
Control and Cybernetics

vol. 40 (2011) No. 2

Web Services composition –

from ontology to plan by query∗†

by

Dariusz Doliwa1, Wojciech Horzelski1, Mariusz Jarocki1,
Artur Niewiadomski2, Wojciech Penczek2,3, Agata Półrola1

and Maciej Szreter3

1 Faculty of Mathematics and Computer Science, University of Łódź, Poland
2 Institute of Computer Science,

Siedlce University of Natural Sciences and Humanities, Poland
3 Institute of Computer Science, Polish Academy of Sciences, Poland

Abstract: The paper proposes a method to cover the world of
web services with a uniform semantics, possibly simple but enabling
to arrange complex flows of service invocations. The flows are built
according to fully declarative user’s intentions, specified in a lan-
guage common for the descriptions of services and for the query.
In the approach we model the world of services and of the subjects
they operate on using a uniform knowledge database and an object-
oriented manner. The current work describes the first phase of the
composition: making an abstract plan, i.e., giving an answer how
(with what types of services) the required effect can be obtained.
The problem of creating a plan is converted to building a specialized
graph.

Keywords: automated composition, web services, abstract
planning.

1. Introduction

A vision of independently developed parts of software communicating by well-
defined network protocols is the conceptual base of the Service Oriented Ar-
chitecture – SOA (Bell, 2008). From the technical point of view, knowing a
standard for communication with a service is sufficient to create a component
(client) able to use its functionality. The standards mentioned are well founded

∗Supported by the Project “New information technologies for electronic economy of infor-
mation society based on SOA paradigm”, funded by the Polish Ministry of Science and Higher
Education and supported by th European Union in the framework of the European Regional
Development Fund program no. POIG.01.03.01-00-008/08.

†Submitted: October 2010; Accepted: June 2011.



316 D. DOLIWA et al.

and widely used. In recent years one can observe growing domination of their
certain kind, namely of methods based on XML documents transferred over
internet application protocols. With the exception of special applications, stan-
dards such as SOAP to encapsulate transferred data, WSDL to define a service
interface, and UDDI to maintain indices and classifications of services are widely
used in all domains of SOA applications. Additionally, we have languages to
describe service flows, such as WS-BPEL.

While technical problems with communication between SOA components
are easy to solve, creating methods for automatic aggregation of service func-
tionalities seems to be a greater challenge. There are many tasks which require
calling several services — the best examples to be found in e-commerce. Even
if we know which types of services need to be called to reach our goal, we of-
ten cannot select the services which allow reaching it in an optimal way. One
can formulate a fundamental question: what are the minimal conditions under
which the services can cooperate with no manual intervention?

A plan how to reach a complex goal by simpler activities may be auto-
matically created by investigating relations between their descriptions. The
main problem is a common language to express what the activities do. Even if
their functionalities are described using the same language (as WSDL, OWL-S
or DAML-S), we do not have any guarantee of a semantic compliance. The
common semantics can be made uniform by a centralization of knowledge. Rea-
soning in the knowledge can build our plan.

The plan which we obtain by the reasoning can be either abstract or concrete
(i.e., executable in BPEL terminology). The abstract plan describes how the goal
can be reached, without specifying who (i.e., which real web services) should
be engaged with the plan. The abstract version of the plan can be built only
if services are assigned to a specific type (a class of services). The plan can
be further transformed to the concrete one by replacing service types by the
corresponding service instances.

We introduce a uniform semantic description of service types. In order to
adapt a possibly wide class of existing services, specific interfaces of concrete
services are to be translated to the common one by adapters (called proxies),
built in the process of service registration. The process is to be based on de-
scriptions of interfaces of services, specified both in WSDL and in the languages
containing semantic information, like OWL-S or Entish (Ambroszkiewicz, 2003).
The mechanism of proxies is also to allow for using services in an “offer mode”
(not resulting in changes in internal states of the services) and in an “execution
mode”. Collecting “offers” enables choosing an optimal solution.

We make endeavours to unify the interface between the “real” and the “vir-
tual” worlds of services. However, reasoning in the “virtual” world can be deter-
ministic and fully automatic. The client’s goal is expressed in a fully declarative
intention language. The user describes two worlds: the initial and the final one,
using the notions coming from an ontology, and not knowing any relations be-
tween them or between the services. The task of the composition system consists



Web Services composition – from ontology to plan by query 317

in finding a way of transforming the initial world into the final one. The compo-
sition is three-phase like in the Entish project (Ambroszkiewicz, 2003). In the
first phase, called abstract planning or planning in types, we create an abstract
plan, which shows sequences of service types whose executions possibly allow to
accomplish the goal. The second phase makes these scenarios “concrete”, which
means replacing the types of services by their concrete instances. This can also
involve choosing a plan which is optimal from the user’s point of view. Finally,
the last phase consists in supervising the execution of the optimal run, with
a possibility of correcting it in the case of a service failure. The current work
deals with the first phase of the composition.

The rest of the paper is organised as follows: Section 2 presents the re-
lated work. The main ideas of our approach and the notions behind them are
introduced in Section 4. Section 5 shows an algorithm for abstract planning
and defines the graph being its result. Section 6 presents an implementation
of the abstract planner, illustrated by some experimental results in Section 7.
Section 8 contains final remarks and directions of our future work.

2. Related work

There are many papers dealing with the topic of web services composition
(Klusch, Gerber and Schmidt, 2005; Rao, 2004; Rao, Küngas and Matskin, 2004;
Rao and Su, 2004; Redavid, Iannone and Payne, 2008; Srivastava and Koehler,
2003). Some of these works consider static approaches, where flows are given as
a part of the input, while others deal with dynamically created flows. One of
the most active research areas is a group of methods referred to as AI Planning
(Klusch, Gerber and Schmidt, 2005). Several approaches use Planning Domain
Definition Language (McDermott et al., 1998). Another group of methods is
built around the so-called rule-based planning, where composite services are
generated from high-level declarative descriptions, and compositionality rules
describe the conditions under which two services are composable. The informa-
tion obtained is then processed by some designated tools. The SWORD project
(Ponnekanti and Fox, 2002) uses an entity-relation formalism to specify web
services. The services are specified using pre- and postconditions; a service is
represented as a Horn rule denoting that the postcondition is achieved when the
preconditions are true. A rule-based expert system generates a plan. Another
methodology is the logic-based program synthesis (Rao, Küngas and Matskin,
2004). Definitions of web services and user requirements, specified in DAML-S
report, are translated to formulas of Linear Logic (LL): the descriptions of web
services are encoded as LL axioms, while a requirement is specified as a sequent
to be proven by the axioms. Then, a theorem prover determines if such a proof
exists.

While the approaches described above are automatic, there are also semi-
automatic methods assuming human assistance at certain stages (Sirin, Hendler
and Parsia, 2003). Some approaches are based on specifying a general plan of



318 D. DOLIWA et al.

composition manually; the plan is then refined and updated in an automatic
way.

The most complete specification of an automatic composition system was
described in Ambroszkiewicz (2003). The author proposed a solution based on
a multi-phased composition using a uniform semantic description of services.
Our approach uses similar methods, adapting them to the existing SOA stan-
dards and making them easy to implement without revolutionary changes in the
running web service infrastructure.

This article is an extended version of Jarocki et al. (2010a).

3. Our approach

Assume that all the web services in our domain of interest can be strictly clas-
sified in a certain hierarchy of types. Each type (a class of services) has a
description in a common, unified language. The descriptions use a common
base of concepts, consisting of types and their instances (i.e., objects1). The
description of each type expresses declarations of changes, caused by any service
of this type in some world. We define worlds to be sets of objects. Concrete
services (i.e., instances of service types) have descriptions as well. They define
the service activities in a more precise way.

The main idea of our project is to separate the phases of the planning. The
first phase occurs in the space of types, while the second one - in the space of
concrete services. The first phase results in an abstract plan, which becomes a
concrete plan in the second phase.

The language describing services, both abstract (classes of services) and
concrete (service instances), is uniform, fully declarative and possibly simple,
in order to make an adaptation process possibly easy for any external service
provider.

In Fig. 1 we present the architecture of our composition system currently
developed. Abstract Planner using the knowledge from OWL ontology and
from other knowledge bases (available by specialized interfaces) implements the
concepts described in this article. The system is now able to create abstract flows
(in abstract BPEL form) starting from a non-imperative user’s query (expressed
in our language QLa, presented in next sections). Arranger (the planner of
concrete services) and Registration Service will be investigated and implemented
in the nearest future.

4. Basic notions

One of the main elements of our approach consists in introducing a unified
semantics for functionalities offered by services, which is done by defining a
dictionary of notions/types describing their inputs and outputs. A service is

1In OWL, which can be used as a skeleton of the descriptions, the objects are called
individuals.



Web Services composition – from ontology to plan by query 319

Internal knowledge

(ontology) repository

Query

parser

Knowledge repository interface

Abstract

planner

Arranger

(Concrete

planner)

proxy

Registration

service

proxy proxy

WSDL 

service

OWL-S

service

Entish

service

External ontologies

(Entish)

User

query

Abstract

plan 

(abs.BPEL)

Executable

plan (exec. 

BPEL)

Registration

data

Knowledge

browser

Figure 1. The architecture of the composition system

then understood as a function which transforms a set of data into another set of
data (or as a transition between them). The sets of data are called worlds. The
worlds can be described by means of an ontology, i.e., a formal representation of
knowledge about them. The concepts used to model individuals are a hierarchy
of types as well as classes and objects.

In order to ensure an easy integration with other solutions, we use the OWL
language for defining ontologies. Formally, an ontology is a set of definitions
of classes (ordered in an inheritance hierarchy), their instances and relations
between them2. A class is a named OWL template which defines names and
types of attributes. All the classes are ordered in a multiple inheritance hier-
archy. The fact that a class B inherits from a class A means that B contains
all the attributes of A, and the attributes specified in its own definition3. The
class B is called a subclass, a child class, or a derived class; the class A is called
a superclass, a parent class, or a base class. The inclusion between the sets of

2OWL ontology definition.
3We assume that names of attributes are unique in the whole name space. Moreover,

attribute encapsulation and overloading are not supported (which follows from using OWL as
the ontology description language).



320 D. DOLIWA et al.

attributes of a parent and a derived class implies that if in some context an
object of a certain class is required, then an object of an arbitrary subclass of
that class can be used instead.

A class is called abstract if instantiating it (i.e., creating objects of this
class definition) is useless in the sense that the objects obtained this way do
not correspond to any real-world entity4. Abstract classes can be used, among
others, for defining formal parameters of services. Moreover, on the top of the
inheritance hierarchy there is an abstract base class Thing with no attributes5.

4.1. Worlds

Assume we have a set of objects containing instances of classes defined in an
ontology.

Definition 1 (Objects and worlds) The universum is the set of all the ob-
jects. The objects have the following features:

• each object is either concrete or abstract object,
• each object contains named attributes whose values can be either other

objects or:

– values of simple types (numbers, strings, boolean values; called simple
attributes) or NULL (empty value) for concrete objects,

– values from the set {NULL, SET, ANY} for abstract objects.

If an attribute a of the object O is an object itself, then O is extended
by all the attributes of a (of the names obtained by adding a’s name as a
prefix). Moreover, when an object having an object attribute is created, its
subobject is created as well, with all the attributes set to NULL.

A world is a set of objects chosen from the universum. Each object in a world
is identified by a unique name.

The values of an attribute for an abstract object are interpreted as follows:
NULL means that no value of the attribute has been set (i.e., the attribute has
the empty value), SET means that the attribute has a nonempty value, while ANY

means that the state of the attribute cannot be determined (i.e., its value can be
either SET or NULL). The attributes are referred to by ObjectName.AttributeName.

Example 1 A user can define a required world consisting of concrete objects as
a set which contains one instance of the class Book with the attribute title set
to “Introduction to Service-Oriented Modeling” and owner set to “John Smith”
(i.e., the name of the user). He can also specify that the attribute id should be
set. This models that the user requires from the system to “create” a concrete
item (which is ensured by setting id) - the book titled as above, which belongs to

4There is no explicit possibility in OWL to express the fact that a class is not instantiable.
5The rules of class inheritance, no formal definition of abstract class and the common root

of the inheritance tree are also taken from OWL.



Web Services composition – from ontology to plan by query 321

the person specified (and not to any shop - setting id guarantees that the item
was sold).

During the abstract planning phase, the object is replaced with its abstract
incarnation - the attributes id, title and owner have SET values, while the others
are set to ANY (the user does not specify any requirements about them).

Definition 2 (Object state and world state) A state of an object o is
a function Vo assigning values to all the attributes of o (i.e., it is the set of pairs

(AttributeName, AttributeValue),

where AttributeName ranges over all the attributes of o). A state of a world is
a set of states of all its objects.

In order to reason about worlds and their states we define the following two-
argument functions (the second default argument of these functions is the world
we are reasoning about):

• Exists - a function whose first parameter is an object, and which says
whether the object exists in the world,

• isSet - a function whose first parameter is an attribute of an object, and
which says whether the attribute is set (has a nonempty value),

• isConst - a function whose first parameter can be either an attribute or
an object. When called for an attribute, the function returns the value of
its const flag; when called for an object it returns the conjunction of the
const flags of all the attributes of this object.

In the process of abstract planning, i.e., when values of object attributes are
not known but it is known whether an attribute or an object was modified by the
services used before, one can apply the above three functions only. Therefore,
the abstract planner allows us only to judge whether the object of interest exists,
and what the status of its attributes (NULL, SET or ANY) is.

Example 2 In our running example of book selling, the “intermediate” worlds,
leading finally to a world which contains the book, are transformed by services.
Each particular service can test a current world state using the above functions.

4.2. Services

The ontologies collect the knowledge not only about the structure of the worlds,
but also about the ways they can be transformed, i.e., about the services. The
services are organised in a hierarchy of classes, and described both on the level
of classes (by specifying what all the services of a given class do - such a pattern
of behaviour is referred to as an abstract service or a metaservice), and on
the level of objects (concrete services). The description of a service includes,
besides specifying input and output data types, also a declaration of introducing
certain changes to a world, i.e., of creating, removing, and modifying objects.
The definition of a service is as follows:



322 D. DOLIWA et al.

Definition 3 (Service) A service is an object of a non-abstract subclass of
the abstract class Service. A service contains (initialised) attributes, inherited
from the base class Service. The attributes can be grouped into processing lists
(the attributes produces, consumes, requires), modification lists (the attributes
mustSet and maySet), and validation formulas (the attributes preCondition and
postCondition). Moreover, a service can contain a set of quality attributes.

A service modifies (transforms) a world, as well as its state. The world mod-
ified by a service is called its pre-world (input world), while the result of the
modification is called a post-world (output world). Modifying a world consists in
modifying a subset of its objects. The objects being transformed by one service
cannot be modified by another one at the same time (i.e., transforming objects
is an atomic activity). A world consisting of a number of objects can be trans-
formed into a new state in two ways: by a service which operates on a subset of
its elements, or by many services which operate concurrently on disjoint subsets
of its elements.

Example 3 The Selling service can transform the world by setting the id at-
tribute of an class instance of the class Ware (which corresponds to making con-
crete the item sold, or, in other words, to determining a unique identifier of the
item sold) and modifies the previously set attribute owner (the selling is modelled
as changing the owner of an item).

Definition 4 (Processing lists) The processing lists are as follows:

• produces - a list of named objects of classes whose instances are created
by the service in the post-world,

• consumes - a list of named objects of classes whose objects are taken from
the input world, and do not exist in the world resulting from the service
execution (the service removes them from the world),

• requires - a list of named objects of classes whose instances are required
to exist in the current world to invoke the service and are still present in
the output world.

The structure of the lists is similar to the lists of the formal parameters of the
procedures (the precise grammar specification can be found in Jarocki et al.,
2010b, the object example in Jarocki et al., 2010a). The formal parameters from
the above lists define an alphabet for the modification lists and the validation
formulas.

Example 4 As already stated, the Selling service requires an instance of Ware.
The service consumes andproduces no other objects. Contrary to it, the SelectBook

service, which models a book selection, can produce an object with id not set and
the attributes title and owner set. So, the service answers a question which of
the book providers offers the title of interest.



Web Services composition – from ontology to plan by query 323

Definition 5 (Modification lists) The modification lists are as follows:

• mustSet - a list of attributes of objects occurring in the lists produces and
requires of a service, which are obligatorily set (assigned a nonempty
value) by this service,

• maySet - a list of attributes of objects occurring in the lists produces and
requires of a service, which may (but not must) be set by this service.

The attributes of the objects appearing in the processing lists which do not
belong to the list mustSet are changed when the service is called.

In the process of abstract planning, each attribute from the list mustSet has
to be SET (the function isSet called for this attribute returns the value true).

Example 5 The Selling service sets the attributes id and owner, so they are
listed in the mustSet attribute of the service.

Definition 6 (Validation formulas) The validation formulas are as fol-
lows:

• preCondition - a propositional formula which describes the condition un-
der which the service can be invoked. It consists of atomic predicates over
the names of objects from the lists consumes and requires of the service
and over their attributes, and is written in the language of the proposi-
tional calculus (atomic predicates with conjunction, disjunction and nega-
tion connectives). The language of atomic predicates contains comparisons
of expressions over attributes with constants, and functions calls with ob-
ject names and attributes as arguments. In particular, it contains calls of
the functions isSet and Exists.

• postCondition - a propositional formula which specifies conditions satisfied
by the world resulting from invoking the service. The formula consists
of atomic predicates over the names of objects from the lists consumes,
produces and requires of the service and over their attributes. To the
objects and attributes one can apply pseudofunctions pre and post which
refer to the state of an object or an attribute in the input and the output
world of this service, respectively. By default, the attributes of objects listed
in consumes refer to the state of the pre-world, whereas these in produces

and requires - to the state of the post-world.

The validation formulas are built in a way similar to the expressions in the
high-level programming languages. However, for abstract planning we use their
reduced forms which are DNF formulas (i.e., formulas in a disjunctive normal
form), with atomic predicates being (possibly negated) calls of the functions
isSet or Exists. We assume that an arbitrary predicate, being a function over
the set of objects and their attributes, is transformed by replacing arguments of
functions by the conjunction of calls of isSet over attributes. Again, a complete
grammar of validation formulas for the abstract planner can be found in Jarocki
et al. (2010b). Some examples illustrating the above definition are provided in
the further part of this paper.



324 D. DOLIWA et al.

In order to be able to provide some additional information enabling compar-
ison of the quality of services, the service classes can contain quality attributes
which are set while a service is executed. These attributes can be used in user
queries (in an execution condition and in a quality function, see Section 4.3).
They can be introduced, among others6, by base abstract services which collect
certain common features of services, e.g. “chargeable services” (assigned with
the attribute of price) or “time-taking services” (assigned with timing interval).
The above attributes are not used in the abstract planning.

Example 6 In our running example of book selling, to disable activation of
Selling on a Ware item already sold we can extend its preCondition by adding
a conjunct specifying that id must be unset.

4.2.1. Service types, inheritance, metaservices

Each class of services (service type) has certain features common to all the
instances of this type. They are specified by the instance of the class called
metaservice or abstract service (i.e., an object of the service which describes the
whole class of services).

A description of a concrete service should be understood as a list of dif-
ferences or as narrowing the template introduced as the metaservice. More
precisely, a concrete service can overload the processing lists of its metaser-
vice by narrowing the class of objects it works on. This is done by using, in
an appropriate list, a formal parameter of the same name and of a restricted
domain. Moreover, a concrete service can extend the modification lists of its
metaservice only by declaring that it modifies attributes added by a narrowed
class of parameters. This prevents the definition of a concrete service from being
inconsistent with the definition of the metaservice. Considering the validation
formulas, each formula preCondition (postCondition) of a concrete service is
a conjunction of the precondition (postcondition respectively) of the metaser-
vice and the explicitly given preCondition (postCondition respectively) of the
concrete service.

As far as inheritance is concerned, a child class can extend the sets of
objects which are consumed, produced and required by its base class, using the
appropriate processing lists to this aim (so, it is allowed to extend the subset of
a world influenced by a service). It can also narrow the types of parameters in
the processing lists, which is done by using the same names of formal parameters
as in the lists of the base class. By default (when its lists are empty) a child
class inherits the specification of the parent class. The modification lists can
be extended in a similar way (i.e., by extending the sets of attributes which are
modified). The declarations of setting attributes are not restricted only to the

6The decision whether the additional quality attributes are introduced by separate abstract
“second-level” classes, or are defined on the level of non-abstract classes of services (with
concrete representatives) is left to an ontology designer. The suggestions of the authors are
presented in Footnote 7.



Web Services composition – from ontology to plan by query 325

attributes added by the child class in the lists produces and requires - it is also
allowed to modify attributes not changed by the metaservice of the parent class.
The validation formulas are handled in a way similar to the case of concrete
services - an explicitly specified condition of a derived class is conjuncted with
the appropriate condition from the parent class.

As we have mentioned before, the attributes of the objects appearing in the
processing lists which do not belong to the union of the lists mustSet and maySet

are not changed when the service is called. This, however, does not apply to
the attributes added to the modification lists in the narrowed types, introduced
by concrete services. Potential inconsistencies, resulting from concatenation
of processing and modification lists in child classes of services, are treated as
ontology errors7.

4.2.2. Modifying a world

Separating calls of single services is one of the key concepts in our approach.
A service transforms a world, irrespectively of how many services have been
activated on this world so far. The result of executing a service is a (possibly
new) world with a new state. However, the pre- and post-world of a service
satisfy certain conditions described in the following definitions:

Definition 7 A service u is enabled (executable) in the current state of a
world s if:

• each object o from the lists consumes and requires of u can be mapped onto
an object in s, of the class of o or of its subclass; the mapping is such that
each object in s corresponds to at most one object from the above lists;

• for the objects in s which, according to the above mapping, are actual values
of the parameters in consumes and requires the formula preCondition of
u holds,

• the list mustSet of u does not contain attributes for which in the objects
which are actual values of the parameters the flag const is set.

Definition 8 A service u executable at the current world s produces a new
world s’ in which:

• there are all the objects from s, besides these which in the mapping done
for executing u were actual values for the parameters in consumes,

• there is a one-to-one mapping between all the other objects in s’ and the
objects in the list produces of u, such that each object o from the list
produces corresponds to an object in s’ which is of a (sub)class of o;

7We do not assume an “expanded” inheritance hierarchy of services, contrary to hierarchy
of types of their “objects”. A suggested model of service inheritance is three-level: on the first
level the class Service as a “carrier” of basic attributes, on the second level classes carrying
additional quality attributes, and on the third level classes of services with definitions of their
metaservices.



326 D. DOLIWA et al.

• for the objects which, according to the above mappings, are actual values
of the parameters in the processing lists the formula postCondition holds,

• in the objects which are actual values of the appropriate parameters the
flags const of the attributes listed in mustSetConst of u are set, and the
attributes listed in mustSet of u have nonempty values,

• assuming the actual values of the parameters as above, all the attributes
of all the objects existing both in s and in s’ which do not occur neither in
mustSet nor in maySet have the same values as in the world s. Moreover,
all the attributes listed in mustSet or maySet which are of nonempty values
in s, in s’ are of nonempty values as well.

Fig. 2 presents an example of modifying a world by a service. The ser-
vice requires one object of a particular type (A) with one attribute (x) set to
a nonempty value. The service changes another attribute (y) of the object
and additionally produces a new object of a different class (B) with a partially
initialized state.

Figure 2. An example of modifying a world by a service

4.3. Queries

A user describes its goal in a declarative language defined by the ontology. He
specifies (possibly partially) an initial and a final (desired) world, possibly giving
also some evaluation criteria, by means of a query. The query is defined in the
following way:



Web Services composition – from ontology to plan by query 327

Definition 9 (Query) A query consists of the following elements:

• an initial domain - a list of named objects which are elements of the initial
world. The form of the list is analogous to the form of the list produces

in the description of a service;

• an initial clause specifying a condition which is to be satisfied by the initial
world. The clause is a propositional formula over the names of objects and
their attributes, taken from the initial domain. The grammar of the clause
is analogous to the grammar of the preCondition;

• an effect domain - a list of named objects which have to be present in the
final world (i.e., a subset the final world must contain);

• an effect clause specifying a condition which has to be satisfied by the fi-
nal world. The clause is a propositional formula over names of objects
and their attributes from both domains defined above; references to the
initial state of an object, if ambiguous, are specified using the notations
pre(objectName) and post(objectName), analogously as in the language
used in the formulas postCondition of services. The grammar of the effect
clause is analogous to the grammar of the postCondition;

• an execution condition - a formula built over services (unknown to the user
when specifying the query) from a potential run performing the required
transformation of the initial world into a target world. While constructing
this formula, simple methods of quantification and aggregation are used;

• a quality function - a real-valued function over the initial world, the final
world and services in a run, which specifies a user’s criterion of valuating
the quality of runs. The run of the smallest value of this function is
considered to be the best one.

The last two parts of the query are used after finishing both the abstract plan-
ning phase and the first part of concrete planning, which adjusts types and
analyses pre- and postconditions of concrete services.

On the abstract level, the initial clause and the effect clause are specified
as DNF formulas over the predicates isSet and Exists. This means that (not
taking into account the variants of worlds following from the disjunctive form)
the query can be reduced to enumerating:

• objects in the initial world,
• objects in the final world, carrying information as to which of them were

present in the initial world (which is done by using the same names of
formal parameters),

• objects that are to be removed from the initial world,
• attributes, which in the final world must have nonempty values,
• attributes, which in the final world must have empty values (must be null).



328 D. DOLIWA et al.

In other words, a list of objects in the initial domain and the DNF form of the
initial clause generates a number of alternative initial worlds whose states (values
of attributes) are set according to (possibly negated) predicates occurring in the
initial clause.

For a better efficiency of the composition we introduce an equivalence on
worlds w.r.t. the query considered.

Example 7 A user can formulate a query by the following description: the
initial domain is empty (“I have nothing”), the effect domain contains one object
of the Book class (“I need a book”), satisfying a condition of setting of id and
equipped with certain title and owner attributes (“I want to be an owner of the
book titled as follows”).

Definition 10 (Highlighted objects) An object is called highlighted w.r.t.
a user’s query if its name occurs in both the initial and the effect domain of this
query.

Definition 11 (Equivalent worlds) Two worlds s and s’ are called equiv-
alent if the sets of their highlighted objects are equal, and their complements are
equal when the names of objects are left aside (i.e., for each object o1 from one
set there is exactly one corresponding object o2 from the second set, such that
o1 and o2 are objects of the same class, and the values of all the attributes in
both objects are the same).

4.4. Summarizing the concepts by examples

To make the above definitions more comprehensible, we describe below these
concepts in a very short and intuitive form, followed by some simple examples.

The objects model things of the real world, aggregated by the concept of
classes. Each object is equipped with a set of attributes, defined in the class
the object belongs to. On the abstract level we do not consider exact values
of the attributes, but only the fact that they are set, not set, or their value
is meaningless or not defined. For example, the class Ware models the subset
“sellable items” of all the things. It equippes its objects with the attributes name,
owner, location, and the attribute id which enables to distinguish between an
abstract and a particular instance of the class (a “concrete” ware has a concrete
identifier, e.g. a serial number).

We use the inheritance mechanism in a classical manner. A derived class
carries new attributes (comparing with its base class). For example, the class
Book extends the class Ware by the attributes which describe its author and title.
Objects of a derived class can be used in any context in which objects of its
base class are expected to occur.

A world is a set of objects. A subset of a world (including the empty subset)
can be transformed by a service. Invoking a service results in enriching the world



Web Services composition – from ontology to plan by query 329

by new objects (according to the contents of the list produces of the service),
deleting the objects from the subset transformed (according to the contents of
the list consumes) or changing their attributes (which follows from the contents
of the list requires, mustSet and maySet of the service). The description of the
service restricts its invocation ability to worlds whose objects satisfy conditions
on attributes (specified by the preCondition). It also defines conditions which
must be satisfied after invoking the service (postCondition). For example, any
service of the SelectWare class produces a new object of the class Ware (in par-
ticular, a Book) and does not require any objects in the subset transformed.
In contrast, any service of the class Selling works on a subset containing one
object of the class Ware, which is transformed by setting the previously unset
attribute id and resetting the attribute owner.

The inheritance among services enables to create some more precise classes
than SelectWare mentioned above, for example a class SelectBook. The class
differs from the previous one in such a way that we can be sure that it produces
an object of the class Book (and not any other Ware item which is not a Book)
with the attribute title set.

A user can express his goal by defining the initial world he “has” and the
world which he requires, using the same mechanism which is utilized in the
services’ descriptions. For example, he can specify that he wants to transform
the empty world into another, containing one object of the class Book which has
the attributes id, title and owner set (more precisely: owner should be set to
"him", and title - to a given title of his interest). This can model buying in
the real world. We can see that the goal can be attained by the sequence of
invokings: SelectBook and then Selling.

5. Abstract planning

The aim of a composition process is to find a path in the graph of all the possible
transitions between worlds which leads from a given initial world to a given final
world, specified (possibly partially) in a user’s query, using no other knowledge
than that contained in the ontology. The composition is three-phase; the first
phase we are dealing with in this work consists in finding all the sequences of
service types (abstract services) which can potentially lead to satisfying the
user’s goal. The result of the abstract planning phase is an abstract graph.

The abstract graph is a directed multigraph. Its nodes are worlds in certain
states, while its edges are labelled by services. Notice that such a labelling
carries an information what part of a input world (node) is transformed by a
given service (which is specified by actual values of the parameters in consumes

and requires of the service), and what part of the output world (node) it affects
(the lists produces and requires of this service). We distinguish some nodes of
the graph - these which have no input edges represent alternative initial worlds,
while these with no output edges are alternative final worlds. A formal definition
of the abstract graph is as follows:



330 D. DOLIWA et al.

Algorithm 1 Computing an abstract graph of services
Require: a query ϕ = (ϕS , ϕE), a maximal search depth k.
Ensure: a graph G

a queue Q
put the world described by ϕS into Q, assign them the depth 0, mark them as initial
while Q is nonempty do

get s from Q

if s processed then

continue;
end if

if s satisfies ϕE then

mark s as final, mark s as processed
continue;

end if

if depth of s greater than k then

mark s as processed
continue;

end if

for each service S defined in the system do

//check whether the world s can be processed by S:
if s does not contain certain objects from S.consumes, S.requires then

continue;
end if

if s does not satisfy S.preCondition then

continue;
end if

generate all the subsets of the objects in s satisfying S.preCondition and such that the
attributes listed in S.mustSet have the flag const not set
for all element sp do

create the world s′p resulting from transforming sp by S

if exists v ∈ G such that v ≡ s′p then

add the edge sp
S
−→ v to G

add v to Q
else

add to G the node s′p and the edge sp
S
−→ s′p

add s′p to Q

end if

end for

end for

mark s as processed
end while

Definition 12 An abstract graph is a tuple GA = (V, Vp, Vk, E, L), where

• V is a subset of the set S of all the worlds,
• Vp ⊆ V is a set of initial nodes,
• Vk ⊆ V is a set of final nodes,
• E ⊆ V × V is a transition relation s.t. e = (v, v′) ∈ E iff L(e) transforms

the world v into v′, where
• L : E −→ U is a function labelling the edges with services.

Algorithm 1 presents a forward-search-mode algorithm for automatic com-
position of abstract services. The input for the algorithm consists of an (OWL)
ontology containing services and objects they operate on, a users query specify-
ing an initial and a final world, and a natural number k which limits the depth
of the search. The value k bounds the maximal number of services which can
be composed to transform the initial world into the final world. The algorithm



Web Services composition – from ontology to plan by query 331

builds an abstract graph which shows how the worlds are transformed by ex-
ecuting services: its nodes correspond to the worlds, while the edges - to the
services executed. The graph built by the algorithms presents all the possible
scenarios of transforming the initial world into the final one using at most k
services.

For a better readability we present a basic version of the algorithm, without
optimisations (see Algorithm 1). For simplicity of description, we distinguish in
the query a part referring to an initial world (ϕS) and a part referring to a final
world (ϕE).

6. Implementation

The composition method presented above has been implemented. Our abstract
planner can be accessed via a graphical user interface, or from the level of Java
via API. The program is implemented in Java, using the following components:

• the graph library jGraphT (representation on graphs and operations on
them),

• the parser ANTLR of the AtLa and QLa languages (see below),
• Jena library (accessing OWL files generated by the Protege tool).

Figure 3. An architecture of the application

The architecture of the tool is shown in Fig. 3. In the implementation, the
ontologies are modelled using the OWL language and the Protege environment.
We define a hierarchy of types which are either objects of classes derived from
the class Service (representing services), or objects which do not inherit from



332 D. DOLIWA et al.

the above class (modelling items to be processed by services)). The conditions
on the input and on the output world of each service are specified in the AtLa
(ATtribute LAnguage) language using attributes of services. The ontology con-
tains both types of services and concrete instances of services. An input to the
composition system is a query, in which the user specifies an initial world Wb
and a final world Wf, using the QLa (Query LAnguage) language. Given a
query, the abstract planner builds an abstract graph, which describes possible
solutions using types of services. Although the algorithm operates in BFS mode,
it can also work as a forward search (in such a case the start state is given by
Wb, and the termination condition is given by Wf) or as a backward search
(the start state is then given by Wf, and the termination condition - by Wb).

In order to provide a nice representation of the results, the graph produced is
optionally represented in BPEL. This enables using visualisation and processing
tools designed for BPEL.

7. Example

In Doliwa et al. (2010), where implementation of ideas from Penczek, Półrola
and Zbrzezny (2010) is described, the authors present some experimental results,
based on a test ontology created using the presented formalism. We provide one
of these examples.

We model an environment of services related to publishing, including several
aspects of preparing publications: in our ontology there are services providing
contents, photos, typesetting, publishing in the Internet, printing etc., as well
as objects like books, servers and web sites. Figs. 4 and 5 display the ontology
used in the example in a graphical form. Because of the complexity we do
not mention here a complete formal description of the dependencies between
the classes, presenting only some selected relations between the objects and the
services. All these relations are based on the same idea: some objects can be
produced under the condition that we have provided the objects which are
required by the producing service to its activation. The required objects must
have specific features, which are limited to set/unset conditions on the abstract
level of planning. For example, if we require a web site with photos, an object
of the Photo class must occur at the path of modified worlds; it can be created
by another service (e.g. PhotoService) or provided by the user (in the definition
of the initial world). The ipAddress of the Host object can be modified only by
some service of the class Hosting, so if the requirement on the address appears
in the query, then the plan will contain an invocation of that service.

A simple user’s query could be stated informally as ”I want to obtain a
website on a particular topic, of a specified functionality and with a certain
graphical layout, under a given address; I have a fixed budget to spent, and
everything should be done until a certain date”, or ”I need a book on some topic,
printed in n copies, of a high quality, for a price not bigger than k, at the date
dd–mm–yyyy”. The queries are converted to enumerations of objects in the



Web Services composition – from ontology to plan by query 333

Figure 4. The ontology for the example (objects part)

initial world and the effect world. In the abstract planning phase the conditions
referring to values of attributes are converted to requirements of having the
attributes set. Depending on the query, the planner can produce various plans
without any imperative assumptions not included in the ontology.

Fig. 6 presents a part of the plan generated for the user’s query displayed in
the left panel of the screenshot (requiring a website of a certain IP address, and
a certain layout and code). The full version of the example with the queries,
generated plans and a performance analysis can be found in Doliwa et al. (2010).



334 D. DOLIWA et al.

Figure 5. The ontology for the example (services part)

8. Final remarks

The system presented in this article is on its early stage of development. Our
aim is to prepare an easy mechanism of an automatic composition, which can be
applied to various domains. The areas of our particular interest are e-commerce
and web support for medical services. The approach presented seems to be
applicable. The first stage of concretising an abstract plan, based on translation
to automata and using a SAT-solver to searching for an appropriate scenario,
was presented in Penczek, Półrola and Zbrzezny (2010).

Besides a further development of concretising methods, the directions of our
future research involve complete specification of the grammars for the validation
formulas of concrete services, and the problem of building proxies connecting
the composition system with real-world web services, together with mechanisms
enabling service registration. It seems also necessary to extend the languages of
formulas to a complete first-order language (with quantification). In particular,
the modification lists should become elements of validation formulas, which
would enable specifying optional modifications of a world.



Web Services composition – from ontology to plan by query 335

Figure 6. An example plan

References

Ambroszkiewicz, S. (2003) EnTish: An Approach to Service Description and
Composition. ICS PAS, Warsaw.

Bell,M. (2008) Introduction to Service-Oriented Modeling. John Wiley & Sons.
DAML-S (2003) DAML-S (and OWL-S) 0.9 Draft Release.

http://www.daml.org/services/daml-s/0.9/.
Doliwa, D., Horzelski, W., Jarocki, M., Niewiadomski, A., Penczek,

W., Półrola, A., Szreter, M., and Zbrzezny, A. (2010) Web Ser-
vice Composition Toolset. In: Proc. of the Int. Workshop on Concurrency,
Specification and Programming (CS&P’10). Informatik-Berichte, 237 (1),
Humboldt University, 131–141.

Jarocki, M., Niewiadomski, A., Penczek, W., Półrola, A. and Szreter,
M. (2010a) A Formal Approach to Composing Abstract Scenarios of Web
Services. In: Proc. of the 18th Int. Conf. Intelligent Information Systems
(IIS 2010). Wydawnictwo Akademii Podlaskiej, Siedlce, 3–22.

Jarocki, M., Niewiadomski, A., Penczek, W., Półrola, A. and Szreter,
M. (2010b) Towards Automatic Composition of Web Services: Abstract
Planning Phase. Technical Report 1017, ICS PAS, Warsaw.

Klusch, M., Gerber, A. and Schmidt, M. (2005) Semantic Web Service
Composition Planning with OWLS-XPlan. In: Proc. of the 1st Int. AAAI
Fall Symposium on Agents and the Semantic Web. AAAI Press, 55–62.



336 D. DOLIWA et al.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A.,
Veloso, M., Weld, D. and Wilkins, D. (1998) PDDL - The Planning
Domain Definition Language - Version 1.2. Technical Report TR-98-003,
Yale Center for Computational Vision and Control.

Penczek, W., Półrola, A. and Zbrzezny, A. (2010) Towards Automatic
Composition of Web Services: A SAT-Based Phase. In: Proc. of the
2nd Int. Workshop on Abstractions for Petri Nets and Other Models of
Concurrency and of the Int. Workshop on Scalable and Usable Model
Checking (APNOC’10 + SUMO’10). University of Minho, Braga, 76–96.

Ponnekanti, S.R. and Fox, A. (2002) SWORD: A Developer Toolkit for
Web Service Composition. In: Proc. of The Eleventh World Wide Web
Conference (Web Engineering Track), Honolulu, Hawaii, USA, 83-107.
http://radlab.cs.berkeley.edu/people/fox/static/pubs/pdf/c09.pdf.

Rao, J. (2004) Semantic Web Service Composition via Logic-Based Program
Synthesis. Ph.D. thesis, Dept. of Comp. and Inf. Sci., Norwegian Univer-
sity of Science and Technology.

Rao, J., Küngas, P. and Matskin, M. (2004) Logic-based Web Services Com-
position: From Service Description to Process Model. In: Proc. of the
IEEE Int. Conf. on Web Services (ICWS’04). IEEE Computer Society,
446–453.

Rao, J. and Su, X. (2004) A Survey of Automated Web Service Composition
Methods. In: Proc. of the 1st Int. Workshop on Semantic Web Services
and Web Process Composition (SWSWPC’04). LNCS 3387, Springer-
Verlag, 43–54.

Redavid, D., Iannone, L. and Payne, T. (2008) OWL-S Atomic Services
Composition with SWRL Rules. In: Proc. of the 4th Italian Semantic
Web Workshop: Semantic Web Applications and Perspectives (SWAP’07).
CEUR Workshop Proceedings 314, CEUR-WS.org, 51–60.

Sirin, E., Hendler, J. and Parsia, B. (2003) Semi-automatic Compositions
of Web Services Using Semantic Description. In: Proc. of the Int. Workshop
’Web Services: Modeling, Architecture and Infrastructure’ (WSMAI’03).
ICEIS Press, 17–24.

SOAP (2007) SOAP Version 1.2. http://www.w3.org/TR/soap.
Srivastava, B. and Koehler, J. (2003) Web Service Composition - Current

Solutions and Open Problems. In: Proc. of the Int. ICAPS 2003 Work-
shop on Planning for Web Services. AAAI, 28–35.

UDDI (2005) Universal Description, Discovery and Integration v3.0.2 (UDDI).
http://www.oasis-open.org/committees/uddi-spec /doc/spec/v3/
uddi-v3.0.2-20041019.htm.

WS-BPEL (2007) Web Services Business Process Execution Language v2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

WSDL (2001) Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.


