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Abstract: The quality of any classifier depends on a number
of factors, including the quality of training data. In real-world sce-
narios, data are often noisy. One reason for noisy data (erroneous
values) is in the representation language, insufficient to model dif-
ferent levels of knowledge granularity. In this paper, to address the
problem of such description noise, we propose a novel extension of
the naive Bayesian classifier by an attribute value ontology (AVO).
In the proposed approach, every attribute is a hierarchy of concepts
from the domain knowledge base. In this way an example is de-
scribed either very precisely (using a concept from the low-level of
the hierarchy) or, when it is not possible, in a more general way (us-
ing a concept from higher levels of the hierarchy). Our general strat-
egy is to classify a new example using training examples described
in the same way or more precisely at lower levels of knowledge gran-
ularity. Hence, the hierarchy introduces a bias which in effect can
contribute to improvement of a classification.

Keywords: imprecise descriptions, attribute noise, ontology,
naive Bayesian classifier.

1. Introduction

The ability to learn is a very important feature of intelligent behavior, so any
attempt to understand intelligence has to include the understanding of learning.
A dictionary definition of learning includes phrases such as "to obtain knowledge
of facts, or of how to do things, or an understanding of ideas". Obviously, the
ability to learn is considered as a feature of any intelligent system and as such
belongs to the most challenging research areas in artificial intelligence. Learning
that can be realised with machines to improve their performance is usually
referred to as 'machine learning’. In this paper we concentrate on supervised
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learning which consists in inferring a model from supervised training data. This
model should predict the correct output value for any valid input data. This
requires the learning algorithm to generalize from the training data (training
examples) to previously unobserved situations (testing examples). Training and
testing examples are described in a representation language. The description
often has the form of a simple attribute-value formalism. Moreover, the class
label is assigned to each training example.

One of the tasks in supervised machine learning is classification. Classifica-
tion is the process of predicting categorical (discrete, unordered) classes (class
labels) and the derived model may be represented, e.g. in the form of rules,
decision trees, mathematical formulae or neural networks. Moreover, the clas-
sification methods that can be used include: Bayesian classifier, support vector
machines or k-nearest neighbours algorithms (Han and Kamber, 2006). A clas-
sical example of the classification task is to derive a medical diagnosis from
symptoms, where diseases stand for class labels.

The predictive accuracy of classifiers (the accuracy of classifying objects
other than those in the training set) is determined by the following factors
(Zhu and Wu, 2004): inductive bias of the learning algorithm and quality of
training data. Given a specific learning algorithm it is obvious that its predictive
accuracy depends on the quality of training data. The quality of training data
is determined by two factors: internal (the selection of attributes and the class)
and external (errors introduced into a dataset) (Zhu and Wu, 2004). Two types
of errors occurring in a dataset are distinguished (Quinlan, 1986): erroneous
attribute values and misclassified objects. Non-systematic errors of these kinds
are usually called noise (Quinlan, 1986). Consequently, noise can decrease the
classifier performance in terms of the predictive accuracy of a classifier, time of
building a classifier and the size of a classifier (Zhu and Wu, 2004).

In order to increase the predictive accuracy of a classifier many possible solu-
tions for data preprocessing or noise handling have been proposed. For example,
predictive accuracy can be enhanced by the following procedures: elimination
of noisy examples, predicting unknown or missing attribute values or correcting
attribute or class values. Although all these approaches seem very different,
they try to somehow ’clean’ this noisy training data.

In this paper, we propose an approach that 'prevents’ from introducing noise.
Firstly, we show how to handle (prevent from introducing) some type of noise (we
call it description noise) in order to reduce the amount of erroneous or missing
attribute values. To that end, we use levels of knowledge granularity modeled
by an attribute value ontology (AVO). This AVO is used to handle descriptions
of training and testing examples. Secondly, we demonstrate how to use AVO in
the naive Bayesian classifier. The general strategy is to classify a new example
using training examples described in the same way or more precisely at lower
levels of knowledge granularity. Our strategy is the generalization of a classical
approach, where a new example is classified using training examples described
by the same specific attribute value.
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The main contributions of the paper are the following:
e introduction of the concept of description noise,

e a method of description noise handling by AVO,

e an extension of the naive Bayesian classifier by AVO.

The rest of the paper is organized as follows. In Section 2 we shortly present
some known approaches to the generalization of attribute values in data mining.
In Section 3 the problem of noise in machine learning is discussed. In Section 4
we introduce the concept of description noise. In Section 5 we define the at-
tribute value ontology and propose a method of description noise handling using
this ontology. In Section 6 we propose a novel extension of the naive Bayesian
classifier by AVO. In Section 7 we conclude and show the possibilities of further
work.

2. Generalization of attribute values

Data mining with background knowledge has been extensively studied in the
past. One of the aspects of background knowledge are relations between the at-
tribute values. Generalization of attribute values is the simplest relation consid-
ered in this context. It allows for obtaining abstract concepts as generalizations
of the primitive ones. Background knowledge used in this approach has the
form of taxonomies, categories or more general relationships between concepts.
Abstract concepts are used in the data mining tasks in various ways.

Compactness and generality of results In the early approaches general-
ization was carried out in order to get more compact and more general data
mining results. Two groups of methods may be distinguished along this line.
The first group consists of methods where abstract concepts replace the data
values in the original database before applying the core data mining algorithm.
This approach is used, for example, in: Walker (1980), Han et al. (1992) and
Kudoh et al. (2003). In the methods of the second group generalization is inte-
grated with the data mining algorithm. In particular, this approach was applied
in: Nufiez (1991), Almuallim et al. (1996), Tanaka (1996), Taylor et al. (1997).

In Nifiez (1991) an algorithm EG2 (Economic Generalizer 2) was proposed
to build a decision tree. The background knowledge contains ISA hierarchies
of attribute values. At each node of the decision tree, this algorithm builds a
union of abstract values and primitive values. In Almuallim et al. (1996) an
algorithm was proposed to find a multiple-split test on hierarchical attributes
(ISA hierarchies) in decision tree learning. The proposed multiple-split test is
a cut through a hierarchy, which maximizes the gain-ratio measure (the idea of
cut was proposed in Haussler, 1988). The cut through a hierarchy allows to use
concepts at multiple levels of generalization. The number of possible cuts (split
tests) grows exponentially in the number of leaves of the hierarchy. However, it
turns out that this task is very similar to the task of decision tree pruning and
this allows to employ a decision tree pruning technique introduced in Breiman et
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al. (1984). In Tanaka (1996) a very similar approach was proposed to build deci-
sion trees using structured attributes (ISA hierarchies), called LASA (Learning
Algorithm with Structured Attributes). This approach defines the unique and
complete cover node set which corresponds to the cut through the hierarchy.
A measure of generalization goodness was proposed, which takes into account
two mutually conflicting factors: a generalization level and a penalty for the
induced errors. An algorithm to find optimum generalization that transforms
the original problem to the shortest path problem, was also proposed. A simple
experiment showed that the classification results of the proposed approach are
better than a standard approach in terms of classification accuracy. Taylor et
al. (1997) applied a tool ParkaDB to integrate databases and ontologies in order
to generate classification rules based on generalized concepts from an ontology.
The level of the generalization is determined by gathering frequency counts and
evaluating the so called strong indicators for class membership.

Handling imprecise descriptions A more recent approach is to use abstract
attribute values in order to represent real objects that cannot be precisely de-
scribed by the available primitive values. The use of taxonomies (Attribute Value
Taxonomies) in the decision tree learning (AVT-DTL) and the naive Bayesian
classifier (AVT-NBL) is presented, respectively in Zhang et al. (2002, 2006).
AVT-DTL and AVT-NBL, to the best of our knowledge, are the only exist-
ing approaches for learning classifiers from imprecisely described instances and
classifying imprecisely described instances.

AVT-DTL and AVT-NBL use a ’cut’ through a hierarchy of concepts. When
training instances have abstract values "below’ the cut through a taxonomy, their
class counts are aggregated upwards and stored in abstract values of the cut.
When training examples are ’above’ the cut through a taxonomy, their class
counts have to be propagated to their descendants in the cut, proportionally.

Our approach (AVO) is an improvement over the AVT-NBL in three direc-
tions. Firstly, AVT-NBL uses a ’cut’ through a taxonomy. The use of such
a 'cut’ was required in AVT-DTL in order to define split tests. However, this
‘cut’ is not required in the naive Bayesian classifier. The use of this ’cut’ in
AVT-NBL is a tradeoff between the complexity and accuracy of the classifier
Zhang et al. (2006). Secondly, the use of taxonomies may not allow to represent
all the necessary abstract concepts. This problem is discussed in the paper. We
show that AVO enables using any abstract concept. Thirdly, the semantics of
AVO allows to classify a new example not only by ’positive’ observations, but
also using ’negative’ observations. All these improvements can contribute to
improvement of a classification.

3. Noise in machine learning

According to Hickey (1996) there are three major sources of noise:

e insufficiency of the description of the training examples,
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e corruption of attribute values in the training examples,

e erroneous classification of the training examples.

Consequently, the definition of noise proposed in Hickey (1996) is the follow-
ing: in learning from examples, noise is "anything which obscures the relation-
ship between description and class". However, for real-world data it is difficult
to quantitatively characterize the sufficiency of the description of examples. In
consequence, only the latter two sources of noise are usually considered and
so the following two types of noise are distinguished: attribute noise and class
noise (Zhu and Wu, 2004).

Noise in databases occurs in various forms, for example (Wu, 1995):

e Erroneous attribute values. Some data in the training set are distorted
for some reasons.

e Missing attribute values or Don’t Know values. A Don’t Know value may
take any value in its attribute domain.

e Incomplete attributes. When the discriminant attributes are not available,
a learning algorithm must use other features that may not be sufficient.

e Don’t Care values. Don’t Care values should not be viewed as noise.
However, if an example with such a value is converted into a number of
equivalent examples that have no Don’t Care value, and the expanded
examples contradict other examples in the training set, we say that Don’t
Care values generate noise.

e Misclassifications. An example is labeled with a wrong class label.

e Contradictory examples. The same example appears more than once in
the training data and is labeled with different classifications at different
times.

e Uneven distribution of training examples in the example space.

e Redundant data. In addition to increasing the computational complexity,
redundant data may become contradictory examples if multiple copies of
the same example are assigned to different classes.

There are several possible solutions for dealing with the existence of noise.
The noise handling process can be carried out at different stages of inductive
learning and can be classified as follows (Wu, 1995):

e preprocessing of the training examples,
e handling the noise during the induction process,
e postprocessing of the results.

Detailed description of the noise handling approaches is out of the scope of
the paper. An extensive survey of such methods can be found, for example, in
Zhu and Wu (2004).
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4. Description noise

The first source of noise, i.e. insufficiency of the description of the training ex-
amples, although not easily quantifiable, is important. We also consider insuf-
ficiency of the description of the testing examples. In this section we introduce
the concept of the description noise. Further, we propose an approach to handle
this type of noise.

4.1. The concept of description noise

Let us call the noise following from insufficient description of the training and
testing examples description noise. Observe that it may affect the attribute
values as well as the class labels. In the paper we consider the problem of
attribute values only.

Following Clark and Niblett (1987) the main source for description noise
may be the language used to represent the attribute values, which is not ex-
pressive enough to model different levels of knowledge granularity. In such a
case, erroneous attribute values and missing attribute values may be introduced
by users that are required to provide very specific values, but the level of their
knowledge of the domain is too general to precisely describe the observation by
the appropriate value of an attribute. Even if the person is an expert in the
domain, erroneous or missing attribute values can be observed as a consequence
of lack of time or other resources necessary to make detailed observations (i.e.
a more specific description).

Observe that if the language enabled modeling different levels of knowledge
granularity (precise descriptions and imprecise descriptions), we would be able
to reduce the number of erroneous or missing attribute values.

4.2. Handling the description noise

In our work we propose to handle the description noise of a given attribute
by introducing the levels of knowledge granularity. The levels of knowledge
granularity should reflect the domain knowledge and can not be constructed
arbitrarily. Let us notice that in some domains, hierarchical relationships be-
tween concepts may be observed and this knowledge could be explored. Such
knowledge is often available in the form of ontologies. Thus, the precise and
imprecise descriptions for a given attribute A, are represented by a hierarchical
structure, called the Attribute Value Ontology (AVO). We assume that precise
descriptions (specific values) are represented by primitive concepts while impre-
cise descriptions are represented by abstract concepts.

Before we formally define the attribute value ontology, we show a demon-
strative example of a hierarchy of concepts.

EXAMPLE 1 Let us consider the following medical problem. In order to deter-
mine the correct treatment, an agent that caused the infection needs to be spe-
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Infectious Agent

Virus

Bacteria

Gram-negative
Bacteria
Salmonella

Figure 1. Example of an attribute value ontology

Gram-positive
Bacteria

( Streptococcous ) ( E.Coli )

cifted. Specific values of this attribute are the following Streptococcus, E.Coli,
Salmonella, Fungi, Virus. An AVO describing the domain of infectious agents is
presented in Fig. 1. Description noise is handled by a hierarchy of primitive and
abstract concepts. Primitive concepts are the following: Streptococcus, E.Coli,
Salmonella, Fungi, Virus. Abstract concepts are the following: Infectious Agent,
Bacteria, Gram-positive Bacteria, Gram-negative Bacteria.

Let us observe that Streptococcus is not the only Gram-positive Bacteria in
the real world, and our hierarchy, for some reasons, does not contain concepts of
other Gram-positive Bacteria. Therefore, the concept of Gram-positive Bacteria
should be correctly interpreted as: Streptococcus or other of Gram-positive Bac-
teria. Similarly, the concept of Gram-negative Bacteria should be interpreted
as: E.Coli or Salmonella or other Gram-negative Bacteria. It is easy to observe
that we cannot represent any Gram-positive Bacteria other than Streptococcus
using the specific values only. This example illustrates the fact that a language
containing the specific values only suffers from the description noise.

5. Attribute value ontology in description noise handling

To handle the description noise we use ontology. In this section we formally
define the attribute value ontology (AVO) and the partitioning attribute value
ontology (PAVO). Further, we show how precise and imprecise descriptions are
associated to concepts of PAVO.

5.1. Attribute value ontology

Given is an attribute A and set V' = {v1, v, ..., o5}, n > 1, of specific values of
this attribute. Let us assume also that given is an ontology, which represents
domain knowledge. In particular, it expresses a multilevel subsumption ("is-a”)
hierarchy of concepts representing the precise and imprecise descriptions. We
define an attribute value ontology (AVO) A as follows:
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DEFINITION 1 An Attribute Value Ontology (AVO) A is a directed acyclic graph
(C,R), where: C is a set of concepts (primitive and abstract ones), R is a
subsumption relation over C, subset C¥' C C of concepts without predecessors
s a finite set of primitive concepts of A.

Further in this paper we use an AVO with the following properties: each
concept ¢; € C represents a non-empty subset of V', and a hierarchy of concepts
represents a hierarchical partitioning of set V. We call an AVO with the above
properties a partitioning attribute value ontology (PAVO).

DEFINITION 2 A Partitioning Attribute Value Ontology (PAVO) P is an at-
tribute value ontology A, such that:

o P is a tree.

o In the set of concepts we distinguish a root, a set CT of primitive concepts
and a set C4 = C \ (CT Uroot) of abstract concepts.

e The root represents set V.

e Each primitive concept c; € CT represents a value v; € V.

e Each abstract concept c; € C4 represents a proper, non-empty subset V;
of set V.

e For each concept ¢, € ({root} U C#) all its children are pairwise disjoint
and ¢y, is a union of its children (hierarchical partitioning of set V).

e For each pair of concepts (¢;,c;) € R we have V; # Vj.

Let us notice that the definition of PAVO allows to form different hierarchies
that are a hierarchical partitioning of a given set V. For example, for the set
V={v1, v2,v3,v4, 5} two (but not all) examples of PAVO are presented in Figs. 2
and 3. Each concept is labeled with the set V; C V represented by this concept.
PAVO without abstract concepts is called a flat PAVO. A PAVO with abstract
concepts is called a complex PAVO.

5.2. Association of descriptions to concepts of PAVO

We assume that each training and testing example is described by a non-empty
set Z; such that Z; C V and V is the set of specific values of an attribute A. For
|Z1] = 1 a description is the precise description and for |Z;| > 1 a description
is the imprecise description. Moreover, we assume that the association of a
description to a concept ¢; changes the semantics of the original description
into a set V; C V represented by c;.

DEFINITION 3 A corresponding concept ¢; for a given description Z; is a con-
cept ¢c; € C such that Z; = ¢;.

We can observe that all the precise descriptions have corresponding con-
cepts in each PAVO. However, not the all imprecise descriptions have corre-
sponding concepts in a given PAVO. Let us consider the PAVO presented in



Handling the description noise using an attribute value ontology 283

{’01,112,’1)3,’04,1)5}

Figure 2. Example of a flat PAVO

{’1)1,1/2,’[)3,’[)4,1)5}

{'USa Vg, US}

Figure 3. Example of a complex PAVO

Fig. 3. The following imprecise descriptions have the corresponding concepts
only: {v1,va,v3,v4,05}, {v3,04,05} and {vy, vs}.

Descriptions with the corresponding concepts in a given PAVO are associated
to these concepts. However, the association of descriptions without correspond-
ing concepts in a PAVO is not a trivial task and is analyzed later in this section.

For a given concept ¢; in a PAVO, all concepts that are more specific than the
concept ¢; are the descendants of this concept ¢;. The association of descriptions
to corresponding concepts inherits this property.

REMARK 1 For a given new example, whose description is associated to a cor-
responding concept c;, all the training examples described by this concept c; or
described more precisely have descriptions, which are associated to this concept
c; or its descendants.

EXAMPLE 2 Given is an attribute A such that there V ={vy,v9,v3,04,05}. Let
us assume, that there are the following descriptions Z; = {vs,v4,v5} and Zy =
{vq, vs}, where Z1 is a description of a testing example and Zs is a description of
a training example. We create a PAVO with two abstract concepts representing
the sets Z1 and Zs, respectively. Therefore, sets Z1 and Zo have corresponding
concepts and are associated to these concepts. The resulting PAVO is presented
in Fig. 4. As we can see, for a testing example Z1 associated to a corresponding
concept, all the training examples described by this concept or described more
precisely are associated to this concept or its descendants.

However, the association of descriptions to not corresponding concepts cor-
rupts these descriptions. Let us associate a description Z; to a concept ¢; such
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{v1,v2,v3,v4,v5}

{v3,va,v5}
Z1 = {v3,va,vs5}

{va,v5}
Z3 = {va,vs}

Figure 4. Association of descriptions to corresponding concepts
[ {v1,v2,v3, v, 05 } ]
Zs = {v1,v2,v5}
m (=) [ Gorply |

Figure 5. Association of descriptions to not corresponding concepts

that Z; C ¢;. In such a case, we increase (generalize) the level of knowledge
granularity of this description and we may corrupt the classification results.

EXAMPLE 3 We use the PAVO from the previous example. Let us assume
that descriptions, that have not corresponding concepts, are represented by sets
Z3 = {v1,va,v5} and Zy = {vs,vs}. Let us associate the description Zs
to the root (Z3 C root) and the description Zy to the concept {vs,vs,vs}
(Zy C {vs,vq,v5}). The resulting PAVO is presented in Fig. 5. We can ob-
serve that we increase the level of knowledge granularity of both descriptions.
Let us notice that the associated description Z4 is a descendant of the associated
description Zs. However, the original description Z4 is not more precisely de-
scribed than the original description Z3. The use of such a PAVO may corrupt
the classification results: classification of Z3 using Z, would be corrupted.

Concluding, we are allowed to associate descriptions to corresponding nodes
only. Descriptions without corresponding nodes in PAVO should not be used
in the classification process, these descriptions may corrupt the classification
results. The problem of descriptions without corresponding nodes can be solved
by using an AVO with all possible primitive and abstracts concepts. An example
of such AVO is presented in Fig. 6. We may notice that such an AVO may be
always reduced to an AVO that uses all the necessary primitive and abstract
concepts only.
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Figure 6. AVO representing all concepts (V' = {v1,v2,v3})

6. Extending naive Bayesian classifier by PAVO

Using PAVO we are able to represent training and testing examples with precise
and imprecise descriptions. In this section we show how to extend the naive
Bayesian classifier (using PAVO) according to our general strategy: to classify
a new example using training examples described in the same way or more
precisely at lower levels of knowledge granularity.

6.1. Naive Bayesian classifier

The most straightforward and widely tested method for probabilistic induc-
tion is known as the naive Bayesian classifier. Despite its simplicity and the
strong conditional independence assumptions it relies upon, the naive Bayesian
classifier often performs remarkably well, competitively with other well-known
induction techniques such as decision trees and neural networks. The naive
Bayesian classifier is often used for classification problems, in which a learner
attempts to construct a classifier from a given set T of training examples with
class labels.

Assume that given is a set of n attributes Ay, As, ..., A,. A (training or test-
ing) example is represented by a vector (vi,vs,...,v,), where v; is the specific
value of A;. Let C represent the class variable and C; represent the value it
takes (a class label).

The Bayesian classifier (and also the naive Bayesian classifier) is a classifi-
cation method, which classifies a new observation I by selecting the class C;
with the largest posterior probability P(C;|E), as indicated below:

P(C;)P(E|C;)

P(GIE) = ==

(1)
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P(E) is ignored, since it is the same for all classes, and does not affect the
relative values of their probabilities:

P(Cj|E) o< P(C5)P(E|C;) - (2)
Since F is a composition of n discrete values, one can expand this expression:
P(Cj|1)1,’02,...,’0n) O(P(Oj)P(Ul,’UQ,...,’Un|Cj) . (3)

where P(v1, v, ..., v,|C;) is the conditional probability of the example E given
the class Cj; P(C};) is the prior probability that one will observe class C;. All
these parameters are estimated from the training set. However, direct applica-
tion of these rules is difficult due to lack of sufficient data in the training set to
reliably obtain all the probabilities needed by the model. The naive Bayesian
classifier assumes that the attributes are conditionally independent given the
class variable, which gives us:

P(Cj|v1,vg,...,vn) O(P(CJ)HP(U1|C]) . (4)

P(v;|C;) is the probability of an instance of class C; having the observed
attribute A; value v;. The probabilities in the above formula must be estimated
from training examples, e.g. using relative frequency:

nj

P(Cy) =— P(u|C)) =

s
— (5)
nj

where n is the number of training examples, n; is the number of training exam-
ples with class label C;, n;; is the number of training examples with the value
of the attribute A; = v; and class label Cj.

6.2. Inference with ontological attributes

In the classification without abstract values, the naive Bayesian classifier needs
to estimate the value P(v;|C;). In the proposed approach with abstract values,
the naive Bayesian classifier needs to be generalized to estimate P(c;|C;), where
¢; is a primitive or an abstract concept of A;. Let us remind that for a given
concept ¢; in a PAVO, all concepts that are more specific than the concept
¢; are the descendants of this concept ¢;. The association of descriptions to
corresponding concepts in a PAVO inherits this property (Remark 1). In order
to estimate this probability, e.g. by relative frequency, we use this property:
Plafcy) = Zeslediene) M (6)

nj

where n; is the number of training examples with class label C;, ny; is the
number of training examples with the value of the attribute A; = ¢; and class
label Cj}, desc(c;) is the set of concepts that are descendants of the concept c;.
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The proposed approach is a generalization of the classical approach (without
abstract concepts). In the classical approach, specific attribute values can be
interpreted as a single level of knowledge granularity, and a new example is
classified using training examples described by the same specific attribute value
only. In the proposed approach, each descendant of a given concept ’is’ this
concept. Therefore, in the classification of a new example described by a concept
¢; we use also all training examples described by descendants of ¢;.

6.3. Illustrative example

Let us consider the medical problem presented in Example 1. In order to de-
termine the correct treatment, an agent that caused the infection needs to be
specified. However, an ontological attribute describing the domain of infectious
agents presented in Fig. 1 is not a PAVO. The concept of Gram-positive Bacte-
ria is more general than the concept of Streptococcus, yet both of these would
be described by the same subset of specific values: Streptococcus. Therefore,
we introduce a new specific value Other to make a clear difference between the
concepts of Gram-positive Bacteria and Streptococcus. The resulting PAVO is
presented in Fig. 7

The training data is given in Table 1. For the simplicity of presentation we
consider only one ontological attribute. Therefore, all the cases with the same
description of the infectious agent attribute are aggregated and the number of
examples for each description is also given in Table 1.

All the descriptions have corresponding concepts, therefore all the training
examples are used in the classification process. These associations are also pre-
sented in Fig. 7. For each concept we present the number of instances associated
to this concept for each class. For example, the concept of Bacteria represents
6 instances with the class label C; and 7 instances with class label C5. Each
class is described exactly by the same number of instances, therefore the prior
probability that one will observe class C; is equal to 0.5 for C; and Cs.

Infectious Agent = Bacteria Let us consider the following scenario: there
is a patient and the diagnosis is Bacteria. We estimate the posterior probability
P(Cj|Bacteria). Therefore, we concentrate on these instances that are associ-
ated to the node Bacteria or its descendants. This fragment of our PAVO is
presented in Fig. 8. From Equation 6 we have:
6+3+1
0
From Equation 4 we have:

P(Cy|Bacteria) x 0.5%1=0.5 P(Cs|Bacteria) x 0.5 %1 = 0.5.

T+2+1

P(Bacteria|Cy) = 10

1 P(Bacteria|Cs) = 1.

As we can see, both class labels are equally probable. Therefore, we need to
conduct a medical diagnosis test to know what kind of Bacteria is the infectious
agent: Gram-positive or Gram-negative.
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Table 1. A medical diagnosis training data

Number of instances | Infectious Agent Class
6 Bacteria Cl1
3 Gram-positive Bacteria Cl1
1 Gram-negative Bacteria C1
7 Bacteria C2
1 Streptococcus C2
2 Gram-negative Bacteria C2

Infectious Agent

Bacteria
IC1] =6, |C2| =7

AN

Gram-positive Gram-negative
Bacteria Bacteria
|C1] =3 |IC1] =1, |C2| =2

\

‘Sérszio;occous ( Others J( E.Coli J ( Salmonella J

Figure 7. Example of a PAVO for the medical diagnosis problem

Infectious Agent

Bacteria X .
e ol

Gram-positive Gram-negative
Bacteria Bacteria
|C1] =3 IC1] =1, |C2| =2

\

( Others J( E.Coli J ( Salmonella :

Streptococcous
|C2| =1

Figure 8. Infectious Agent = Bacteria
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Infectious Agent

Virus

Bacteria
IC1] =6, |C2| =7
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Gram-positive Gram-negative
Bacteria Bacteria

|C1] =3 |C1] =1, |C2] = 2

\

4( E.Coli J ( Salmonella J

Streptococcous

|2 — 1 ( Others

Figure 9. Infectious Agent = Gram-positive Bacteria

Infectious Agent — Gram-positive Bacteria The result of the test in-
dicated that a Gram-positive Bacteria (shortly GP.B.) is the infectious agent.
The analyzed fragment of PAVO is presented in Fig. 9. Taking into account this
information we estimate the posterior probabilities. From Equation 6 we have:

1
P(GP.B.|Cy) = 13_0 =03 P(GP.B.|Cy) = 15 =0.L.

From Equation 4 we have:
P(C1|GP.B.) x0.5%0.3=0.15 P(C3|GP.B.) x 0.5 0.1 = 0.05.

As we can see, for Gram-positive Bacteria class C is three times more prob-
able than class C5 and the treatment represented by class C; is recommended.

Infectious Agent = Gram-positive Bacteria and not Streptococcus
Finally, let us assume that this Gram-positive Bacteria is not Streptococcus.
However, we have no training example described by the primitive concept Oth-
ers. Therefore, we are not able to make a decision for a testing instance described
by this value. However, we may take into account the semantics of the PAVO:
Each 'Gram-positive Bacteria other than Streptococcus’ (Others) is a *’Gram-
positive Bacteria’. The analyzed fragment of PAVO is presented in Fig. 10. The
concept of 'Gram-positive Bacteria’ has 3 instances that support class Cy only
and class Cy is recommended.

This example shows that, we can use both ’positive’ observations (Bacteria is
a Gram-positive Bacteria) and 'negative’ observations (Gram-positive Bacteria
is not a Streptococcus) in order to get more precise descriptions of new examples.
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Infectious Agent

Bacteria Virus
Gl 26, jc2l = 7
r N \
Gram-positive Gram-negative
Bacteria Bacteria
L |C1] =3 |C1] =1, |C2] = 2

\

Streptococcol r Y X
|C2| = 1 X Others )( E.Coli J ( Salmonella J

Figure 10. Infectious Agent = Gram-positive Bacteria and not Streptococcus

7. Summary

In this paper we proposed a novel extension of the naive Bayesian classifier by
an attribute value ontology (AVO). In the proposed approach, every attribute
is a hierarchy of concepts from the domain knowledge base. In this way an
example is described either very precisely (using a concept from the low-level of
the hierarchy) or, when it is not possible, in a more general way (using a concept
from higher levels of the hierarchy). Our general strategy is to classify a new
example using training examples described in the same way or more precisely
at lower levels of knowledge granularity.

The proposed approach is a generalization of the classical approach. In
the classical approach, specific attribute values can be interpreted as a single
level of knowledge granularity, and a new example is classified using training
examples described by the same specific attribute value only. In the proposed
approach, each descendant of a given concept ’is’ this concept. Therefore, in
the classification of a new example described by a concept ¢; we use training
examples described by this concept and also all training examples described by
descendants of ¢;.

Our proposal is motivated by the problem of description noise which may
occur when the language used to model attribute values in the training as well
as testing dataset is insufficient. In such a case, erroneous attribute values and
missing attribute values may be introduced by users that are required to provide
very specific values. By introducing an attribute value ontology (AVO) we are
able to use the examples described at different levels of granularity in classifi-
cation and 'prevent’ from introducing erroneous or missing attribute values.

The semantics of the AVO allows for performing two different diagnostic tests
in order to get more precise descriptions of new examples. We have shown, that
the more precise observation can be reached not only by ’positive’ observations
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but also by the 'negation’ of subconcepts of a given concept. Such a rejection
of a hypothesis is a very common approach, e.g. in a medical diagnosis.

For simplicity of presentation, all considerations were performed for a PAVO.
We should be aware that the association of examples to not corresponding con-
cepts in a PAVO corrupts these descriptions and may corrupt the classification
results. This problem can be solved by using an AVO with the necessary prim-
itive and abstract concepts only.

In the future we plan to use an AVO to model possible diagnostic tests and
their characteristics: costs, time and interactions with the objects.
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