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1. Introduction

To improve the quality of search through a collection of Web documents (called
also webpages) Brin and Page (1998) proposed an elaborated ranking system.
Search results are ordered according to a mixture of content score and popularity
score.

The rules used to assign each page its content score are top secret, but they
are designed to characterize each document as precisely and exhaustively as
possible. Particularly, they take into account the position of each query term
in a document (title, anchor, URL, plain text large font, plain text small font,
bold font, etc.), the number of times the query terms appear in a document, and
so on – see Brin and Page (1998, Section 5). As noted by Langville and Meyer
(2006b, Section 4) Google uses over a hundred such metrics to characterize a
document from different points of view.

On the other hand, the popularity score reflects information that can be
inferred about a document, but is not contained within it. Brin and Page (1998)
assumed that a webpage is important if it is pointed to by other important
webpages. This idea gave birth to the notion of PageRank, discussed later in
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Section 2. From a formal point of view the process of assigning PageRank values
qualifies as that of spectral ranking (Vigna, 2010), i.e. a technique that applies
the theory of linear maps (eigenvectors in our case) to matrices that represent
a relationships among entities (webpages in our case).

As these matrices are extremely large and sparse, we need special methods to
process them in a manageable way. These techniques are reviewed in Section 3
while in Section 4 some considerations on parallelization of these computations
are given. Section 5 concludes the paper.

Notation: Throughout the paper we will use the following notation. Lower
case letters r, x, etc., denote column vectors. Particularly, en means an n-
dimensional vector of ones. The symbol xi denotes the i-th element of x and
x′ stands for the transpose of x, i.e. the row vector. ‖x‖ is the L1 norm of the
vector x, i.e. ‖x‖ =

∑n

i=1 |xi|.
Upper case letters A, H , etc. are used to denote square matrices. Particulary

In stands for the identity (or unit) matrix of size n. If A is a matrix then aij
denotes the element in the i-th row and j-th column. Consequently, A′ stands
for the transpose of A.

2. PageRank review

Let N = {1, . . . , n} be the set of indices of webpages and let r stand for a real-
valued vector with the components rj interpreted as the importance weights of
these pages. According to Page et al. (1998), the importance of a webpage is
determined by the importance of pages linking to it. That is, if out(j) stands
for the number of outlinks, i.e. the number of links from page j, and B(i) is the
set of pages pointing into webpage i then

ri =
∑

j∈B(i)

rj
out(j)

. (1)

To give precise and manageable meaning to such a roughly stated definition
let us denote by A the adjacency matrix with the elements

aij =

{
1 if there is a link i → j
0 otherwise

. (2)

Then the out-degree out(i) =
∑n

j=1 aij . Next, let us define the so-called hyper-
link matrix H with the elements

hij =

{
aij/out(i) if out(i) > 0
0 otherwise

. (3)

Equation (1) can be written now in concise form r′ = r′H , showing that r′ is in
fact a left eigenvector of H with the corresponding eigenvalue λ = 1. However,
in general, r is not unique, i.e. algebraic multiplicity of λ = 1 is greater than
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one, or the equation r′ = r′λH cannot be satisfied for λ = 1. Therefore, H must
be modified as described below.

If out(i) > 0 then hij can be interpreted as the probability of jumping from
i to a webpage j. Under definition (3) we can imagine a surfer, who, sitting at
page i, chooses randomly (with equal probability) one of the outgoing links. To
extend this interpretation to the nodes with out(i) = 0, called dangling nodes,
we replace H by the matrix S defined as

S = H + dw′ (4)

where the entries of vector d are di = 1 if i is the dangling node and di = 0 oth-
erwise. The stochastic vector w is called the teleportation vector; it represents
the probability with which the surfer jumps from the dangling node to another
node j ∈ N . Traditionally, w = en/n, i.e. w is the uniform probability vector.

The matrix S is row-stochastic, i.e.
∑n

i=1 sij = 1 for each row i. Unfortu-
nately, stochasticity of S does not guarantee the uniqueness of r. Thus, the last
modification relies upon replacing S by the matrix

G = α(H + dw′) + (1 − α)env
′ (5)

where v is a stochastic vector called personalization vector, and α ∈ (0, 1) is the
so-called damping factor. Note that env

′ is a matrix where each row is v′.
The matrix G, called the Google matrix, models a random surfer, who applies

with probability α the already described scenario of moving to subsequent pages
by randomly choosing an outlink from a current webpage1, and, if bored, i.e.
with probability 1−α, jumps to a node j ∈ N with probability vj .

According to Boldi et al. (2008) we distinguish between the strongly pref-
erential model, where w = v, and the weakly preferential model with w 6= v.
There is a subtle difference in formal properties of both models. The standard
Google matrix, as proposed by Page et al. (1998) is such that w = v = en/n,
and the damping factor α = 0.85. In the sequel we will focus primarily on such
a matrix.

Note also that the matrix G is2: (a) irreducible, i.e. every page is directly
connected to every other page, (b) aperiodic, and (c) primitive, because gij > 0
for all i, j ∈ N . Thus, according to the Perron theorem, there exists the unique
and positive eigenvector r such that r′ = r′G, or equivalently r = G′r, with the
corresponding eigenvalue λ = 1 (consult Chapter 8 of Meyer, 2000, for details).
Moreover, λ = 1 is the dominating eigenvalue of G, i.e. |λi| < λ1 = 1 for
i = 2, . . . , n. Thus, r is the dominating eigenvector and normalized r is said to
be the PageRank. Treating G as the transition matrix of a Markov chain we
conclude that the PageRank is nothing but the stationary distribution of this
chain (see e.g. Section 8.4 of Meyer, 2000, for details).

1Note that if i is the dangling node, then out(i) = n.
2An unacquainted reader is referred to Langville and Meyer (2006a) or Meyer (2000) for

an explanation of these terms.
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3. Computing PageRank

In this section we briefly review basic methods used to compute the PageRank
vector.

3.1. Power method

It is the simplest and most popular method of computing the dominant eigen-
vector of the large sparse matrices, see e.g. Section 7.3 of Meyer (2000). Other
methods are described e.g. in Chapter 7 of Golub and van Loan (1996). It is an
iterative technique. The successive approximations r(k) are computed according
to the equation

r(k+1) = G′r(k), k = 0, 1, . . . (6)

and r(0) is a starting vector with positive entries, such that ‖r(0)‖ = 1. The
formula is valid, because in our case λ1 = 1. In general, the speed of convergence
is linear with coefficient proportional to (λ2/λ1), that is the method behaves
poorly when λ2 ≈ λ1. Fortunately, in the case of the Google matrix its second
eigenvalue does not exceed the damping factor, i.e. |λ2| ≤ α (Haveliwala and
Kamvar, 2003). This means that we can control the speed of convergence by
choosing the appropriate value of α.

3.1.1. Power method with the Google matrix

To take the advantage of sparsity of matrix H , rewrite the equation (6) as

r(k+1) = αH ′r(k) + αw
[
d′r(k)

]
+ (1 − α)v

[
e′nr

(k)
]
. (7)

The i-th component of r takes the form

r
(k+1)
i = α

∑n

j=1 hjir
(k)
j + αwi

∑
j∈D r

(k)
j + (1 − α)vi

= αs1 + αs2 + (1 − α)s3
(8)

where D is the set of dangling nodes. We see that the third summand must be
computed only once, the second component s2 is computed once for each cycle k,
and the first component must be computed for each element r(k+1)

i individually.
To get further simplification of the above formula, note two, almost obvious,
identities (Gleich and Zhukov, 2005):

e′nr
(k) = ‖r(k)‖

d′r(k) = ‖r(k)‖ − ‖H ′r(k)‖.
(9)

Substituting (9) into (7), noting that ‖r(k)‖ = 1 and making the generally used
assumption of v = w we obtain

r(k+1) = αH ′r(k) + v
[
1− α‖H ′r(k)‖

]
(10)

what justifies the Algorithm 1.



Accelerating PageRank computations 263

Algorithm 1 Computing PageRank by the power method

1: k = 0, r(k) = v, ǫ = 10−8

2: repeat

3: r(k+1) = αH ′r(k)

4: w = 1− ‖r(k+1)‖
5: r(k+1) = r(k+1) + wv
6: δ = ‖(k+1) − r(k)‖
7: k = k + 1
8: until δ < ǫ
9: return r(k+1)

The condition δ < ǫ in line 8 is a commonly used stopping criterion. Other
criteria are discussed in Subsection 3.1.2.

As H is sparse, the time and space complexity of the multiplication αH ′r(k)

can be reduced substantially by representing H as the product O−1A where O
is a diagonal matrix, such that o−1

ii = 1/out(i) if i is a nondangling node and
o−1
ii = 0 otherwise, see Langville and Meyer (2006a, p. 76). It suffices to store

the main diagonal of O only. That is, we need a real-valued vector deg with
n entries: deg(i) = o−1

ii . To avoid permanent multiplications by the damping
factor, we can set deg(i) = α · o−1

ii . Lastly, A can be stored, e.g., as a vector;
its i-th element is a list of integers representing the outgoing links. That is,
we need to store only nnz(A) integers, where nnz(A) stands for the number of
nonzero elements of A. Such a representation requires only n multiplications
and nnz(A) additions (instead of O(n2), required by a standard setting).

To be more concrete, assume that the matrix A is stored as a two-dimensional
array of integers with varying number of columns in each row. Java, for instance,
allows such a representation: int[][] A = new int[n][]. Also let deg be
defined as the array double[] deg = new double[n] with entries deg[i] =

α/A[i].length if A[i].length>0 and 0 otherwise. Now, the matrix-vector
multiplication y = A′r is implemented (in Java) as

for (int i=0; i<n; i++) {

double mult = r[i]*deg[i];

for (int j=0; j<A[i].length; j++) {

int k = A[i][j];

y[k] = y[k] + mult;

}

}

3.1.2. How many iterations?

PageRank values are used to order webpages. We say that the page pi precedes
page pj , iff ri ≥ rj . Formally, to obtain PageRank values with p significant
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digits we need (Stewart, 1994, p. 156)

kmax =

⌈
−p

log10 α

⌉
(11)

iterations. For instance, if α = 0.85 we need 15 iterations per digit. Usually
the power method halts if ‖r(k+1) − r(k)‖ < 10−p. Such a criterion allows for
reduction of the number of iterations, e.g. if p = 8 then kmax = 141, but using
the later criterion in case of stanford.edu dataset3 we need only 91 iterations.
Haveliwala (1999) noted also that the exact values of PageRank are not so
important as the correct ordering of the webpages assessed by this vector. On
some datasets as few as 10 iterations guarantee a good approximate ordering.

To illustrate this phenomenon consider the dataset stanford.dat. To com-
pare the approximated ordering with the exact one we used two measures based
on Kendall τ rank correlation, see Section 5.1 in Fogaras and Rácz (2004) and
Fagin et al. (2004) for review of other measures.

Let T (l) denote the set of pages with l highest PageRank values in vector r

and let T̂ (l) be the set of pages with l highest approximated PageRank values
in vector r̂ (returned, e.g., by the power method after k ≪ kmax iterations).
The relative aggregated goodness, RAG, introduced by Singitham et al. (2004),
measures how well the approximate top-l set performs in finding the set of pages
with high values of PageRank. It is defined as

RAG(l) =

∑
j∈T̂ (l)

rj
∑

j∈T (l) rj
. (12)

The second index measures the precision of returning the top-l set in classical
information retrieval terminology

Prec(l) =
1

l
|T̂ (l) ∩ T (l)|. (13)

Fig. 1 shows how well the set T̂ (l) approximates the exact set T (l) for differ-
ent values of l. To make the figure readable, we present the results for l ≤ 2000
only, but obviously, the two indices tend to 1 when l approaches n. The two
sets T̂ (l) were obtained by halting the power method after 10 and 15 iterations.
The exact set was obtained after kmax = 91 iterations. In this case the elapsed
time is 11.782 seconds. On the other hand, 15 iterations take only 2.078 sec-
onds. This shows that almost fivefold reduction of the time produces almost
satisfactory results.

Another interesting feature of the power method is observed when we analyze
the absolute error δj = |r̂j − rj | — see left Fig. 2. Here, both vectors are sorted

3It contains about 2.3 million links among 281903 pages. This dataset can be downloaded
from the webpage http://kamvar.org/personalized_search.
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Figure 1. Relative aggregated goodness (left) and precision (right) of returning
the top-l set for l = 100, 200, . . . , 2000. The approximate sets T̂ (l) were deduced
from the vectors r̂ obtained after k = 10 (marked with ∗) and k = 15 (marked
with ◦) iterations of the power method

in descending order imposed by the exact vector r. A lesson taken from this
picture is that the elements with smaller values of PageRank converge faster to
exact values than those corresponding to larger values. This observation gave an
impulse to the so-called adaptive methods, developed by Kamvar et al. (2004).
However, the experiments reported by Thorson (2004) show that the adaptive
method takes more iterations to converge to a fixed threshold. Good news is
that the average cost in computation time for each iteration of the adaptive
method is lower for large webs.

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Figure 2. Absolute error of PageRank vector approximation by the vector r̂
returned after 15 iterations of the power method (left) and Jacobi method (right)
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3.1.3. Some generalizations of PageRank

A vital problem when computing PageRank values is that of choosing appro-
priate value of the damping factor. If α = 0, then the link structure is totally
ignored and r becomes the uniform probability distribution (under standard
Google setting). On the other hand, if α → 1 then all the importance is as-
signed to few pages, forming so-called “rank sinks”. To avoid the problem of
choosing appropriate value of α, Boldi (2005) proposed the so-called TotalRank

T =

∫ 1

0

r(α)dα. (14)

A manageable formula for computing T refers to the Maclaurin expansion
of PageRank for a given value α

r(α) =

∞∑

k=0

∆k(α0)α
k = r(0)(α0) +

∞∑

k=1

∆k(α0)α
k (15)

where the coefficients ∆k = [r(k)(α0) − r(k−1)(α0)]/α
k
0 , ∆0 = r(0)(α0) = en/n,

are generated through successive iterations of the power method, and α0 < 1 is
a fixed (but arbitrary) value of the damping factor. With such a representation
we easily state that

T =
∞∑

k=0

∫ 1

0

∆k(α0)α
kdα =

∞∑

k=0

∆k(α0)

k + 1
. (16)

A possible application of the formula (15) is that we compute r(α0) first. If
α0 is close to zero, this takes few iterations only. Next, the values r(α) for the
appropriate value of the damping factor can be easily determined. In fact, all
these computations can be performed simultaneously with an extra vector to
accumulate total ranks. One should be cautious, however. Suppose that r(α)
is computed as the sum of K components of (15). Then, even if α0 = α, then
r(α) = r(K)(α). It means that the final Maclaurin series produces an error
even if α0 = α. However, PageRank approximations obtained in this way are
more accurate than obtained by lowered iterations of the power method. Fig. 3
illustrates this conjecture.

Note that with such a method the maximal absolute error is 0.000111 while
the approximation obtained by 20 iterations of the power method produces the
absolute error of 0.009607. Further, the first method requires almost the same
time (1797 ms) as the second (1610 ms).

The notion of TotalRank was further extended by Constantine and Gleich
(2009). They assumed that each user has his/her individual damping factor αi,
i.e. α can be modeled as a random variable A. Hence, the PageRank vector r(A)
is a random vector, and a new ranking measure RAPr (Random Alpha PageRank)
can be synthesized from its statistics. Particularly, if A is the uniform random
variable, then RAPr is identical with TotalRank.
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Figure 3. Precision of returning the top-l set for l = 200, 400, . . . , 10000. Left:
PageRank values are approximated by the Laurent series of the 20th order.
Right: PageRank values produced after 20 iterations of the power method.

3.2. Linear algebra

Langville and Meyer (2006a) show in Section 7.3 of their monograph that solving
the linear system

(In − αH ′)x = v (17)

and letting r = x/‖x‖ produces the PageRank vector. A similar result was
proven by DelCorso et al. (2005).

Such a result offers another interpretation for the PageRank. To answer the
question of existence of x when solving (17) we should note that the matrix
M = (In−αH ′) is strictly diagonally dominant4, i.e. |mii| >

∑
j 6=i |aij | for each

row i. Thus, it is nonsingular.
Interestingly, for small problems the direct method (17) is much faster than

the power method. Hence, there is hope that by introducing smart represen-
tation and using a “good” iterative method it is possible to obtain satisfactory
results for even larger problems. Other methods of potential use in finding the
dominating eigenvector of a stochastic matrix are reviewed by Stewart (1994).

3.2.1. PageRank problem as the sum of geometric series

Noting that the inverse of (In − αH ′) can be computed as the Neumann series,
see e.g. Meyer (2000) p. 126, equation (17) can be rewritten in the form

x = (In − αH ′)−1v =
∞∑

j=0

[
αk(H ′)k

]
v. (18)

As (αH ′)kv = (αH ′) · [(αH ′)k−1v], k ≥ 1, we obtain a simple algorithm of
computing the PageRank

4Consult examples 4.3.3 and 7.1.6 in Meyer (2000) for a deeper discussion of this notion.
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Algorithm 2 Computing PageRank as a sum of the power series
1: q = v, x = v
2: for i = 1 to kmax do

3: x = (αH ′)x
4: q = q + x
5: end for

6: return r = q/‖q‖

Chung (2007) treats (18) as the definition of PageRank and introduces “im-
proved” definition of a heat kernel pagerank

ρ = e−t

∞∑

k=0

tk

k!
(H ′)kv (19)

where t > 0 is a parameter (temperature). With this concept he introduces
then a graph partitioning algorithm for which the running time is proportional
to the size of the targeted volume (and not to the size of the whole graph).

3.2.2. PageRank problem as a linear system

Rewriting equation (17) as r = αH ′r + v we reformulate PageRank problem as
that of solving a set of linear equations. The condition number of matrix M (in
L1 norm) is κ1(M) ≤ (1+α)/(1−α); this inequality is strict iff from each node
there is a direct path to a dangling node – consult Section 4 in DelCorso et al.
(2005) for a rigorous proof of these statements. This shows that (17) becomes
“harder” when α → 1.

As matrix M is very large and sparse, again iterative techniques are of
primary interest. Generally, we distinguish between older and simpler stationary
iterative methods, like Jacobi or Gauss-Seidel methods, and much efficient but
more complicated non-stationary methods – consult Barrett et al. (1994) for
a comprehensive review. Gleich and Zhukov (2005) state that when choosing
an appropriate technique we should consider if it works with nonsymmetric
matrices and how easily parallelizable it is.

Recent experiments with parallel PageRank computations show that “al-
though the nonstationary methods have the highest average convergence rate
and fastest convergence by number of iterations, on some graphs, the actual run
time can be longer than the run time for simple power iterations” (Gleich and
Zhukov, 2005, Sect. 5). In general, the convergence of nonstationary methods
strongly depends on the Web graph structure and is non-monotonic. On the
other hand the power and Jacobi methods have approximately the same rate
and the most stable convergence pattern (Gleich and Zhukov, 2005).

Thus, of the stationary methods, Jacobi iterations are most frequently used.
The method is simple in implementation and easy parallelizable. If the diagonal
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elements of matrix H are equal zero5, it takes very attractive form shown in
Algorithm 3. Here the fast method of matrix-vector multiplication from section
3.1.1 can be used again.

Algorithm 3 Computing PageRank by the Jacobi method

1: k = 0, x = v, ǫ = 10−8

2: repeat

3: y = αH ′x+ v
4: δ = ‖y − x‖
5: x = y
6: k = k + 1
7: until δ < ǫ
8: return r = x/‖x‖

Like the power method it quickly converges to correct values – see the right
Fig. 2, although absolute error (in case of stanford.dat dataset) is slightly
larger. While with power method it varies in the range [8.1854 · 10−9, 9.2394 ·
10−5], now it belongs to the interval [8.6370 · 10−8, 2.7194 · 10−4]. However,
comparing both pictures we see that the absolute error vanishes “smoother” in
the case of Jacobi iterations than in the case of power iterations.

Further acceleration of the Jacobi method is possible by lumping dangling
nodes. Kamvar et al. (2003) observed that, e.g., a sample of the Web contain-
ing 290 million pages had only 70 million nondangling nodes. Thus, a smart
decomposition of H (equivalently of A) allows further saving of computations.

Namely, let ND = N\D denote the set of nondangling nodes and let us
permute the rows and columns of H so that the rows corresponding to dangling
nodes are at the bottom of the matrix

H =

[
H11 H12

0 0

]
. (20)

Here the square matrix H11 of size m = |ND| describes connections among
nondagling nodes while rectangular matrix H12 of size m × (n−m) contains
the links from nondangling to dangling nodes. Similarly, the personalization
vector v is partitioned into nondangling (v1) and dangling (v2) sections. Now to
find r we must solve the equation, see Langville and Meyer (2006a, Sect. 8.4)

(In − αH ′
11)x1 = v1 (21)

and compute the vector

x2 = αH ′
12x1 + v2. (22)

By concatenating x1 and x2 into a single vector x we compute r = r/‖x‖.

5This is not so strange a requirement as self-references are removed before matrix H is
formed.
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3.3. Monte Carlo methods

Let us rewrite the formula (7) as

π = (1− α)ve′n(In − αH) (23)

with π being the stationary distribution, i.e. π = x(k) for all k ≥ K, where K
is a sufficiently large number. This formula suggests a simple way of sampling
from PageRank distribution (Avrachenkov et al., 2007). Namely, we construct
a random walk (r.w. for brevity) {X}t≥0 that starts from a randomly chosen
page. At each step the r.w. terminates with probability (1−α), and makes a
transition according to the matrix S with probability α. The end-point of such
r.w. has the distribution π.

Careful analysis of such a simple procedure led the authors referred to, to
further simplifications. First, to reduce the unnecessary randomness in experi-
ments, each r.w. starts m times from each page. That is, we perform N = mn
random walks. Second, to extract full information from all the experiments, πj

is defined as the total number of visits to page j (ηj) multiplied by (1 − α)/N .
Third, when an r.w. reaches a dangling node it jumps with the uniform (in
standard model) probability to an arbitrary node. Thus, it is more efficient to
terminate the r.w. in such a case. That is, the r.w. is governed by the H matrix
and not by the S matrix.

Let {Yt}t≥0 stand for such a random walk. It can be terminated at each step
either with probability (1−α) or when it reaches a dangling node. This leads
to Algorithm 4. It counts the number of total visits and the number of visits at
each node.

To verify the properties of such an algorithm we simulated m = 4 cycles with
matrix H specified by the stanford.dat dataset. Fig. 4 presents the values of
RAG(l) and Prec(l) computed for l = 10, 20, . . . , 1000 after four cycles of the
Monte Carlo algorithm. As both indices are almost equal 1 for l ≤ 200, we can
say that even small number of Monte Carlo runs allows for quite exact ordering
of the top-l items, with l of reasonable amplitude. This hypothesis was first
stated by Avrachenkov et al. (2007).

4. Parallelization

Gleich and Zhukov (2005) experimented with both stationary and nonstation-
ary methods. They compared two classical algorithms, i.e. power and Jacobi
iterations with few nonstandard methods, particularly with BiCGSTAB (Bicon-
jugate Gradient Stabilized) and GMRES (Generalized Minimum Residual). In
summary they state that their parallel implementation was able to compute the
PageRank vector for a 1.5 billion node Web graph on a distributed memory 140
processor RLX cluster in less than 6 minutes.

In this section we briefly describe another idea of parallelization developed
within the “cloud computing” formalism.
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Algorithm 4 Computing PageRank by the Monte Carlo method
1: visited = 0, total = 0
2: for i = 1 to m do

3: for j = 1 to n do

4: current = i
5: done = false
6: while (not done) do

7: visited[current] + +
8: total ++
9: if ((random() < 1− α) or (deg[current] = 0)) then

10: done = true
11: else

12: choose new node w among the nodes pointed by current node and
set current = w

13: end if

14: end while

15: end for

16: end for

17: return r = visited/total
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Figure 4. Relative aggregated goodness (left) and precision (right) of returning
the top-l set for l = 10, 20, . . . , 1000. The approximate sets T̂ (l) were deduced
from the vectors r̂ obtained after four cycles of the Monte Carlo simulations

4.1. MapReduce

As stated by its inventors, Dean and Ghemawat (2008), “MapReduce is a pro-
gramming model and an associated implementation for processing and generat-
ing large data sets. Users specify a map function that processes a key/value pair
to generate a set of intermediate key/value pairs, and a reduce function that
merges all intermediate values associated with the same intermediate key”.
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The “mapper” and “reducer” can be described symbolically as follows:

map: <k1, v1> → [<k2, v2>]
reduce: <k2, [v2]>] → [<k3, v3>]

Here <k1, v1> denotes the key-value pair and [·] indicates a list of elements.
A real advantage of MapReduce implementation is that a programmer writes

only these functions and he/she does not worry about system-level issues such
as synchronization, data exchange or fault tolerance.

Hadoop (Lam and Warren, 2009) is an open source implementation (available
from http://hadoop.apache.org) of this methodology.

4.2. Computing PageRank with MapReduce

To implement Algorithm 1 in the MapReduce formalism, we must apply a double
set of map-reduce functions. The first pair realizes matrix-vector multiplication
as described in Subsection 3.1.1. First, knowing webpage identifier i, its current
PageRank ri, and the list of outlinks Ai, the mapper returns the set of pairs
<j,wj>, where j is a page linked from i and wi = ri/oi, with oi being the
length of Ai.

map:<i; (ri, Ai)> → [<j, ri/oi>]

Now the reducer aggregates partial information

reduce:<j, [ρi])> → <j,
∑

i

ρi>

The second pair finishes the job, i.e. the pairs <j,
∑

i ρi> are transmitted by
the mapper to the reducer that computes their sum (i.e. finds the norm used in
line 4 of Algorithm 1 and returns the pairs <i, ri> computed according to the
line 5 of this algorithm).

In a similar fashion we can implement two other algorithms.

5. Final remarks

Various methods of computing PageRank values were discussed in this paper.
Interestingly, using the power method or Jacobi iterations small PageRank val-
ues converge faster than high values. On the contrary, when using Monte Carlo
sampling an opposite phenomenon can be observed. Thus, a smart combina-
tion of these two approaches can produce satisfactory results with rather small
number of computations.

Unfortunately, the power method is almost insensitive to the initial vector.
In other words, improving vector r obtained after a small cycles of Monte Carlo
simulations takes almost the same time as starting the power method from an
arbitrary vector r(0).

Hopefully, approximating PageRank by the Maclaurin series (15) offers a
substantial time reduction.
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