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Abstract: We describe a system allowing a mobile robot equip-
ped with a 3D laser range finder to navigate in the indoor and out-
door environment. A global map of the environment is constructed,
and the particle filter algorithm is used in order to accurately deter-
mine the position of the robot. Based on data from the laser only,
the robot is able to recognize certain classes of objects like a floor,
a door, a washbasin, or a wastebasket, and places like corridors or
rooms. For complex objects, the recognition process is based on the
Haar feature identification. When an object is detected and identi-
fied, its position is associated with the appropriate place in the global
map, making it possible to give orders to the robot with the use of
semantic labels, e.g., “go to the nearest wastebasket ”. The obstacle-
free path is generated using a Cellular Neural Network, accounting
for travel costs with distance or ground quality. This path planning
method is fast and in comparison with the potential field method
it does not suffer from the local minima problem. We present some
results of experiments performed in a real indoor environment.
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1. Introduction

The ability to navigate is the most fundamental competence for a mobile robot.
This task is defined as a combination of three fundamental elements: map build-
ing, localization and path planning.

Knowledge about the robot environment is usually encoded in a form of a
map. Most methods focus on the following two categories:

• Metric maps, Thrun et al. (2005); Elfes (1987); Moravec and Elfes (1985),
which represent some geometric features of the environment. One of the
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most popular geometric representation is the occupancy grid. The en-
vironment is represented as a grid of cells. Each cell is either occupied
(a part of an obstacle) or free (a part of the free from obstacles space).
This kind of representation allows us to combine information from various
sensors in different positions of the robot. It also allows fast generation
of a collision-free path. However, the method suffers from two main dis-
advantages: the size of the map grows with the size of the environment
and the accuracy of the map largely depends on the size of a cell (con-
sequently, if a very precise map of environment is required, then a huge
amount of memory is necessary). For these reasons an alternative method,
called the feature-based map, has been proposed. An example of this rep-
resentation is shown in Fig. 1b. All obstacles are represented as a list
of segments (Latombe, 1992). This kind of maps is attractive because of
their compactness and they are very useful during the process of localiza-
tion. However, the path-planning based on this kind of representation is
time-consuming. Metric maps represent the location of obstacles without
referring to non-geometrical features such as texture, color etc.

• Topological maps (Latombe, 1992; Remolina and Kuipers, 2004) represent
relations between distinctive parts in the environment. Formally, it has
a form of a graph - nodes are used to denote some areas or places in the
environment, and arcs denote adjacency. Fig. 1c shows the topological
map of the environment.

a) b) c)

Figure 1. Different maps of the environment: a) grid-based map, b) feature-
based map, c) topological map

These two representations can be combined into a hybrid map, which con-
tains both metric and topological information (Pfingsthorn et al., 2007).

The robot has to possess the semantic knowledge about the environment in
order to improve its capabilities. Recently, researchers have been focused on
the semantic maps that contain data not only about the geometry and relation
between parts of the environment but also about the meaning of the detected
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objects (Rusu et al., 2008; Mozos et al., 2007; Siemiątkowska et al., 2009).
Without this kind of information, the human-robot interaction is very difficult.

An environment can be divided into places: corridors, rooms, kitchens (inside
a building), or grass, roads, etc. (outside of a building). The semantic labels
attached to the places give not only information about the names, but also
about functionalities: the doorway indicates the transition between different
rooms, meal can be prepared in the kitchen etc. We assume that the robot has
to recognize not only type of room in which it is located, but also objects of
certain classes.

The mapping problem is strictly related to the localization. The robot needs
to know its position in the environment in order to build a map and to perform
a given task. The most widely used method is the odometry. It is inexpensive
and provides a good short time accuracy, but errors in determining the position
of the robot increase proportionally with the distance traveled by the vehicle. If
the robot travels for a prolonged period of time additional localization methods
should be applied. Usually the Kalman filter method is used to continuously es-
timate the robot position (Olson, 2000; Grewal and Andrews, 2001; Weingarten
and Siegwart, 2005). In this method, the encoder readings are used as inputs
and sensors measurements as observations. Determining the displacement of
the robot in relation to the landmarks allows us to update the position of the
robot in the environment. An alternative and efficient way of localization are
the particle filters (Rekleitis, 2004; Fox, 2003). The key idea of the method
is to represent the possible robot locations as a set of N samples (particles).
Each sample consists of a pair (q, w), where q is a state vector - coordinates
of a possible position of the robot, and w is a weighting factor, w ∈ [0, 1]. In
the case of a human-robot interaction the robot has additionally to possess the
semantic information about the places. For example, when the robot is asked
to go to the kitchen and bring back a cup, it has to know its position, where
the kitchen is and it has to the possess abilities to distinguish a cup from other
objects.

The next step is to plan a collision-free path to the goal and to execute the
task. The aim of the path planning is to find the optimum collision-free path be-
tween the starting position of the robot and the target location. Various meth-
ods are proposed to solve the problem (Latombe, 1992; Chu and Eimaraghy,
1992; Buckley, 1989). They can be classified as global or local. Global methods
(Latombe, 1992; Bennewitz et al., 2000) require to have the map of the whole
environment and are time consuming. When the local path planning algorithm
(Buckley, 1989; Bennewitz et al., 2000; Barraquand et al., 1992; Azarm and
Schmidt, 1996) is used, then only the information about obstacles in the robot
vicinity is taken into account. Although the method is fast, it can converge to
a local minimum and will not provide the correct solution.

The problem of finding the optimal collision-free path is strictly related to
the type of the environment. In the case of indoor navigation the optimum
path is the safest path, the robot has to move far from the obstacles. The
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distance traveled by the robot is less important than in the case of the outdoor
navigation. When the robot moves outside of the building, the cost of traveling
depends on the type of the ground. It is less expensive, in terms of time and
energy, to move on a road than on grass.

In this article, the system which allows the robot to navigate in the outdoor
and indoor environment is presented.

Data obtained from a 3D laser range scanner are analyzed and semantic
labels are attached to the detected objects and places (Fig. 2 shows an example
of such a map). The environment is represented as a grid of cells and a list of
semantic labels is attached to each cell. The robot finds the optimal collision-
free path based on the geometric and semantic information stored in the map.
The goal for the robot is described using semantic labels. It is possible to ask
the robot to move towards the door or to the washbasin. In the case when
the same label is attached to many objects, the least expensive path is found
automatically.

Figure 2. The semantic grid-based map of the environment

2. Perception and object classification

Perception of the environment (Siemiątkowska et al., 2009) is one of the crucial
problems in mobile robotics. During the path-planning process, a mobile robot
must be able to detect certain classes of objects and landmarks. This makes
possible to estimate the correct position of a robot, as well as to identify its
goals.

One of the most common ways to perceive the environments is to use visual
CCD cameras. Images from such cameras can be used to detect objects on the
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basis of, e.g., appearance (Kröse et al., 2007) and to estimate robot position
and object size when using the stereoscopic vision. There are, however, some
limits related to this approach. For example, light conditions vary significantly,
making detection process difficult and often unreliable geometric information
calculated from stereo-vision is limited due to large errors.

Recently, due to cost decrease, the laser range finder scanners gain more
and more popularity in the field of mobile robotics. Such scanners can give 2D
information about the distance in a single plane or full 3D data. It is known
that data from 3D scanners can be used to detect and classify wide range of
objects (Chen and Medioni, 1991). One of the most common methods is to
use the well-known ICP algorithm (Besl and McKay, 1992). In this paper we
describe another approach, which is essentially based on the image analysis field.
Similar work has been considered with the use of images representing distance
and reflectance (Nüchter et al., 2004, 2005). One of the main advantages when
compared to classic methods is its speed and low memory consumption.

The experiments described here have been performed with the help a mobile
robot “Elektron”, built at the Institute of Automatic Control and Robotics of
Warsaw University of Technology. The basic sensor is the Sick LMS 200 indoor
laser mounted on a rotating support enabling a 3-dimensional representations
of the environment. The head can rotate the scanner around the horizontal axis
within the angular range θ from -15◦ to +90◦ (collecting a single 3D scan in
such setup can take as long as 60s). The scanning laser enables us to measure
the distance to obstacles within −90◦ ≤ φ ≤ 90◦ with the resolution of 0.5◦.
The device provides measurements as a set of 3-tuples {φi, θi, ri} where φ and
θ represent the horizontal angle of the laser ray and vertical inclination angle
of the laser base, respectively, and ri is the measured distance. The usual next
step of data analysis is to transform these values into a point cloud, which is a
set of 3D points in the Cartesian coordinate system with the robot at its center.
However, we propose here a rather different and novel approach in which we
convert the measurements into a 2D image and then apply fast and well-known
algorithms used in image analysis.

2.1. Image construction and object recognition

The most straightforward way to transform data from the laser scanner is to
use (φ, θ) as pixel coordinates and assign pixel color according to the measured
distance. However, since this approach does not lead to a satisfactory method of
representing the geometrical properties of the environment, we propose to map
three coordinates associated with normal vector for each pixel to RGB values
of an ordinary color image. Using simple trigonometry for each pixel (i, j), we
obtain its position p in 3D Cartesian coordinates with the robot at its center
(a standard procedure for point cloud methods). Then four neighboring points
p1,...,4 with (i± 1, j− 1), (i± 1, j +1) are considered (alternatively we take into
account more points, though it does not give any improvement to the overall



442 B. SIEMIĄTKOWSKA, J. SZKLARSKI, M. GNATOWSKI

procedure). Let p1,...,4 be vectors pointing from p to p1,...,4, accordingly. If a
point pn is too far or too close to p, including it in the calculation might lead
to spurious errors. Therefore all vectors pn whose length is not fulfilling the
inequality

ǫ0 ≤ |pn| ≤ ǫ1,

are rejected; the thresholds ǫ0 and ǫ1 are, for our laser, 0.5 cm and 30 cm
respectively. The normal vector n′ is calculated as

n′ = p1 × p2 + p2 × p3 + p3 × p4 + p4 × p1,

where × is the cross product, n′ is normalized afterwards, n = n′/|n′|. A color
RGB image is constructed by assigning values of the coordinates nx,ny,nz as
colors red, green and blue accordingly. Such images are later used in the object
detection process.

In order to detect objects of interest on an RGB image, and place them onto
a global, semantic map we distinguish two procedures:

• Rule-based identification of areas: after the simple segmentation, a rule
based classifier is applied in order to detect objects like the floor, doors or
grass (outdoor)

• Object identification with the Haar features: for more complex objects,
we use a classifier based on the Haar features. Each single classifier is
trained for the detection of one class of objects.

Details concerning the above methods will not be presented here, and can be
found in our other papers, Borkowski et al. (2010) or Gnatowski et al. (2010).
A sample point cloud and the corresponding RGB image for an indoor scene is
depicted in Fig. 3.

Figure 3. Left: A point cloud representing a single scene in the indoor envi-
ronment. The robot is located at position (0, 0) and faces towards the stairs.
Right: The RGB image constructed from the corresponding point cloud. Black
rectangles denote regions classified as “stairs” by the Haar features classifier
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3. Map building and place classification

In our method a map represents both geometric and semantic features of the
environment.

If the geometric representation is used, it is assumed that the robot operates
in an R2 or R3 space W which is called workspace. This space contains objects
Oi ∈ W , Oi is the set of points occupied by the object i. In the proposed in this
paper algorithm i-th object is described by the following parameters: (si, u

o
i , r

o
i ),

where si is the semantic label, e.g. chair, table, wall etc., uo
i ∈ R represents the

traversability level of the object, roi ∈ R is the radius of the influence of the
object. Parameters uo

i , r
o
i are used during the path planning and are described

in Section 5.

3.1. Indoor environment

In our approach we suggest to use the Hough transform (Ballard, 1981; Duda
and Hart, 1972) in order to distinguish the corridor from other kinds of places.
For places that are not as easy to define as corridor, the classification is es-
sentially based on the semantic labeling of objects which are recognized. For
example we can find a washbasin in a bathroom, a computer in a laboratory
and doors near the doorway.

The Hough transform is a technique for identifying the locations of certain
types of features (usually segments) in a digital image. In the image space, the
straight line can be described as:

x cosα+ y sinα− d = 0, (1)

where the parameter α is an angle between a segment perpendicular to the line
and OX axis, and parameter d is the shortest distance between the origin and
the line.

The transform is implemented by quantizing the parameter space (α, d) into
finite intervals (accumulator cells). As the algorithm runs, each point (x, y)
“votes” for the family of lines it belongs to and the corresponding accumulator
cells are incremented. Resulting peaks represent the longest segments in the
image. An important advantage of the Hough transform is its tolerance towards
noise and holes in the boundary line.

The data obtained from 2D laser range finder can be presented as an image.
Fig. 4a presents the laser reading obtained in a room and Fig. 5a data taken in
the corridor. If the Hough transform is applied to data obtained in a corridor,
there are two evident peaks which represent walls. In the case of rooms there
are many peaks. Fig. 4b presents the Hough transform of 4a and Fig. 5b the
Hough transform when the data is taken in the corridor(Fig. 5a).

If the area is not classified as a corridor then the semantic label is attached
based on classes of objects, which are observed. For example laboratory is the
area which contains chairs, desks etc. There are stairs in the hall, and hand
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a) b)

Figure 4. Hough transform of the data in a room: a) Data taken from 2D laser
range finder, b) Hough transform, Z represents the number of votes for line
described by parameters (d, α)

a) b)

Figure 5. Hough transform of the data in a corridor: a) Data taken from 2D
laser range finder, b) Hough transform, Z represents the number of votes for
line described by parameters (d, α)
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basins in a toilet. Before we start classifying places in the indoor environment,
it is necessary to classify objects (see Section 2.1).

3.2. Outdoor environment

Generally, in our approach we distinguish two classes of the ground area: a side
walk and a grass. The classification is performed based on the “roughness” of a
terrain.

Figure 6. Places in an outdoor environment

As the measure of the “roughness” R, for each point (i, j) we use:

Ri,j = (w2 − 1)−1
∑

−w≤k 6=0≤w

∑

−w≤l 6=0≤w

ni,j · nk,l, w > 1,

where w is the width of a window for which the averaged dot product of the
normal vector at (i, j) and its neighbors is calculated. Then, for each area A, one
can further divide it into smaller areas A′, squares having the width of w′. For
each A′, its averaged „roughness”, R̄ is calculated. For example, for the outdoor
environment, w = 2, w′ = 5, an area for the sidewalk has LR̄ ≈ 1, whereas the
region covered by grass has R̄ ≈ 0.95. The value of R̄ gives information about
the traveling cost through A′ for the mobile robot. This cost is later used in
the path planning algorithm. Results of the classification for a sample outdoor
scene are shown in Fig. 7.

Similarly, natural and man-made elements of the environment can be distin-
guished with this approach (e.g., buildings with flat walls and trees).

4. Localization

We assumed that the robot is placed initially at the point qi, i = 0, q0 =
(x0, y0, θ0), where (x0, y0) ∈ W and θ0 describes the orientation of the robot in
the global coordinate system. The data taken at q0 are analyzed and represented
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Figure 7. Left: Photo of an outdoor scene. Right: top: an RGB image repre-
senting normal vectors constructed with the use of data from laser range finder,
bottom: result of a rule-based classification, A-sidewalk (a flat terrain with low
travel cost), B-grass (a terrain with average „roughness” coefficient R̄ ≈ 0.95;
travel cost is higher than for the sidewalk)

in the form of the map. When the robot moves to the next position qi+1, it
gathers data from the laser scanner, which are then transformed into a point
cloud which, in turn, is analyzed and transformed from the local into the global
coordinate system. To perform this task the robot has to know its position qi,
so it has to find the following values: (∆x, ∆y, ∆θ), where:

∆x = xi+1 − xi,

∆y = yi+1 − yi,

∆θ = θi+1 − θi.

(2)

A sample transformation for two consecutive scans is depicted in Fig. 8.

In our approach, the particle filter algorithm (Rekleitis, 2004; Fox, 2003; Fox
et al., 19999; Olson, 2000) is used to simultaneously estimate the robot position.
In this method, the possible locations of the robot are represented as a set of
pairs (q, w), where q is a state vector (position and orientation of the robot
in the global coordinate system) and w ∈ [0, 1] is the weighting factor which
describes the confidence level that the robot is in q. The algorithm consists of
the following steps:

• Initial set Qi of particles is generated.

• In the next step the new set Qi+1 is computed. The particles are iteratively
propagated using the control input (motion model). On the basis of the
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Figure 8. a)/b) Point cloud from scan A/B which correspond to scan no. 36
and 37 from Fig. 9. c) Joined point cloud. A has been transformed using
(∆x ∆y ∆θ) = (−0.15m, 1.192m, 44◦)

measurement model, the weight wi+1 is attached to each particle.

• The particles, which have the maximum values of wi+1 are multiplied and
particles with the value of wi+1 below some threshold are reduced.

The main part of the algorithm is to detect and to match characteristic
features of the environment. The semantic information is very useful during
the localization. In our approach, walls are used as landmarks. This kind of
localization is typically used in the structured environment (Gutmann et al.,
1998).

The number of particles depends on the uncertainty of odometry. In the
case of the mobile robot Elektron 1, the error of determining the orientation of
the robot surpasses 30o so a large number of particles has to be used during
the localization process. In order to improve the odometry, information about
the main directions is taken into account during the propagation of the parti-
cles (Siemiątkowska and Dubrawski, 1999). When the information about main
directions of the environment is used, the error in determining the orientation
of the vehicle does not surpass 3o and the number of particles can be reduced.

4.1. A sample global map

Using localization and place identification (based on object identification and
Hough transforms) it is possible to aggregate data collected by the robot into
a global map. Fig. 9 depicts such a map constructed from 44 3D scans taken
at different robot position. Each scan has been classified into the following
categories:
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• an office room (if an office chair has been detected on the scan),

• a hall (a scan containing recognized stairs),

• a corridor (a specific Hough transform),

• a bathroom (a scan containing a recognized washbasin),

• unclassified.

Figure 9. A global map representing a sample indoor environment. Gray-
scale contours represent obstacle height (ceiling and floor have been removed).
Circles, triangles and squares represent positions at which 3D scan has been
taken by the robot and classified, its initial position was (0, 0): • – an office
room, � – a hall, N – a corridor, � – a bathroom, ◦ – unclassified

5. Path planning

In our approach the Cellular Neural Network (Chua and Roska, 1993; Chua
and Young, 1988) is used for the collision free path planning. The Cellular
Neural Network (CNN) is a single-layer network defined on regular lattices.
The neurons are usually arranged in a rectangular network. It is assumed that
CNN consists of cells that interact locally. This type of CNN can be viewed as
a generalization of cellular automata. The neurons can be modeled as locally
connected finite states machines. The state xij of a cell cij depends on the states
of the neighboring cells, values of input signals uij , and values of interconnection

weights, aijkl and bijkl; aijkl is a weight between cells ckl and cij , b
ij
kl is a weight

between ukl and cell cij .
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The grid-based representation of the environment is used for collision free
path planning. To each cell of a map the list of objects, which are found in the
corresponding area of the environment is attached and the cost funcion u(pij)
of being in the cell pij is computed based on values uo

k, where object k belongs
to the cell pij , u(pij) = L, (where L ∈ R and it is a very large number) if the
cell pij is occupied by an obstacles, an u(pij) ∈ [0, L) in other cases.

The set of cells of the map defines the set of possible positions of the robot
and the minimum cost planning problem is defined as follows:
find the sequance of cells p0 = {p00, ..., p

0
N} that minimizes the travel cost K(p)

from the starting configuration (initial robot position p00) to the destination con-
figuration (goal position p0N ).

K(p) is described as follows:

K(p) =

N∑

i=1

k(pi) (3)

k(pi) = dist(pi−1, pi) + u(pi) (4)

where dist(pi−1, pi) is a distance between pi−1 and pi and u(pi) is the cost
function for being in the cell pi. The problem is solved applying the Bellman
Meyn (2007); Bellman (1957) approach, implemented using the Cellular Neural
Network (CNN) (Chua and Young, 1988; Chua and Roska, 1993).

The CNN, which is used for the path planning, consists of three layers each
of them composed of N ×M neurons. Each neuron corresponds to a cell of the
grid-based map of the environment.

The first layer is the goal layer, the symbol gij describes the state of neuron
ij in the goal layer, gij = L if the corresponding area belongs to set of goals
Qgoal and gij = 0 in other cases.

The second layer is called the traversability layer, the value uij represents
the cost when the robot is placed in the cell ij.

The third layer is called the diffusion layer. Symbol xij represents the state
of the cell ij. The process of the path planning consists of the following steps:

• Initialization
Weights of connection between corresponding cells are computed using the
following formula:

aklij = dist(pij , pkl) (5)

where dist(pij , pkl) is the distance between centers of gravity of areas pij
and pkl, represented by cells ij and kl. Initial values of CNN’s cells are:

xij(0) = max(0, gij − fij), (6)

fij = f(ui−r,j−r, ..., ui+r,j+r), is a function of ukl values. If r=0 then
fij = uij , when fij = max(ui−r,j−r , ..., ui+r,j+r) then the dimension of
the robot can be taken into acount during collision free path planning.
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• Diffusion process

xij(t+ 1) = max(0, gij − uij ,maxkl∈Nij
(xkl(t)− aklij − fij(t)) (7)

where Nij is the neighborhood of the cell cij , a
kl
ij is the weight between

cij and ckl.
The process is continued until:

∀ij xij(t) = xij(t+ 1). (8)

The collision-free path is represented as a list of cells. When the cell ckl
indicates the current position, the next position is indicated by the cell cnm
which fulfills the following requirements:

xnm = maxcij∈Nkl{xij} (9)

Fig. 10 represents the results of the collision-free path planning method. The
robot is asked to go to a chair. For two different robot positions, paths to the
nearest chair are generated automatically, without any additional rule-based
system.

Figure 10. The planned paths for two different position of the robot

6. Conclusions

The main purpose of the work presented in this paper was to build a system
for the mobile robot navigation. Experimental results validated the proposed
approach and showed the benefits of a dual representation of an environment,
as well as CNN for the path planning. The proposed path planning method
does not suffer from the local minima problem and a situation when robot or
the goal is surrounded by obstacles is easily recognized. The method allows us
to describe the goal using the semantic labels and to take into account different
criteria during path plannig. It is possible to plan the shortest path, the safest
path or force the robot to avoid certain places.
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