonomy.org bookmarking portal opened its interfaces to
recommender systems taking part in the evaluation. Whenever a user of the
BibSonomy was bookmarking a digital resource (a publication or a website)
a query was sent to all the systems. The tag recommendation of a randomly
selected system was displayed to the user. After the action a feedback with user’s
actions was sent to all systems. The systems could have been maintained during
the challenge, because they were configured as web services. The results showed
that all of the teams found it difficult to deliver majority of its recommendations
within time constraint of 1 000 ms.

Our research was motivated by the above result and an observation that
the development of recommender systems is limited by the fact that there are
not enough possibilities to test the algorithms with various datasets. The data
structure used by recommender systems is a sparse user × item matrix with
ratings. It is a hard exercise to generate randomly such matrices with predefined
properties, resembling real-life situations, because of three reasons. Firstly, if
we fix the number of users, items and rankings and try to place the rankings
randomly in the matrix we obtain binomial distribution of the number of items
rated by users (and vice versa). However, in real-life datasets the distributions
are heavy-tailed. Secondly, simple random selection results in no correlations

1http://www.netflix.com

Random graphs for performance evaluation of recommender systems 239

among user’s preferences. Such correlations exist in real datasets. Thirdly, if
we generate one matrix with some desired properties and would like to add new
users or items, we would probably lose the properties of the original matrix.

The problem has been taken up recently in Chojnacki and K lopotek (2011).
We proposed to look at the matrix with ratings as if it were a bipartite graph
with nodes of both modalities representing users and items, respectively. A
rating from the matrix is mapped onto an edge in the bigraph. We proposed
an algorithm in which we can control not only simple statistics like numbers of
users, items or rankings, but also obtain skewed distributions and correlations
among users or items. Moreover, our random bigraph generator asymptotic
properties were verified with formal and numerical tools and we can add users
or items to the graph without losing the properties of the original datasets.
The algorithm was obtained by adapting the advances in unipartite complex
networks modeling onto a bipartite ground. We modified the preferential at-
tachment model by Barabási and Albert (1999) with the extension proposed in
Liu et al. (2002) and generalized the surfing mechanizm introduced by Vázquez
(2003).

In this paper we apply the generator to produce several random bigraphs
with various properties and evaluate how these properties impact on the perfor-
mance of the analyzed recommender systems. We analyze four features of the
systems that in our opinion are responsible for the success of an algorithm in a
real-life setting:

• time required to build a model from scratch

• memory consumption of the trained model

• latency of creating a recommendation

• time of updating the model with new ratings.

We considered six algorithms during the tests: UserBased, ItemBased, Slope-
One, UserThreshold, KnnItem and SVD (Owen et al., 2010). We relied on
high-performance Mahout library2. Our attention was focused on five proper-
ties of artificial datasets: (1) size of the graph, (2) relative number of edges,
(3) proportion of the number of users to the number of items, (4) clustering
of edges, (5) distributions of node degrees of both modalities. We also checked
the influence of two characteristics on the performance of the UserBased model,
namely: similarity measure and the size of the neighborhood.

Throughout the article we show that our approach can be used to better
understand the features of datasets that are responsible for the performance
of recommender systems. We utilize this knowledge to show (1) which algo-
rithms are best suited for various scenarios, (2) identify dataset features that
are correlated with improving performance of some algorithms and worsening
performance of others, (3) point at potential directions of improving the imple-
mentations of the algorithms.

2http://www.mahout.apache.org

240 S. CHOJNACKI, M. K LOPOTEK

The rest of the article is organized as follows. In Section 2 we describe how
recommender systems are evaluated. In Section 3 we outline the details of the
applied random bigraph generator. The fourth section contains the results of
extensive experiments. The last, fifth section is dedicated for the concluding
remarks.

2. Performance of recommender systems

In our research we perceive performance in terms of real-life speed of using an
algorithm. We omit analysis of statistical indicators such as accuracy, recall,
f-measure, RMSE or lift charts. This is because, even though they are crucial
in the process of selecting an algorithm to be deployed, it seems pointless to
evaluate these measures within randomly generated datasets. One could argue
that the usefulness of artificial datasets is questionable. And the best strategy is
to evaluate all possible algorithms with one’s real dataset and choose the most
accurate one that gives recommendations within specified time constraints. We
argue with this point of view. Based on our experience we are more likely to
believe that the structure and topology of datasets changes rapidly and the
performance may be affected by an appearance of outlying observations or un-
expected growth in scale. It is hard to foresee all potential pitfalls and the
need to evaluate the algorithms within a wide range of artificial data emerges.
In order to justify our deduction we present in Fig. 1 the results of an online
evaluation of the systems that participated in the social bookmarking Discovery
Challenge organized as a part of ECML’09.

The algorithms were deployed as web services and latency was measured as
the difference of time between sending a request and receiving a list of top five
recommended tags. We participated in the evaluation and managed to lower
the latency of our system to the level of 400 ms (see Chojnacki, Czerski and
K lopotek, 2010). It turned out to be an important improvement for the users of
the BibSonomy and resulted in the highest rate of clicks among all the evaluated
systems.

A good starting point when analyzing complexity of any algorithm is to as-
sess its asymptotic properties. Such analyses are usually based on several sim-
plifying assumptions. One of the assumptions that is virtually never met is the
dense data structure representation assumption. For example vectors are either
implementedas dense(e.g.double[])or sparse arrays(e.g.ArrayList<Double>).
Dedicated collections are used to find optimal trade-offs between memory con-
sumption and speed. Moreover, several advanced issues such as Java Object

overhead and its influence on garbage collectors performance need to be taken
into account. A great discussion about these problems is contained in chapter 3
of Owen et al. (2010).

Nonetheless, theoretical analysis of complexity strengthens our general intu-
ition about the upper bound of time needed for computations. A thorough ana-
lysis of wide range of recommender algorithms is provided in Jahrer, Töscher and

Random graphs for performance evaluation of recommender systems 241

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0

 2
0

 4
0

 6
0

 8
0

 1
0
0

la
te

n
c
y

percentage of selected posts
2009-09-14 11:17:06

3
5
6
7
8
9

10
11
12
13
14
15
16

timeout

Figure 1. Latency of recommender systems evaluated during the Online Task
of ECML-PKDD 2009 Discovery Challenge. None of the systems delivered rec-
ommendations to all queries. The points on curves show the percentiles of
latency for each algorithm. For example the second most right point of al-
gorithm 13 indicates that almost 90% of its recommendations were delivered
within 1 200ms. The same point tells us from the horizontal axis that these an-
swers covered slightly below 80% of all queries. Source: http://www.kde.cs.uni-
kassel.de/ws/dc09/results/online/

Legenstein (2010). In particular, it is proposed that training time, latency and
memory consumption of SVD-based recommender are O(E), O(1), O(U + I),
where E is the number of ratings, U is the number of users and I is the number
of items. The limitation of this kind of analysis is the fact that except for some
rare situations it does not help us to decide which of two selected algorithms
is expected to perform better on real data. An example of a set of soft rules
meant to cope with such questions is drawn in Table 1.

In our experiments we did not find evidence to assert that UserBased algo-
rithm performs significantly different than ItemBased when the proportion of
the number of users to the number of items varies. We also found that there
exist other factors than U , I or E that are interpretable and impact on the
performance in a coherent way. The results are discussed in detail in Sec. 4.

242 S. CHOJNACKI, M. K LOPOTEK

Table 1. Comparison of recommender systems, based on Owen et al. (2010)

Recommender Key features
UserBased Fast when number of users is relatively small

ItemBased Fast when number of items is relatively small

SlopeOne Recommendations and updates fast at runtime
Requires large precomputations
Suitable when number of items is relatively small

KnnItem Good when number of items is relatively smaller

SVD Good results
Requires large precomputations

3. Bipartite random graph generator

In this section we describe an algorithm used to generate random bigraphs. The
algorithm was introduced and described in detail in Chojnacki and Klopotek
(2011). In Sec. 3.1 we define the parameters of the algorithm, in Sec. 3.2 the
properties of the generator are outlined.

3.1. Generative procedure

The generative procedure consists of three steps: (1) new node creation, (2) edge
attachment type selection and (3) running bouncing mechanism. The steps are
run after an initialization of the bigraph. The procedure requires specifying
eight parameters:

m – the number of initial loose edges with a user and an item at the ends
T – the number of iterations
p – the probability that a new node is a user

(1 − p) is the probability that a new node is an item
u – the number of edges created by each new user
v – the number of edges created by each new item
α – the probability that a new user’s edge is being connected to

an item with preferential attachment
β – the probability that a new item’s edge is being connected to

a user with preferential attachment
b – the fraction of preferentially attached edges

that were created via a bouncing mechanism.

In the preferential attachment mechanism the probability that a node is
drawn is linearly proportional to its degree. Opposite to the preferential at-
tachment is random attachment, in which probability of selection is equal for
all nodes. The model is based on an iterative repetition of three steps.

Random graphs for performance evaluation of recommender systems 243

Step 1 If a random number is greater then p create a new user with u loose
edges, otherwise create a new item with v loose edges.

Step 2 For each edge decide whether to join it to a node of the second modality
randomly or with preferential attachment. The probability of selection prefer-
ential attachment is α for new user and β for new item.

Step 3 For each edge that is supposed to be created with preferential attachment
decide if it should also be generated via a bouncing mechanism.

Bouncing is performed in three micro steps: (1) a random node is drawn from
the nodes that are already joined with the new node, (2) a random neighbor of
the drawn node is chosen, (3) a random neighbor of the neighbor is selected for
joining with the new node. The bouncing mechanism was injected into the model
in order to parametrize the level of transitivity in a graph. The transitivity
is a feature of real datasets and in terms of recommender systems represent
the correlations between items ranked by different users. In unipartite graphs
transitivity is measured by the local clustering coefficient, which is calculated
for each node as a number of edges among direct neighbors of the node divided
by all possible pairs of the neighbors. In bipartite graphs the coefficient is
always zero and is substituted by bipartite local clustering coefficient (BLCC),
Chojnacki and Klopotek (2011). Bipartite local clustering coefficient of node
j takes values of one minus the proportion of second neighbors of the node to
the potential number of the second neighbors of the node. The value of BLCC

calculated for node j is given by:

BLCCj = 1 −
|N2(j)|

∑

i∈N1(j) (ki − 1)
, (1)

where |N2(j)| stands for the number of the second neighbors of node j, N1(j)
is a set of the first neighbors of node j and ki is the degree of node i. The steps
of the generator are depicted in Fig. 2.

3.2. Properties

One can see that after t iterations the bigraph consists of |U(t)| = m+ pt users,
|I(t)| = m+(1−p)t items, and |E(t)| = m+t(pu+(1−p)v) edges. Let us denote
by η an average number of edges created during one iteration η = (pu+(1−p)v).
After relatively many iterations (t >> m) we can neglect m. In the presented
model, an average user degree is:

|E(t)|

|U(t)|
=

m + t(pu + (1 − p)v)

m + pt
≈

η

p
.

Analogously, an average item degree is:

|E(t)|

|I(t)|
≈

η

(1 − p)
.

244 S. CHOJNACKI, M. K LOPOTEK

Initialize (m=4)
1) A new node is

created (here a user)

Users Items

2) An attachment type

is drawn for each edge

u·α

u·(1-α)

u

3) Number of

bounced nodes is set

u·α·b

4) Bouncing is

performed

random preferential

One itaration of the generator probability that a new user is created is p, (1-p) for new item.

Figure 2. For each edge of a new node, that is to be connected with an existing
node according to the preferential attachment mechanism, a decision is made
whether to create it via a bouncing mechanism. In case of attaching new user
node, u new edges are created. On average u · α edge endings are to be drawn
preferentially and u · α · b of them are to be obtained via bouncing from the
nodes that are already selected

The values are time invariant, but depend on both u and v. In Figs. 3 to 5 three
relations between model parameters and graph features are delineated.

4. Experiments

In order to evaluate the performance of the analyzed algorithms we generated 83
artificial bipartite graphs. The statistics describing the graphs are contained in
Figs. 14 and 15 at the end of the paper. Each edge of the graph was augmented
with a random integer from a set of possible rankings {0, 1, 2, 3, 4, 5}. After the
last iteration (usually T = 10 000) one hundred more edges were created by
running 100 steps for each graph with unchanged parameters. This enabled us
to preserve asymptotic properties of the graphs within a set of rankings used
to batch update of the models. The experiments were run in-memory within
separate threads on a 64-bit Fedora operating system with the Quatro 2.66GHz
Intel(R) Core(TM) i5 CPUs.

4.1. Evaluated systems

We evaluated six recommender algorithms implemented in the Mahout java
library. Mahout contains highly efficient open-source implementations of ma-
chine-learning algorithms maintained by a vibrant community. It is powering
several portals e.g. SpeedDate, Yahoo! Mail, AOL or Mippin. The algorithms
are: GenericUserBasedRecommender (Herlocker et al., 1999), GenericItemBase-
dRecommender (Sarwar et al., 2001), SlopeOneRecommender (Lemire and Mac-
lachlan, 2005), GenericUserBasedRecommender with the neighborhood defined
by non-negative threshold similarity (Owen et al., 2010), KnnItemBasedRec-
ommender (Bell and Koren, 2007) and SVDRecommender (Zhang et al., 2005).

Random graphs for performance evaluation of recommender systems 245

1

10

100

1000

1 10 100 1000

F
R

E
Q

U
E

N
C

Y

DEGREE

ITEM node degree distributions

alpha = 0.5

alpha = 0.0

1

10

100

1000

1 10 100 1000

F
R

E
Q

U
E

N
C

Y

DEGREE

ITEM node degree distributions

alpha = 1.0

alpha = 0.0

Figure 3. Parameters α and β enable us to control the shape of node degree
distributions. As the values approach unity, the shape becomes power-law, as
the values tend to zero the shape tends to exponential

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.0 0.2 0.4 0.6 0.8 1.0

B
LC

C

bouncing parameter - b

BLCC for USER nodes

alpha, beta = 1.00

alpha, beta = 0.75

alpha, beta = 0.50

alpha, beta = 0.25

alpha, beta = 0.00

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.0 0.2 0.4 0.6 0.8 1.0

B
LC

C

bouncing parameter - b

BLCC for ITEM nodes

alpha, beta = 1.00

alpha, beta = 0.75

alpha, beta = 0.50

alpha, beta = 0.25

alpha, beta = 0.00

Figure 4. The growth of parameter b results in higher values of BLCC. It does
not influence BLCC if α = β = 0.0

200

220

240

260

280

300

320

340

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Average number of SIMILAR USERS

alpha

b
e
ta

1600

1700

1800

1900

2000

2100

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Average number of ITEMS of SIMILAR USERS

alpha

b
e
ta

Figure 5. The average number of similar users (having ranked at least one item
in common with a defined user) and their items depends on both α and β

246 S. CHOJNACKI, M. K LOPOTEK

The algorithms cover wide spectrum of approaches to the problems of Collabo-
rative Filtering.

4.2. Performance measures

In what follows we study the correlations between the performance of the six
algorithms differentiated by five graph properties: size, density, proportion of
users to items, clustering and shape of node degree distributions. We focus our
attention on four performance statistics:

1. BUILD - time in milliseconds that is required to load whole bigraph from
a text file and train a model, after this period of time the model is ready
to create recommendations

2. MEMORY - memory consumption in megabytes of the built model, it was
assessed as a difference between Runtime.getRuntime().totalMemory()

and Runtime.getRuntime().freeMemory() after calling a garbage collec-
tor five times

3. LATENCY - an average time in milliseconds required to produce a rec-
ommendation for a sample of 500 users

4. UPDATE - time in millisecond of updating a model with 100 new ratings.

In case of UserBased recommender we set the size of the neighborhood to
200. SVD recommender was projected onto 10 factors and 200 iterations were
run during training. The Pearson Correlation was used as a similarity measure.
At the end we analyze specific parameters of the UserBased model.

4.3. Scalability

In order to verify the ability of the analyzed algorithms to scale, we generated
thirteen bigraphs. Each dataset was produced with the same parameters except
of the number of iterations. The datasets are numbered from 10 to 22 in Fig. 14.
The time of training the SVD recommender may be misleading3. For most sys-
tems, only training time grows linearly with the size of a dataset. Memory con-
sumption and latency grows sublinearly. SlopeOne and SVD algorithms exhibit
the poorest performance in terms of building time and memory consumption.
These costs pay back in the phase of creating recommendations. KnnItem does
not scale during training and is the slowest when creating recommendations.
Except for SlopeOne all models refresh their structures immediately. Only the
latency of SVD seems not to depend on the scale.

3In the chart (Fig. 6) the time of SVD building was divided by 1 000 to get comparable
results. Such long time of building the model is a result of running 200 iterations of the
gradient descent. However, even a single iteration takes on average 1 000/200 = 5 times
longer than building of the other models.

Random graphs for performance evaluation of recommender systems 247

a) BUILDING b) MEMORY

 -

 200

 400

 600

 800

 1 000

 1 200

 1 400

 1 600

 1 800

 1 000 10 000 100 000

TIME (MS)

T parameter (number of nodes)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

0.001*SVD

0

10

20

30

40

50

60

70

80

90

 1 000 10 000 100 000

MEMORY (MB)

T parameter (number of nodes)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD

c) LATENCY d) UPDATING

0

10

20

30

40

50

60

70

80

90

 1 000 10 000 100 000

TIME (MS)

T parameter (number of nodes)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD

0

200

400

600

800

1 000

1 200

 1 000 10 000 100 000

TIME (MS)

T parameter (number of nodes)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD

Figure 6. Performance of the recommenders conditioned by the size of bigraphs.
On all charts horizontal axis has a logarithmic scale, allowing for even distribu-
tion of all observations

4.4. Density

We generated 14 bigraphs to test how performance depends on density. The
graphs are numbered from 23 to 36 in Fig. 14. All graphs have around the same
number of nodes, but the number of edges varies between 30 100 and 240 100.
The diversity was obtained by changing two parameters: u and v.

We omit the presentation of performance calculated for the first four bi-
graphs, in which u = v. All the four measures were growing steadily as we
evaluated (u = v = 3), (u = v = 6), (u = v = 12) and (u = v = 24). This could
have suggested that there exists a strong correlation between density and per-
formance. However, when we compare five pairs of graphs with u 6= v (Fig. 7),
the results become confusing. When setting u = 3 and iterating over {4, . . . , 15}
with v, the performance diminishes only slightly. If we freeze v = 3 and iterate
over u, we decrease the performance steadily. This suggests that the density on
its own is not so much responsible for the performance4.

4Digging into this effect deeper we see that by increasing v we do not only increase the

248 S. CHOJNACKI, M. K LOPOTEK

a) BUILDING b) MEMORY

0

50

100

150

200

250

300

U=3,

V=4

U=4,

V=3

U=3,

V=5

U=5,

V=3

U=3,

V=7

U=7,

V=3

U=3,

V=13

U=13,

V=3

U=3,

V=15

U=15,

V=3

TIME (MS)
UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

0.001*SVD

0

5

10

15

20

25

U=3,

V=4

U=4,

V=3

U=3,

V=5

U=5,

V=3

U=3,

V=7

U=7,

V=3

U=3,

V=13

U=13,

V=3

U=3,

V=15

U=15,

V=3

MEMORY (MB)
UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD

c) LATENCY d) UPDATING

0

10

20

30

40

50

60

70

80

90

100

U=3,

V=4

U=4,

V=3

U=3,

V=5

U=5,

V=3

U=3,

V=7

U=7,

V=3

U=3,

V=13

U=13,

V=3

U=3,

V=15

U=15,

V=3

TIME (MS)
UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD

285

578

0

10

20

30

40

50

60

70

80

U=3,

V=4

U=4,

V=3

U=3,

V=5

U=5,

V=3

U=3,

V=7

U=7,

V=3

U=3,

V=13

U=13,

V=3

U=3,

V=15

U=15,

V=3

TIME (MS)
UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD

152

187

Figure 7. Performance of the recommenders versus the density of the graphs.

4.5. Users to items proportion

Parameter p in the generator enables us to control the proportion of users to
items. The parameter is interpreted as the probability that a new node is a
user. We built nine graphs with constant numbers of nodes (= 10 200) and
edges (= 70 100). The number of users varies between 1 166 and 9 082. The
graphs are the first nine graphs in Fig. 14.

The relationship between p and performance is depicted in Fig. 8. Only the
performance of SVD does not seem to depend on the proportion in none of four
evaluations. Training time decreases as the relative number of users increases
for all remaining models. The only model, in which memory consumption de-
pends on the proportion is SlopeOne. It is very interesting that the lowest
memory requirements are obtained for balanced graphs (p ≈ 0.5). The same
non-monotonic relation can be observed in case of KnnItem and latency. The
rest of the algorithms improve their latency as a relative number of items grows.

density, but also lower the variance of node degree distribution in user modality stronger than
for the item modality. This shows that performance relies heavily on the distributions of node
degrees, but with a different magnitude for both modalities.

Random graphs for performance evaluation of recommender systems 249

a) BUILDING b) MEMORY

-

200

400

600

800

1 000

1 200

1 400

1 600

1 800

0 0.2 0.4 0.6 0.8 1

TIME [MS]

P parameter (users/nodes)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

0.001*SVD

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

MEMORY

[MB]

P parameter (users/nodes)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD

c) LATENCY d) UPDATING

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

LATENCY

P parameter (users/nodes)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

0 0.2 0.4 0.6 0.8 1

TIME [MS]

P parameter (users/nodes)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD

Figure 8. Performance modeled by the proportion of users to all nodes.

Even though most datasets have more items than users, the opposite situations
can also happen. For example, the dataset evaluated during track II of the KDD
Cup 2011 has more items than users. The fact that ItemBased recommender
does not perform better than UserBased when there are relatively few items,
Owen et al. (2010), raises our concern5.

4.6. Clustering

Eleven graphs were generated to measure the influence of clustering on per-
formance. The datasets are numbered from 37 to 47 in Figs. 14 and 15. The
bigraphs were generated by changing the bouncing parameter b from 0.0 to 1.0
with 0.1 intervals. All graphs have 1 100 nodes and 120 100 edges.

The performance of SVD does not depend on bouncing. Memory consump-
tion and time of building grow slightly in line with clustering only in case of
SlopeOne model. The latency of creating a recommendation is correlated with

5This observation requires further investigation. In particular, we plan to verify if the
claim that UserBased algorithm is preferred over ItemBased when there are fewer users is
valid only when caching mechanisms are implemented

250 S. CHOJNACKI, M. K LOPOTEK

a) BUILDING b) MEMORY

0

50

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1

TIME [MS]

B parameter (bouncing)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

0.001*SVD

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

MEMORY

[MB]

B parameter (bouncing)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD

c) LATENCY d) UPDATING

1

10

100

1 000

10 000

0 0.2 0.4 0.6 0.8 1

LATENCY

LOG SCALE

B parameter (bouncing)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD
1

10

100

1 000

10 000

0 0.2 0.4 0.6 0.8 1

TIME [MS]

LOG SCALE

B parameter (bouncing)

UserBased

ItemBased

SlopeOne

UserThreshold

KnnItem

SVD

Figure 9. Performance dimensioned by various levels of clustering (transitivity)

clustering gently only in case of ItemBase, UserBase, KnnItem and UserThresh-
old algorithms. The relation between clustering and performance is in all vari-
ants weak and not stable.

4.7. Shapes of degree distributions

We have shown in Chojnacki and Klopotek (2011) that by changing α and β we
can output graphs with a mixture of the power-law distribution and the expo-
nential distribution (compare Fig. 3). The two parameters enable us to control
independently the shapes of degree distributions of both modalities. By increas-
ing α we can obtain graphs with constant number of users, items and edges,
but growing average number of potentially similar users6. Moreover, an average
number of distinct items of potentially similar users grows with both α and β

(compare Fig. 5). These results are consistent with the asymptotic Newman’s
formula, Newman et al. (2001). The formula is based on a local tree-like struc-
ture assumption and estimates the average number of second neighbors |N2(j)|

6We say that two users are potentially similar if they have rated at least one item in
common.

Random graphs for performance evaluation of recommender systems 251

of a random user j by means of the first moment of user degree distribution 〈U〉
and the first and the second moments of item degree distribution (〈I2〉 and 〈I2〉
respectively):

|N2(j)| = 〈U〉

(

〈I2〉

〈I〉
− 1

)

. (2)

We have generated 36 bigraphs with all possible combinations of α and β

from the set of values {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. All the graphs have 10 000
nodes and 70 100 edges. They are numbered from 48 to 83 in Fig. 15. We
observed that an average latency grows with either α or β for all analyzed
algorithms (Fig. 11). We also observed that building time and memory con-
sumption is related to α and β for all algorithms except for SVD and KnnItem.
The performance of SlopeOne model is drawn in Fig. 10.

250

300

350

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

BUILD time [ms] for SlopeOne model

alpha

b
e

ta

6.0

6.5

7.0

7.5

8.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

MEMORY consumption [MB] for SlopeOne model

alpha

b
e

ta

Figure 10. Training time and memory requirements of SlopeOne model

4.8. Similarity measure

In the last two subsections we focus on UserBased algorithm and two parame-
ters that are specific for it. The first parameter is the similarity measure and
will be discussed in this subsection. The second parameter is the size of the
neighborhood and will be described in next subsection.

The similarity between two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) can
be defined is several ways. We analyzed all that are available in the Mahout
library i.e. Pearson similarity, Euclidean similarity, LogLikelihood similarity,
Spearmann similarity and Tanimoto similarity. The third and the fifth are de-
fined by set operations and can be easily used with binary ratings, when we only
know if a user expressed a preference for an item or not. Pearson similarity

252 S. CHOJNACKI, M. K LOPOTEK

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

UserBased model

alpha (strength of Power−law in ITEM modality)

b
e

ta
 (

s
tr

e
n

g
th

 o
f

P
o
w

e
r−

la
w

 i
n

 U
S

E
R

 m
o

d
a

lit
y
)

10

12

14

16

18

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ItemBased model

alpha (strength of Power−law in ITEM modality)

b
e

ta
 (

s
tr

e
n

g
th

 o
f

P
o
w

e
r−

la
w

 i
n

 U
S

E
R

 m
o

d
a

lit
y
)

4.5

5.0

5.5

6.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SlopeOne model

alpha (strength of Power−law in ITEM modality)

b
e

ta
 (

s
tr

e
n

g
th

 o
f

P
o
w

e
r−

la
w

 i
n

 U
S

E
R

 m
o

d
a

lit
y
)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

UserThreshold model

alpha (strength of Power−law in ITEM modality)

b
e

ta
 (

s
tr

e
n

g
th

 o
f

P
o
w

e
r−

la
w

 i
n

 U
S

E
R

 m
o

d
a

lit
y
)

16

18

20

22

24

26

28

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

KnnItem model

alpha (strength of Power−law in ITEM modality)

b
e

ta
 (

s
tr

e
n

g
th

 o
f

P
o
w

e
r−

la
w

 i
n

 U
S

E
R

 m
o

d
a

lit
y
)

0.7

0.8

0.9

1.0

1.1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SVD model

alpha (strength of Power−law in ITEM modality)

b
e

ta
 (

s
tr

e
n

g
th

 o
f

P
o
w

e
r−

la
w

 i
n

 U
S

E
R

 m
o

d
a

lit
y
)

Figure 11. The influence of α and β parameters on latency

Random graphs for performance evaluation of recommender systems 253

is widely used and is related to the Cosine similarity. The only difference is
that the former operates on centered data. Euclidean similarity is inversely
proportional to the Euclidean distance between two vectors. LogLikelihood

similarity is based on calculating four values: number of non-empty dimen-
sions in both vectors, numbers of non-missing dimensions in the first and the
second vector, and the number of all dimensions, Dunning (1993). Spearman

similarity is calculated as Pearson similarity but xi and yj are substituted
with their relative ranks i.e. the lowest value is 1, the second lowest is 2, and
so on. Tanimoto similarity for binary data is calculated as a proportion of
dimensions that are non-empty in both vectors to total number of non-empty
dimensions in the vectors. Detailed definitions of all coefficients can be found
in the javadoc API of Mahout.

We have observed in Fig. 12 that the latency of UserBased model depends
on the selection of similarity measure. The fastest recommendations appear for
the Pearson and Euclidean similarities. Tanimoto and Loglikelihood similarities
are around three times slower. Spearman similarity is the slowest and does not
scale well with the growth of density.

0

10

20

30

40

50

60

70

80

90

100

U = V = 3 U = V = 6 U = V = 12 U = V = 24

TIME (MS)

Spearman

LogLikelihood

Tanimoto

Euclidean

Pearson

Figure 12. Dependence of latency on similarity metrics. Four analyzed graphs
have the same number of nodes, they are numbered 23-26 in Fig. 14

4.9. Size of the neighborhood

Size of the neighborhood is a parameter in UserBased recommender, which
enables us to tune the accuracy of the algorithm. When a UserBased model is
requested to deliver recommendations for a given user, two steps are performed.
In the first step, the similarity of the user to all other users is calculated and only
the most similar users are retained (the number is limited by the neighborhood).
In the second step only items of the most similar users are weighted and the
recommendation is selected among those items.

The results in Fig. 13 indicate that as long as graph density is below some
threshold, the latency does not depend neither on density nor size of the neigh-
borhood. This can be explained by the fact that the neighborhood parameter
is triggered only when the number of similar users is greater than it.

254 S. CHOJNACKI, M. K LOPOTEK

0

50

100

150

200

250

N = 400 N = 800 N = 1 600 N = 3 200

TIME (MS)

Size of the neighborhood

24

12

6

3

DENSITY (U=V=...)

Figure 13. Latency of creating a recommendation in four graphs with varying
density. UserBased algorithm run with four different levels of the neighborhood

5. Conclusion

In the article we have proposed to use random bipartite graphs to measure
the performance of recommender systems. We have shown that the recently
developed random bigraph generator, Chojnacki and Klopotek (2011), can be
be used to generate a wide range of artificial datasets with predefined properties.
The analytical framework can be used to compare various algorithms, but also
to help us understand their complexity and point at potentially non-optimal
implementations. We believe that the proposed methodology can be applied
in various scenarios and settings. Further analyses need to be performed to
understand the most intriguing results. In particular, this applies to the real
relationship between the complexity of UserBased and ItemBased algorithms.
Another issue is the emergence of U-shaped curve describing performance of
various recommenders when the proportion of the number of users to the number
of items is being changed. In the future we plan to evaluate how the performance
of recommender systems is altered when they are implemented in a distributed
environment.

References

Barabási, A.L. and Albert, R. (1999) Emergence of Scaling in Random Net-
works. Science, 286 (5439), 509–512.

Bell, R.M. and Koren, Y. (2007) Scalable Collaborative Filtering with Joint-
ly Derived Neighborhood Interpolation Weights. In: Proc. of the 2007
Seventh IEEE International Conference on Data Mining, IEEE Computer
Society, 43–52.

Chojnacki, S., Czerski, D. and K lopotek, M. (2010) Optimization of tag
recommender systems in a real life setting. In: 3rd Conference on Hu-
man System Interaction, Rzeszow, Poland. IEEE, 107–112.

Random graphs for performance evaluation of recommender systems 255

Chojnacki, S. and Klopotek, M. (2011) Random Graphs for Bipartite Net-
works Modeling. Journal of Control and Cybernetics, submitted.

Dunning, T. (1993) Accurate Methods for the Statistics of Surprise and Co-
incidence. Computational Linguistics, 19 (1), 61–74.

Herlocker, J.L., Konstan, J.A., Borchers, A. and Riedl, J. (1999) An
algorithmic framework for performing collaborative filtering. In: Proc. of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval, ACM Press, 230–237.

Jahrer, M., Töscher, A. and Legenstein, R. (2010) Combining predic-
tions for accurate recommender systems. In: Proc. of the 16th ACM
SIGKDD international conference on Knowledge discovery and data min-
ing (KDD ’10), ACM, 693–702.

Jäschke, R., Eisterlehner, F., Hotho, A. and Stumme, G. (2009) Test-
ing and Evaluating Tag Recommenders in a Live System. In: D. Benz
and F. Janssen, eds., Workshop on Knowledge Discovery, Data Mining,
and Machine Learning. ACM, 44–51.

Lemire, D. and Maclachlan, A. (2005) Slope One Predictors for Online
Rating-Based Collaborative Filtering. In: Proc. of SIAM Data Mining
(SDM’05). ACM, 21–23.

Liu, Z., Lai, Y-C. and Dasgupta, P. (2002) Connectivity distribution and
attack tolerance of general networks with both preferential and random
attachments. Physics Letters A, 303 (5-6), 337–344.

Newman, M., Strogatz, S. and Watts, D. (2001) Random graphs with ar-
bitrary degree distributions and their applications. Phys. Rev. E, 64 (2).

Owen, S., Anil, R., Dunning, T. and Friedman, E. (2010) Mahout in ac-
tion (MEAP). Manning Publication Co.

Sarwar, B.M., Karypis, G., Konstan, J.A. and Riedl, J. (2001) Item-
based collaborative filtering recommendation algorithms. In: Proc. of the
10th international conference on World Wide Web (WWW ’01), ACM,
285–295.

Vázquez, A. (2003) Growing network with local rules: Preferential attach-
ment, clustering hierarchy, and degree correlations. Phys. Rev. E, 67 (5).

Zhang, S., Wang, W., Ford, J., Makedon, F. and Pearlman, J. (2005)
Using singular value decomposition approximation for collaborative fil-
tering. In: Proc. of the Seventh IEEE International Conference on E-
Commerce Technology, IEEE Computer Society, 257–264.

256 S. CHOJNACKI, M. K LOPOTEK

m T p u v alpha beta b users items edges

 BLCC

for

users

 BLCC

for

items

1 100 10 000 0.9 7 7 0.5 0.5 0.0 9 082 1 118 70 100 4% 23%

2 100 10 000 0.8 7 7 0.5 0.5 0.0 8 105 2 095 70 100 3% 10%

3 100 10 000 0.7 7 7 0.5 0.5 0.0 7 060 3 140 70 100 3% 6%

4 100 10 000 0.6 7 7 0.5 0.5 0.0 6 187 4 013 70 100 3% 4%

5 100 10 000 0.5 7 7 0.5 0.5 0.0 4 998 5 202 70 100 3% 3%

6 100 10 000 0.4 7 7 0.5 0.5 0.0 4 157 6 043 70 100 4% 3%

7 100 10 000 0.3 7 7 0.5 0.5 0.0 3 081 7 119 70 100 6% 3%

8 100 10 000 0.2 7 7 0.5 0.5 0.0 2 172 8 028 70 100 10% 3%

9 100 10 000 0.1 7 7 0.5 0.5 0.0 1 166 9 034 70 100 22% 4%

10 100 1 000 0.9 7 7 0.1 0.1 0.0 993 207 7 100 11% 40%

11 100 2 000 0.9 7 7 0.1 0.1 0.0 1 897 303 14 100 9% 39%

12 100 3 000 0.9 7 7 0.1 0.1 0.0 2 833 367 21 100 8% 39%

13 100 4 000 0.9 7 7 0.1 0.1 0.0 3 716 484 28 100 7% 34%

14 100 5 000 0.9 7 7 0.1 0.1 0.0 4 600 600 35 100 6% 30%

15 100 6 000 0.9 7 7 0.1 0.1 0.0 5 558 642 42 100 5% 31%

16 100 7 000 0.9 7 7 0.1 0.1 0.0 6 420 780 49 100 4% 27%

17 100 8 000 0.9 7 7 0.1 0.1 0.0 7 291 909 56 100 4% 24%

18 100 9 000 0.9 7 7 0.1 0.1 0.0 8 235 965 63 100 4% 24%

19 100 10 000 0.9 7 7 0.1 0.1 0.0 9 120 1 080 70 100 3% 22%

20 100 25 000 0.9 7 7 0.1 0.1 0.0 22 627 2 573 175 100 2% 13%

21 100 50 000 0.9 7 7 0.1 0.1 0.0 45 214 4 986 350 100 1% 8%

22 100 100 000 0.9 7 7 0.1 0.1 0.0 90 192 10 008 700 100 1% 5%

23 100 10 000 0.9 3 3 0.1 0.1 0.0 9 063 1 137 30 100 0% 4%

24 100 10 000 0.9 6 6 0.1 0.1 0.0 9 106 1 094 60 100 2% 17%

25 100 10 000 0.9 12 12 0.1 0.1 0.0 9 126 1 074 120 100 11% 43%

26 100 10 000 0.9 24 24 0.1 0.1 0.0 9 113 1 087 240 100 37% 71%

27 100 10 000 0.9 3 4 0.1 0.1 0.0 9 110 1 090 31 090 0% 5%

28 100 10 000 0.9 3 5 0.1 0.1 0.0 9 076 1 124 32 148 0% 5%

29 100 10 000 0.9 3 7 0.1 0.1 0.0 9 084 1 116 34 164 1% 6%

30 100 10 000 0.9 3 13 0.1 0.1 0.0 9 076 1 124 40 340 1% 8%

31 100 10 000 0.9 3 15 0.1 0.1 0.0 9 089 1 111 42 232 1% 9%

32 100 10 000 0.9 4 3 0.1 0.1 0.0 9 108 1 092 39 108 1% 8%

33 100 10 000 0.9 5 3 0.1 0.1 0.0 9 133 1 067 48 166 2% 12%

34 100 10 000 0.9 7 3 0.1 0.1 0.0 9 123 1 077 66 192 3% 21%

35 100 10 000 0.9 13 3 0.1 0.1 0.0 9 077 1 123 119 870 12% 40%

36 100 10 000 0.9 15 3 0.1 0.1 0.0 9 114 1 086 138 268 15% 47%

37 100 10 000 0.2 12 12 0.9 0.9 0.0 2 039 8 161 120 100 29% 16%

38 100 10 000 0.2 12 12 0.9 0.9 0.1 2 128 8 072 120 100 29% 16%

39 100 10 000 0.2 12 12 0.9 0.9 0.2 2 026 8 174 120 100 30% 17%

40 100 10 000 0.2 12 12 0.9 0.9 0.3 2 146 8 054 120 100 30% 16%

41 100 10 000 0.2 12 12 0.9 0.9 0.4 2 065 8 135 120 100 31% 18%

No.

Generator's parameters Graphs' properties

Figure 14. Random graphs generated to test the performance of recommender
systems (part 1). Generator parameters and BLCC are defined in Sec. 3.1

Random graphs for performance evaluation of recommender systems 257

m T p u v alpha beta b users items edges

 BLCC

for

users

 BLCC

for

items

42 100 10 000 0.2 12 12 0.9 0.9 0.5 2 106 8 094 120 100 32% 18%

43 100 10 000 0.2 12 12 0.9 0.9 0.6 2 100 8 100 120 100 32% 17%

44 100 10 000 0.2 12 12 0.9 0.9 0.7 2 022 8 178 120 100 33% 18%

45 100 10 000 0.2 12 12 0.9 0.9 0.8 2 013 8 187 120 100 34% 18%

46 100 10 000 0.2 12 12 0.9 0.9 0.9 2 031 8 169 120 100 35% 19%

47 100 10 000 0.2 12 12 0.9 0.9 1.0 2 120 8 080 120 100 34% 18%

48 100 10 000 0.5 7 7 1.0 1.0 0.0 5 070 5 130 70 100 4% 4%

49 100 10 000 0.5 7 7 1.0 0.8 0.0 5 058 5 142 70 100 4% 4%

50 100 10 000 0.5 7 7 1.0 0.6 0.0 5 054 5 146 70 100 4% 4%

51 100 10 000 0.5 7 7 1.0 0.4 0.0 5 130 5 070 70 100 4% 4%

52 100 10 000 0.5 7 7 1.0 0.2 0.0 5 027 5 173 70 100 4% 3%

53 100 10 000 0.5 7 7 1.0 0.0 0.0 5 125 5 075 70 100 3% 3%

54 100 10 000 0.5 7 7 0.8 1.0 0.0 5 141 5 059 70 100 4% 4%

55 100 10 000 0.5 7 7 0.8 0.8 0.0 5 114 5 086 70 100 4% 4%

56 100 10 000 0.5 7 7 0.8 0.6 0.0 5 112 5 088 70 100 3% 3%

57 100 10 000 0.5 7 7 0.8 0.4 0.0 5 088 5 112 70 100 3% 3%

58 100 10 000 0.5 7 7 0.8 0.2 0.0 5 130 5 070 70 100 3% 3%

59 100 10 000 0.5 7 7 0.8 0.0 0.0 5 113 5 087 70 100 3% 3%

60 100 10 000 0.5 7 7 0.6 1.0 0.0 5 086 5 114 70 100 4% 4%

61 100 10 000 0.5 7 7 0.6 0.8 0.0 5 170 5 030 70 100 3% 3%

62 100 10 000 0.5 7 7 0.6 0.6 0.0 5 127 5 073 70 100 3% 3%

63 100 10 000 0.5 7 7 0.6 0.4 0.0 5 081 5 119 70 100 3% 3%

64 100 10 000 0.5 7 7 0.6 0.2 0.0 5 085 5 115 70 100 3% 3%

65 100 10 000 0.5 7 7 0.6 0.0 0.0 5 117 5 083 70 100 3% 3%

66 100 10 000 0.5 7 7 0.4 1.0 0.0 5 145 5 055 70 100 4% 4%

67 100 10 000 0.5 7 7 0.4 0.8 0.0 5 098 5 102 70 100 3% 3%

68 100 10 000 0.5 7 7 0.4 0.6 0.0 5 009 5 191 70 100 3% 3%

69 100 10 000 0.5 7 7 0.4 0.4 0.0 5 176 5 024 70 100 3% 3%

70 100 10 000 0.5 7 7 0.4 0.2 0.0 5 052 5 148 70 100 3% 3%

71 100 10 000 0.5 7 7 0.4 0.0 0.0 5 042 5 158 70 100 3% 3%

72 100 10 000 0.5 7 7 0.2 1.0 0.0 5 030 5 170 70 100 4% 4%

73 100 10 000 0.5 7 7 0.2 0.8 0.0 5 063 5 137 70 100 3% 3%

74 100 10 000 0.5 7 7 0.2 0.6 0.0 5 156 5 044 70 100 3% 3%

75 100 10 000 0.5 7 7 0.2 0.4 0.0 5 158 5 042 70 100 3% 3%

76 100 10 000 0.5 7 7 0.2 0.2 0.0 5 084 5 116 70 100 3% 3%

77 100 10 000 0.5 7 7 0.2 0.0 0.0 5 039 5 161 70 100 3% 3%

78 100 10 000 0.5 7 7 0.0 1.0 0.0 5 054 5 146 70 100 3% 3%

79 100 10 000 0.5 7 7 0.0 0.8 0.0 5 102 5 098 70 100 3% 3%

80 100 10 000 0.5 7 7 0.0 0.6 0.0 5 044 5 156 70 100 3% 3%

81 100 10 000 0.5 7 7 0.0 0.4 0.0 4 993 5 207 70 100 3% 3%

82 100 10 000 0.5 7 7 0.0 0.2 0.0 5 145 5 055 70 100 3% 3%

83 100 10 000 0.5 7 7 0.0 0.0 0.0 5 188 5 012 70 100 2% 3%

No.

Generator's parameters Graphs' properties

Figure 15. Random graphs generated to test the performance of recommender
systems (part 2). Generator parameters and BLCC are defined in Sec. 3.1.

