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Abstract: This paper presents the merging of two sets of ex-
periments in the continuing endeavor to mine epileptiform activity
from Electroencephalograms (EEG). The goal is to develop robust
classification rules for identifying epileptiform activity in the human
brain. We present advancements using the author’s proprietary de-
veloped spectral analysis software to link power spectra of rat EEGs
experiencing epilepsy seizures with the authors DFA algorithm and
their MATLAB spectral analysis. Our system links 1) power spectra
of seizures, in sleep, spike and seizure states, with 2) Deterministic
Finite Automata (DFA). Combining power spectra with DFA to cor-
rectly predict and identify epileptiform activity (spikes) and epileptic
seizures opens the door to creating classifiers for seizures. We also
present a DFA that separates the states between seizure and non-
seizure using robust testing and additional algorithms to increase
the rigor when the methodology analyses noisy signals. Our re-
sults show optimal identification of seizures even when significant
artifact and noise is present in the polyphonic domain. Herein we
present a dual methodology that increases epileptoid identification
in a noisy domain that links time and frequency domain components
from MATLAB and proprietary software to clinical epileptiform ac-
tivity.

Keywords: intracortical electroencephalograms, discrete finite
automata, epilepsy, Fourier transforms, rough sets.

1. Introduction

Probing human brain dynamics is complex yet necessary for predicting tran-
sient events which may occur before epileptic seizures. Unfortunately, 30% of
patients that suffer from epilepsy are not well controlled on medication. Only
a small fraction of these can be helped by seizure surgery, Firpi et al. (2005).
Therefore, it would be life changing to a large number of individuals if a system
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could be developed that would predict a seizure hours, minutes, or even seconds
before its clinical onset because then strategies such as automated medication
from implant devices, Eder et al. (1997); Stein et al. (2000), electrical stimula-
tion, Schiff et al. (1994); Velasco et al. (2005), or local cooling, Gluckman et al.
(2006), could be utilized to offset a clinical onset, Mormann et al. (2003). Re-
cent research suggests that epileptic seizures begin as electrophysiological events
starting up to 7 hours before a clinical onset, Litt et al. (2001). Even though
these epilepsy patients only spend a small percentage of their lives actually hav-
ing a seizure, it is common to hear that the real pain occurs during the interictal
interval, when not having seizure, because the fear of the next seizure and the
feeling of helplessness associated with it destroys their life, Fisher (1935)[????].
The challenge is that the dimensionality is huge; in the human brain there are
approximately 100 billion neurons, each with about 1000 connections (synapses)
Williams and Herrup (1988). Even in the rat brain it is estimated that there
are approximately 200 million neurons, Korbo (1990); Bandeira et al. (2009).
The connections are wired such that the problem is highly nonlinear. In a cer-
tain class of seizures it would be helpful if they could be detected even a few
seconds prior to the start of a seizure. The dimensionality of the problem can
be significantly reduced, with only a minimal loss of information by record-
ing electrical potentials at multiple points on the surface of the skull or, using
depth electrodes, in the hippocampus (EEG). Electroencephalograms (EEG)
are accepted as one of the best means of evaluating neurocognitive functions,
Niedermeyer and da Silva (1999). Seizure prediction is made more complicated
in that a single individual’s seizures are not alike, seizures from different individ-
uals vary significantly, there is no single metric that consistently changes during
all seizures and correlation among channels can change significantly from one
seizure to the next, and even experts disagree as to what constitutes a seizure,
Williams et al. (2007). For the reasons listed above, rigid seizure detection rules
do not produce good results, Hellier et al. (2009), Williams et al. (2009). In-
terictal spikes are brief (20 - 70 ms) sharp spikes of electrical phenomena that
stand out when compared to background EEG rhythms and may be indicative
of an underlying epileptic process. Because they are considered as an indicator
of the presence of epileptic seizures, and may actually precede a seizure (sentinel
spike), the detection of these interictal, transient spikes which may be confused
with artifact or noise is indeed a crucial element in the prediction of epileptic
conditions.

Until 1992 most EEG analysis was based on analysis of brain slices, Mol-
nar and Nadler (1999), or anesthetized animals, Buckmaster and Dudek (1998).
Kainic acid, a chemoconvulsant extracted from seaweed, was introduced to in-
duce seizures in animals. This provided a major breakthrough, particularly with
the advent of monitoring the animals on video, but the equally significant sub-
clinical seizures were impossible to detect with video monitoring alone. The field
was further advanced through the development of a tethered recording system,
Bertram et al. (1997), in which multi-channel cortical and sub-cortical record-
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Figure 1. Video capture Rat 6K2: Progression of a Clinical convulsive seizure:
Series 1 (A-F): (A) Rat in a normal sleeping stage. (B-C) Rat exits sleeping
stage and starts having a P3 seizure (racine scale). (D-F) Seizure magnitude
escalades to a violent uncontrollable seizure - P5 (racine scale). Series 2 (G-
I): (G) Seizure detected before rat is aware of it. (H) Rat starts feeling clinical
onset of seizure and arches its back. (I) P2 seizure with fully arched back and
tail, jaw gnashing and one forelimb clonus

ings could be obtained. The quality of recordings were further improved by
incorporating a small pre-amplifier close to the skull, allowing for a significant
increase in the signal to noise (S/N) ratio. As shown in Fig. 1, electrodes were
placed stereotaxically in the hippocampus and secured in the skull, Williams
et al. (2006), White et al. (2006). Additional electrodes were placed directly
on the dura. Dental cement was applied to hold the electrode pins together in
a plastic cap that was later connected to the pre-amplifier. The pre-amplified
signal was sent to an amplifier and from there to a computer for storage. This
paper improves upon the methods set forth in the authors’ previous work in
Lewis et al. (2010) and Lewis and White (2010) by optimizing the DFA to effi-
ciently recognize artifact and noise or analyzing the EEG of a rats experiencing
P1 to P5 Seizures, Racine (1972). As seen in Fig. 1:

Series 1, Frames A-F Rat experienced a kainite-induced seizure that evolved
from stage P3 to P5. In Frame A, the rat was sleeping. In Frame B, 58
seconds later, the rat experienced a P3 seizure evidenced by the circular
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Figure 2. Implantable Tethered System Devices: (A) Tethered pre-amplifier
connects to the implanted electrodes and sends the signals to Epilepsy Moni-
toring Unit. (B) Dental cement polymer holds the electrodes in place. (C,D,F)
Referential and positive leads for the dural EEG. (E) Stereotaxic placement of
cortical electrodes. (G) Ground lead

clawing (forelimb clonus). In Frame C, 28 seconds later, convulsive ac-
tivity stopped and there was no epileptic activity on the EEG. Frame D
was taken 1 minute later and at this point the rat began to experience a
P5 seizure that lasted several seconds. Frames E and F were taken sub-
sequently and demonstrate the intensity of the seizure. Not seen in this
figure is that this rat was eating calmly shortly after the end of the seizure.

Series 2, Frames G-I Unbeknownst to rat, while still sleeping in Frame G, it
begins to experience a kainite-induced seizure. 27 seconds later in Frame H
the rat begins to feel the clinical onset of the seizure we detected earlier.
In Frame I it has developed to full P3 seizure with fully arched back,
extended tail, jaw gnashing and forelimb clonus.

Our facility has the capability of continuously monitoring up to 64 teth-
ered or untethered rats. Untethered rats underwent video monitoring and the
tethered rats underwent both video and EEG monitoring. This paper will dis-
cuss the author’s algorithms and power spectra methodology for analyzing the
EEGs of two rats in experiencing three separate sequences of events wherein
each sequence is divided into 3 states: (1) Sleep – Asleep, 60 seconds prior to
a seizure, (2) Spike – Coincident with the Sentinel spike and (3) Seizure – Ac-
tivity during clinical onset. As seen in Figs. 7, 8 and 9, two rats experience
the aforementioned states that provide a controlled environment to perform the
analysis necessary to compute the power spectra evoked by rats at critical points
in each of the aforementioned "states". Furthermore, the authors have used the
same environment to successfully 1) predict epileptiform activity using DFA
(see Lewis et al., 2010) and 2) use their Integrated Power Spectral Difference
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(IPSD) to detect the relationship that exists between channels once rats enter
into a state of seizure, Lewis and White (2010). The availability of EEG data for
this seizure and two other similar seizures, along with video, allowed us to test
the hypothesis that a novel deterministic finite automata (DFA) methodology
will be able to differentiate the different aspects (sleeping, P3 seizure, between
seizures, and P5 seizure) of the EEG record. Working with the knowledge of the
IPSD, and the DFA that provide EEG relationship, where prediction is known,
we now present a means to correlate power spectra to known environments that
will enable classification rule extrapolation.

2. EEG analysis & method

For our analysis EEG potentials were sampled at 800Hz. EEG electrodes were
placed bilaterally in the hippocampi (referenced to a common dural screw) and
a separate channel recorded from the dura. Each EEG contains approximately
100,000 time points. As such, its interpretation is non-trivial, and attempts at
automating the analysis have met with only limited success. In this paper, we
seek to demonstrate the efficacy of the DFA algorithm to distinguish all three
states in each seizure event and distinguish artifact from interictal spikes and
other noise. The author has begun to integrate statistical analysis with Action
Rules (Lewis and Raś, 2007; Raś and Dardzińska, 2005; Raś and Wieczorkowska,
2000; as well as Pawlak, 1991; Raś et al., 2005; Tsay and Raś, 2005). We are
also experimenting with Fourier Action Rules Trees of signal distortion, Lewis
and Wieczorkowska (2007), and Machine Learning with Signal Noise, Genetic
algorithms, Lewis et al. (2008), FS-trees, Rough Sets, LERS & Orange, Lewis
et al. (2007).

Fig. 3§1 illustrates one rat’s normal EEG wave-form while asleep. Point II
in Fig. 3§1 illustrates a Sentinel Spike, the hallmark indicator that a seizure
is imminent. Point III in Fig. 3§1 shows a region in which the EEG record
deviates from baseline. An important task is to determine whether this de-
viation is simply an artifact or if it represents epileptiform activity (an inter-
ictal spike). Fig. 3§2 provides details of the P3 seizure. Fig. 3§3 provides a
zoomed-out overall view of all four stages and Fig. 3§4 provides details of the
P5 (Racine scale) stage. We utilized two sets of experiments, both of which use
EEG potentials sampled at 800Hz, where the electrodes were placed bilaterally
in the hippocampi (referenced to a common dural screw) and a separate chan-
nel recorded from the dura. The first experiment use DFA to test when the
system state would change dependent on such quantities as amplitude, slope,
second derivative, Short-Term Fourier Transform. In the second experiment we
compare the aforementioned states, given the results in experiments, while com-
paring distances of sleep and seizure in our sample domain. The authors used
DFA in Lewis et al. (2010) and Lewis and White (2010) using the European
Data Format (EDF) to track the current state of a finite-state EEG system.
As time moved forward, the particular system state changed amplitude, slope,
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Figure 3. Rat P3 seizure (Racine scale): §1: 6K2 EEG state correlating to Fig. 1
Stage B denoted by circular clawing §2: I. Normal EEG wave-form while Rat is
a sleep. II. Appearance of Sentinel Spike prior to P3 (Racine scale) seizure. III.
Possible Interictal Spike often misinterpreted as artifact and vice-versa. §3: I.
A P3 (Racine scale) seizure in progress. II. Period of no Electrographic seizing
activity. III. Electrographic outburst indicating the violent seizure time. IV.
End of Electroencephalographic seizure event. §4: Covers periods D, E and F
in Fig. 1 showing the EEG analysis while 6K2 experiences the P5 (Racine scale)
seizure.

second derivative, Short-Term Fourier Transform STFT (average frequency) as
well as other signal features. At time zero we begin at state zero. The state at
the next time step is assumed to be dependent only on the current system state
and conditions (input state) during the current time step (e.g. slope). A con-
sequence of this is that the current state is independent of the order, in which
the input states occurred (in this sense it is similar to a Markov chain).

3. Illustrative example of our DFA methodology

To motivate reader understanding we illustrate the concept of our usage of DFA
using a simplified transition table given in Fig. 4, composed of ten columns.
The first column is the current system state. As one moves from one time point
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of the EEG to the next, the state of the system changes. The state to which
the system changes is based upon the transition matrix; each of the columns
in the transition matrix represents a current parametric set (e.g. slope within
a particular range). More generally, the columns may represent a condition in
which current or past parameters have specified values. It should comprise a
collectively exhaustive and mutually exclusive set such that there are no events
that either fall into multiple columns or do not fall into any of the columns.
One proceeds from one system state at a given time point to the next system
state at the next time point until a terminal event occurs. Terminal events can
be the identification of spikes, seizures or artifact. The particular input state at
the current time (columns 5 - 10) is ascertained by investigating parameters at
that time or at prior times. For this example, we have six mutually exclusive,
collectively exhaustive input states. These are presented in Table 1 where α,
β, and γ are limits selected by the authors using expert knowledge of what
parameters would be characteristic of spikes. We note that states 4, 5 and 6 are
the same as 1, 2, and 3, except that the absolute value of the second derivative

(f”(x) or d2y

dt2
) is less than γ. The purpose of the use of slope (m = y2−y1

t2−t1
)

is to differentiate between the normal state, the possibility of a spike, and a
likely artifact (artifact, such as that noted when the animal is chewing, is often
distinguished from spike because the slope is much greater).

0 0 0 0 0 2 0 0 2 0

1 0 0 1 0 3 0 0 3 0

2 0 1 0 10 4 3 10 4 3

3 0 1 1 11 5 0 11 5 0

4 0 2 0 12 6 5 12 6 5

5 0 2 1 13 7 0 13 7 0

6 0 3 0 14 6 7 14 16 7

7 0 3 1 15 7 0 15 16 0

8 1 0 0 0 10 0 0 10 0

9 1 0 1 0 11 0 0 11 0

10 1 1 0 0 12 11 0 12 11

11 1 1 1 0 13 0 0 13 0

12 1 2 0 0 14 13 0 14 13

13 1 2 1 0 15 0 0 15 0

14 1 3 0 0 14 15 0 16 15

15 1 3 1 0 15 0 0 16 0

16 0 0 0 24 18 17 24 18 17

17 0 0 1 25 19 0 25 19 0

18 0 1 0 26 20 19 26 20 19

19 0 1 1 27 21 0 27 21 0

20 0 2 0 28 22 21 28 22 21

21 0 2 1 29 23 0 29 23 0

22 0 3 0 30 22 23 30 32 23

23 0 3 1 31 23 0 31 32 0

n-1 1 3 0 0 30 31 0 32 31

n 1 3 1 0 31 0 0 32 0
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Figure 4. Sample Transition Table: the number of possible states is 31, the
number of states with slope too high required for rejection is 2, number of
states required for slopes in the range for acceptance is 4, and the number of
states with slope too low requiring rejection is 2
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Table 1. Six mutually exclusive, collectively exhaustive input states. Where α,
β, and γ are user selected constants. States 4, 5 and 6 are the same as 1, 2, and
3 except that the second derivative is less then a given value

Input State Conditions

1 | m = y2−y1
t2−t1

| > α ∧ | f”(x)or d2y

dt2
| < γ

2 α > | m = y2−y1
t2−t1

| > β ∧ | f”(x)or d2y

dt2
| < γ

3 | m = y2−y1
t2−t1

| < β ∧ | f”(x)or d2y

dt2
| < γ

4 | m = y2−y1
t2−t1

| > α ∧ | f”(x)or d2y

dt2
| > γ

5 α > | m = y2−y1
t2−t1

| > β ∧ | f”(x)or d2y

dt2
| > γ

6 | m = y2−y1
t2−t1

| < β ∧ | f”(x)or d2y

dt2
| > γ

The purpose of the use of f”(x) is to ensure that there is actually a peak
and not just a baseline shift. Columns 2 - 4 indicate the number of times that
input states 1 or 4, 2 or 5, or 3 or 6, respectively, have occurred. For example,
looking at system state 12 one notes that there has been a single event in which
the input state 1 or 4 existed, two events in which input state 2 or 5 existed
and no events in which the state 3 or 6 existed. To register a spike, there must
be two time points in which (m = y2−y1

t2−t1
) falls in the range expected for a spike

(input states 2 or 5), followed by one time point in which f”(x) is high (input
state 5) which corresponds to a peak, followed by two time points in which the
slope again falls in the correct range (input states 2 or 5). This sequence must
occur before one obtains two slopes greater than the range or two slopes less
than the range. In this example a spike is indicated by system state 32. A
heuristic definition can then be used to establish the seizure state by requiring
a certain number of spikes in a particular time interval (e.g. 20 detected spikes
in 10 seconds).

We now consider the sample path through the transition matrix illustrated
by the chain of circles noted. For this sample the sequence of input states is
assumed to be: 2, 2, 3, 1, 2, 5, 5, 5, 5. We initially start with state 0, time interval
0. At this time, the slope was calculated to be appropriate for a spike, i.e. α
<| slope | < β, with the second derivative < γ (input state = 2). As a result
the transition matrix indicated a change to system state 2. For the second time
interval the input state was calculated to be the same as that in the first time
interval (input state = 2), and the transition matrix (row 3, column 6) indicated
a change to system state 4. In the next time interval input state 3 was calculated
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Figure 5. Results: Seizure Correctly Predicted I: §1: Code correctly identifies
a seizure 6 seconds before its onset. I. Excel Spreadsheet with CSV output.
II. Excel built in graph. III. The ”Spikes Detected” references and IV. Seizure
Detected at location 6 seconds before onset. §2: Initial portion of seizure.
Notice both high frequency, low amplitude spikes as well as higher-amplitude,
lower frequency spikes. The vertical lines in the figure indicate spikes detected
using the DFA algorithm. The lighter shaded line in the figure indicates the
detected start of seizure as determined by the heuristic requirement of 3 spikes
per second for 10 seconds

and the system state of 5 (row5, column7) was determined. Subsequent input
states could then be coupled with the current system states to draw a time path
through the transition matrix. In this case, a spike is registered at the end of
the path because state 32 is obtained at the end of the chain. Had there been
too many slopes that did not meet criteria, the system state would return to
zero (see for example system state 9, input state 1).

3.1. Experiment 1: Seizure prediction using DFA

Using the same six input states given in the example above to determine the
input state we used only the slope and standard deviation. In the first seizure
(Series 1, Frames A-F, see Fig. 1) the system is able to successfully differentiate
between true interrictal spikes, which often precede the onset of seizure, and
artifactual spikes, which appear similar to interrictal spikes to the untrained
eye, but do not immediately precede seizure. Fig. 5 demonstrates the former,
showing the interrictal spike preceding the seizure depicted in Fig. 1 by 6 sec-
onds. In the second seizure, (Series 2, Frames G-I, see Fig. 1) the system first
detected the 2nd seizure while the rat was asleep and oblivious to the oncoming
seizure (see Frame G, Fig. 1) The authors note that the interictal spike shown
at this point, 57 seconds before the seizure begins, was too abrupt for the DFA
to classify it as a seizure spike. However, a few seconds later as we get to signals
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§2§1

Figure 6. Results: Seizure Correctly Predicted II: §1: Continued seizure activity
indicated by high frequency medium amplitude discharges. §2: Seizure end.
Note the abrupt discontinuation of EEG seizure discharge. The seizure duration
is approximately 90 seconds

exemplified in Fig. 5§2. The seizure does indeed begin. The authors added a
screen output of steep vertical lines where the methodology detected a spike
using the DFA algorithm. Note that we also added a line in the figure that
indicates the detected start of seizure as determined by the heuristic require-
ment of 3 spikes per second for 10 seconds. This state occurs 13 seconds after
the detected interictal spike warns the DFA that a clinical onset is beginning.
In essence, Figs. 5 and 6 show various segments of EEG data from rat 6K2
seizure. Fig. 5§1 shows the onset of the Series 1 seizure looking at the raw
CSV file, demonstrating the characteristics used in this study. Here the output
is a successful detection within 6 seconds of clinical onset. Similarly, Fig. 5§2
shows the onset of the Series 2 seizure where each of the steep vertical lines
denotes a spike detected using the DFA technique described herein indicating
the duration of the seizure. The range was determined by spike frequency using
a heuristic approach of 3 or more spikes per second over each of 10 consecu-
tive seconds. Fig. 6 shows the continuation of this characteristic EEG activity
over the 90-second duration of the seizure, which ends with the activity shown
in Fig. 6. Furthermore, Fig. 6 shows continued DFA detection of the Series 2
seizure where the steep vertical lines exemplify an intense seizure where the rat
arches its back in (see Fig. 1 images H and I). More significant, however, is that
the DFA detected this when the seizure was in its infancy.

3.2. Experiment 2: EEG analysis

Our experiment methods comprised three sections. First using MATLAB to
extract and plot critical sequences, secondly performing an FFT using a rect-
angular or Dirichlet window using Visual Studio and thirdly, using DFA to
track the current states of amplitude, slope, second derivative and Short-Term



DFA detection of epileptogenesis 303

Fourier Transform STFT. For a particular time interval we perform an FFT
using a rectangular or Dirichlet window (optionally Hamming or Hann windows
may also be used to reduce abrupt window cut off effects) to establish the real
and imaginary parts in the frequency domain, i.e.

Re (f) =

n−1
∑

k=1

xk cos 2π

(

kp

n

)

(1)

Im (f) =

n−1
∑

k=1

xk sin 2π

(

kp

n

)

. (2)

We then compute the power in each frequency bin, whose width is ∆f =
sampling frequency
time interval width

, (where the sampling frequency is measured in points per sec-

ond and the interval width is measured in points per time interval) as Re (f)2+
Im (f)2. The time interval in the study has been chosen to be long enough to
capture several individual spike components, but short enough so that an early
detection is feasible. Our current time interval is set at 0.64 seconds (512 points
at 800 points/second). Lower and upper frequency bounds are created that re-
flect frequencies we expect to find during a seizure (currently between 3 and 50
Hz). The authors introduce a metric defined as the Integrated Power Spectral
Difference (IPSD) whereby we compare the power spectra in either (1) a single
channel at two successive time intervals, or (2) two separate channels at the
same time interval. The motivation for this was that there is a need to see how
close one frequency distribution is to the next, because we suspect that during a
seizure successive frequency distributions and powers spectra will be similar in
any particular channel between one time point and the next. Mathematically,
we define this metric as:

IPS(f) =

∫ freq high

freq low

PS(f)df. (3)

This is akin to comparing cumulative distribution functions rather than
probability density functions. We use this metric rather than just subtract-
ing the power spectra at each individual frequency to allow us to capitalize on
the evolution of seizures. As seizures evolve, the frequency tends to slow and the
amplitude increases. The formulation used here penalizes this frequency shift
less than that which would occur if the power spectra were directly subtracted.
Because seizures are not strictly focal phenomena, and often impact distant
regions, one would expect significant correlation among the different channels.

IPS =

∫ freq high

freq low

∣

∣

∣
IPST1

(f)− IPST2
(f)

∣

∣

∣
df (4)

where PS(f) = Power Spectrum of channels 1 and 2 respectively when two
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successive time intervals for a single channel are considered, and as

IPS =

∫ freq high

freq low

∣

∣

∣
IPS ch1

(f)− IPS ch2
(f)

∣

∣

∣
df (5)

when two different channels are considered at the same time interval. We note
that these metrics are in no sense unique. We have employed other metrics
such as difference in median, mean and modal frequencies, as well as using
frequency weighting (adding more weight to differences in higher frequencies).
Upon comparing these metrics, it appears that integral method more accurately
separates seizure from non-seizure states.

4. Deterministic Finite Automata (DFA)

Deterministic finite automata can be used in many applications. We used this
methodology to track the current state of a finite-state EEG system. As time
moved forward, the particular system state would change dependent on such
quantities as amplitude, slope, second derivative, Short-Term Fourier Transform
STFT (average frequency) as well as other signal features. For the current
analysis, programming was done using Visual Basic subroutines and data was
stored using the European Data Format (EDF). At time zero we begin at state
zero. The state at the next time step is assumed to be dependent only on the
current system state and conditions (input state) during the current time step
(e.g. slope). A consequence of this is that the current state is independent of the
order in which the input states occurred. Experiments consisted of comparing
two spectral analysis methodologies that honed in on a first 60 second period
before clinical onset, which in these cases was purposefully chosen to be a sleep
state and then next the spike, interictal and seizure states of the animal. Upon
using Matlab EEGLAB package, analyzing the signals and then normalizing the
sleep to zero and then performing the numerical normalization we performed
on the sleep to the spike and seizure states we found an interesting pattern
suggesting rules as seen in Fig. 13. We decided to then code our own, more in-
depth spectral analysis using Visual Studio that was able to detect parameters
in a way easier than that found in Matlab. It is critical to note that our DFA has
already located these sections of EEG to be that of a seizure state. After opening
an EDF file in EEGLAB (using the Import Data > From EDF Files menu
option) the raw data is available in the "data" attribute of the "EEG" object.
Plotting a particular row of this variable using the Matlab "plot" command
(e.g.: "plot(EEG.data(2,:))") shows the raw data for the respective channel,
from which it is fairly trivial to determine the range of samples corresponding
to a particular feature of the EEG signal. Using the x values shown on this
plot and dividing by the sample rate (in our case, 800 Hz), we can obtain
the number of seconds into the recording that the feature occurred, entering
it into the dialog presented by the Plot > Channel Spectra and Maps menu
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option (after multiplying by 1000 to convert to milliseconds). Since our features
corresponded to .64 seconds (starting at n milliseconds as determined above),
we specified the range to be "n, n+640" and encompassing 100 % of the signal
in that range.

5. Spectral analysis method: in-house Visual Studio im-
plementation

5.1. Spectral data

This consisted of two code sections. The first of these was concerned with
establishing the power spectra for the three-channel EEG data. The second
implemented the DFA algorithm to identify seizures. For the first section, we
used sequential Fast Fourier Transforms on 2.5 second (2048 point) intervals
of EEG data. The spectra were derived using rectangular windows with a low
frequency bound of 3 Hz and a high frequency bound of 70 Hz. Spectral plots
were created using 40 successive time intervals with no overlap, as shown in
Fig. 14. The IPSD metric was calculated at every time interval. The DFA
portion of the code used the IPSD metric and a transition table to identify
seizure events. There were three possible input states for the matrix: (1) IPSD
> a, (2) IPSD < a, but > b, and (3) IPSD < b, where a and b are constants
that were empirically derived. This operation was performed comparing all
times with successive times and all combinations of channels. The number
of transition matrix states was 36. A seizure was identified if greater than a
specified number of input state (2) occurred prior to a given number of state (1)
or (3) occurring. Performing the power spectra and with the correlated DFA on
the 3 sequences comprising each of the 3 states as seen in Figs. 7, 8 and 9 we
see resultant 4 states of the power spectra provided in Fig. 10 showing the sleep
power spectra, Fig. 11 showing the spike power spectra and Fig. 12 showing
the seizure power spectra. Here we will see three traces representing the EEG
signals originating from the three electrodes placed in the animal’s hippcami as
illustrated in Fig. 1. Fig. 10 shows three sub-figures: sub-figure (a) illustrates
the sleep power spectra of rat 8K1 in sub-figure (a) of Fig. 7, sub-figure (b)
illustrates the sleep power spectra of rat 8K3 in sub-figure (a) of Fig. 8, and
sub-figure (c) illustrates the sleep power spectra of rat 8K3 in sub-figure (a) of
Fig. 9.

5.2. Spike power spectra

Fig. 11 shows three sub-figures: sub-figure (a) illustrates the spike power spectra
of rat 8K1 in sub-figure (b) of Fig. 7, sub-figure (b) illustrates the spike power
spectra of rat 8K3 in sub-figure (b) of Fig. 8, and sub-figure (c) illustrates the
spike power spectra of rat 8K3 in sub-figure (b) of Fig. 9.
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(a) (b) (c) (d)

Figure 7. A seizure detected in rat 8K1. (a) Rat is asleep prior to seizure.
(b) Coincident with the sentinel spike, rat 8K1 wakes up. (c) Rat experiences
seizure. (d) After seizure. Non-seizure rat activity

(a) (b) (c) (d)

Figure 8. A seizure detected in rat 8K1. (a) Rat is asleep prior to seizure. (b)
Rat experiences sentinel spike and begins to engage in waking activity. (c, d)
Peak seizure activity

(a) (b) (c) (d)

Figure 9. A seizure in rat 8K3 occurring just over 14 hours subsequent to that
depicted in 8. (a) Rat is curled up, asleep. (b) Peak seizure activity. (c) Seizure
causes rat to fall across viewing area. (d) Rat seems dazed after seizure activity

5.3. Seizure power spectra

Fig. 12 shows three sub-figures: sub-figure (a) illustrates the seizure power spec-
tra of rat 8K1 in sub-figure (d) of Fig. 7, sub-figure (b) illustrates the seizure
power spectra of rat 8K3 in sub-figure (d) of Fig. 8, and sub-figure (c) illustrates
the seizure power spectra of rat 8K3 in sub-figure (d) of Fig. 9. From the sleep
power spectra it seemed that because our DFA predicted the seizure during the
sleep states via the interictal spike, then the power spectra we are most likely
concerned with are the properties of the interictal spikes and seizures incurred
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Figure 10. Spectral Sleep States for seizures 2 (a), 3 (b), and 4 (c). Note there
is an almost equal representation of lower frequency components and higher-
frequency components, with consistent peaks at approximately 7 and 17 Hz.
(d) illustrates the mean
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Figure 11. Spectral Spike States. Note a marked increase in the amount of low-
frequency EEG activity while the higher-frequency activity stays comparatively
constant. (d) illustrates the mean
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Figure 12. Spectral Seizure. Note the prominent peaks in the higher-frequency
portion of the plots representing the high-frequency neural discharge character-
istic of seizure. (d) illustrates the mean

by the animal in relation to its sleep power spectra state. Fig. 13 shows a
normalized power spectra of the sleep denoted by the dashed line at 0. The
averaged line represents the mean on the Sleep state as shown in sub-figure (b)
of Fig. 10 but in relation to its sleep state. Similarly, the power spectra of the
seizure states as shown in sub-figure (d) of Fig. 10 are also depicted in rela-
tion to the animal’s sleep state. The authors overlayed the linear progression
of the the normalized spike and seizure states to illustrate where the power in
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Figure 13. Normalized Sleep correlation to Spikes and Seizure.

the frequency domain is spread and focused during the interictal and seizure
states in relation to the sleep state. We know that the DFA tells us that these
states are correct in that they do represent the states leading to and during an
epileptic seizure. Manipulating the power spectra in this form illustrates that
certain characteristics of the power, when changing in accordance to the sleep
state represent an interictal spike. For example, looking at Fig. 13, if a rat is
asleep and the power frequency is normalized to zero across all bands, then if
power at frequency 0 through to 8 Hertz is below zero and power of frequency
12 to 25 Hertz is in the range of 3 to 8 then the rat is probably experiencing
an interictal spike. Similarly, if power at frequency 0 through to 8 Hertz is in
the range of 3 to 8 and power at 12 - 25 Hertz is 8 to 15 then the rat is proba-
bly experiencing an seizure spike. The aforementioned results are illustrated in
Figs. 14–17. Fig. 14 is a screenshot from OUR EEG-processing code showing
EEG spectrogram. In Fig. 15 we see the spectral analysis of EEG signal during
interictal period. The raw EEG is on the left side of the screenshot and on the
right side one can see that the power spectrum at time t represents the same for
time t + ∆t. Note the significant difference in power spectra in each channel.
The plot on the bottom left represents the background average spectra. Note
that we constrain our analysis of the power spectrum from 3 to 70 Hz. In Fig. 16
we have displayed the Cumulative Distribution Function for the power spectra
of EEG signal during non-seizure (interictal) state at time t and t + ∆t. Note
the significant difference between IPS (integrated power spectra) circled in the
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plots on the right side of the figure. In Fig. 17 we see the IPSs for different time
intervals for each channel on the right side of the figure. Note the IPSD metric
will be significantly smaller here than in Fig. 16. This is a characteristic of the
seizure (ictal) state.

A

C

B

(a)

Figure 14. Screenshot from EEG-processing code of the EEG spectrogram.
A,B,C. (A. Sentinel spike. B. Spectrogram of seizure. C. Generally the high-
frequency noise present in the spectrogram after the seizure was found to be
due to extraneous signal source).

A

C

B

(a)

Figure 15. Spectral analysis of EEG signal during interictal period
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A

C

B

(a)

Figure 16. Cumulative Distribution Function for the power spectra of EEG

A

C

B

(a)

Figure 17. IPSs for different time intervals

6. Conclusion

Using our techniques described above, we performed calculations to determine
seizure onset in a specific rat. It allowed us to identify seizure onset approxi-
mately 11 seconds after the sentinel spike. In this particular case, this was done
using the IPSD metric between channels. The DFA allowed us to reject many
other possibilities in this noisy signal. In Experiment 1 we found that in both
Series 1 and 3 seizures the DFA correctly identified spikes and seizures sorting
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various events that occur during seizures. This identification occurred in spite of
a very noisy record. Given this noisy record, it is not possible for even an expert
to determine with certainty that a particular event is a spike or seizure. It is
certainly possible that a given EEG recording could result from either a spike or
artifact (there is not necessarily a one-to-one and onto mapping). To the extent
that it is possible, given enough input states, the algorithm is as capable as any
expert to differentiate spike from non-spike or seizure from non-seizure states.
Obviously, computational time limits the number of possible states, but this, as
well as the particular parameters that characterize the input state, can be chosen
to decrease the computational effort. It is not restricted to linear analysis such
as Neural Networks, Random Forest and Machine Learning J45 to define strong
classifiers for items such as Sentinel Spikes; it is also possible to use sequential
non-linear analysis to establish whether or not spikes have occurred. By gener-
alizing the input states to include past parameters, it is even possible to force
the current state to be dependent on the path taken to get to the current state.
The transition matrix can also be modified in such a way that multiple final
deterministic states are possible (i.e. multiple end points could be identified).
It is our plan to investigate further methods in which the DFA algorithm can
be successfully employed. This includes the process of integrating KDD with
the DFA methods and also considering the use of time domain analysis of EEG
signal by statistical analysis and characteristics computation, Litt et al. (2001),
with different frequencies, Salant et al. (1998), non-linear dynamics and chaos
theory, Lehnertz and Elger (1995), and intelligent systems, such as artificial neu-
ral network and other artificial-intelligence structures, Geva and Kerem (1998),
Pan et al. (2007). In Experiment 2, the authors introduced a new metric that is
useful in establishing difference in power spectra between successive time inter-
vals and different EEG channels. This metric uses the characteristic evolution of
seizures to minimize differences from one time interval to the next one during a
seizure event. We have shown that a combination of spectral analysis and DFA
is a valid method for identifying seizure onset. It is anticipated that further
improvement of the method can be achieved by investigating the characteristics
of the change in the IPSD metric as a seizure progresses. This may be used in a
training algorithm for an individual seizures. We have in essence narrowed the
scope of the domain to a plausible state mathematically. Moreover the authors’
Integrated Power Spectral Difference (IPSD) has double rechecked the range of
EEG signals that are critical to perform Spectral Analysis on to Garner rules,
see Lewis et al. (2010), Lewis and White (2010). Clearly, the broad rules set
forth in this paper regarding spikes and seizures have not been proven to work
over thousands of rats nor on humans to say the least. But we do know that
with these three seizures, these power spectra rules certainly do work. For our
future work we will have to first run exactly the same tests over many more
rats and then test our hypothesis with Neural Networks, Random Forest and
Machine Learning J45 to define strong classifiers.
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