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Abstract: First- and second-order optimality conditions are es-
tablished for the boundary optimal control of quasilinear elliptic
equations with pointwise constraints on the control. The theory is
developed for Neumann controls in polygonal domains of dimension
two. For the derivation of second-order sufficient optimality con-
ditions, which is the main goal of this paper, the regularity of the
solutions to the state equation and its linearization is studied in de-
tail. Moreover, a Pontryagin principle is proved. The main difficulty
in the analysis of these problems is the nonmonotone character of
the state equation.
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1. Introduction

This paper is concerned with a class of optimal control problems for the following
quasilinear elliptic equation

{

− div [a(x, y(x))∇y(x)] + f(x, y(x)) = 0 in Ω ,

a(x, y(x))∇y(x)·~n(x) = u(x) on Γ ,
(1.1)

where ~n(x) = (n1(x), n2(x)) ∈ R
2 is the outward unit normal vector to Γ at x.
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Problems of this type occur in many practical applications of optimal control
theory to problems in engineering and medical science; for instance, in models
of heat conduction, where the heat conductivity a depends on the spatial coor-
dinate x and on the temperature y. As outlined in Casas and Tröltzsch (2009),
the heat conductivity of carbon steel depends on the temperature and also on
the alloying additions contained; see Bejan (1995). If the different alloys of steel
are distributed smoothly in the domain, then a = a(x, y) should depend in a
sufficiently smooth way on (x, y). Similarly, the heat conductivity depends on
(x, y) in the growth of silicon carbide bulk single crystals, see Klein et al. (2001).

Although f is considered monotone nondecreasing with respect to y, the
above equation is not of monotone type because the coefficients of the operator
depend on the state y. This causes the main difficulty in deducing regularity
properties for the solution to (1.1).

There has been some recent progress in the case of optimal control prob-
lems governed by quasilinear equations. The first step towards a corresponding
analysis was recently made by Casas and Tröltzsch (2009), where first- and
second-order optimality conditions for the distributed optimal control of quasi-
linear elliptic equations are discussed. For other classes of quasilinear equations,
in which a depends on the gradient of y, we refer to, for instance, Lions (1969).
To our knowledge the state equation (1.1) with Neumann boundary control has
not yet been investigated in the context of optimal control. The present pa-
per extends the theory developed in Casas and Tröltzsch (2009) to the case of
Neumann boundary controls. However, the analysis is more difficult, since the
regularity of the states is lower than that for distributed controls. Although
our equation has a particular type, the control of (1.1) is - with respect to the
analysis - of model character for optimal boundary control problems with more
general quasilinear equations or systems.

For semilinear elliptic and parabolic equations there exists a very extensive
literature about optimization. For instance, the Pontryagin principle was dis-
cussed for different elliptic problems in Bonnans and Casas (1991), Casas (1996),
while the parabolic case was investigated in Casas (1997), Casas, Raymond and
Zidani (2000), and Raymond and Zidani (1999). Problems with quasilinear
equations with nonlinearity of gradient type were considered by Casas and Fer-
nández (1993, 1995), Casas, Fernández and Yong (1995), and Casas and Yong
(1995).

While first-order optimality conditions are useful to deduce regularity prop-
erties for optimal controls, the second-order optimality conditions are very im-
portant to analyze the convergence properties of numerical optimization algo-
rithms applied to control problems. They are also a key tool to derive error
estimates for local solutions of the finite element approximations of the optimal
control problem.

The outline of the paper is as follows. In the next two sections, we discuss
the well-posedness of equation (1.1) in different spaces and derive some impor-
tant differentiability properties of the control-to-state mapping. In Section 4, an
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optimal control problem with pointwise control constraints is introduced, condi-
tions for the existence of at least one optimal solution are given and first-order
necessary optimality conditions are obtained. Based on these results, a Pon-
tryagin principle is derived in Section 5. Second-order necessary and sufficient
optimality conditions are the topic of the final section.

In this paper we study the equation (1.1) in polygonal domains, since it is
the first part of a forthcoming paper about the numerical analysis, including
error estimates, of the control problem in plane polygonal domains. This pa-
per provides the theoretical results for the numerical analysis. However, some
obvious extensions to more general domains are indicated in here.

2. Study of the quasilinear equations

In the following, we state the main assumptions on the equation (1.1).

Assumption 2.1 Ω is an open bounded polygonal set of R2 and Γ is the bound-
ary of Ω.

Assumption 2.2 The functions a : Ω × R → R and f : Ω × R → R are
Carathéodory,

∃αa > 0 such that a(x, y) ≥ αa for a.e. x ∈ Ω and all y ∈ R . (2.1)

It holds that a(·, 0) ∈ L∞(Ω), f(·, 0) ∈ Lp(Ω), with p ≥ 2, and for any M > 0
there exists a constant CM > 0 and a function φM ∈ Lp(Ω) such that, for all
|y|, |yi| ≤M , i = 1, 2,

|a(x, y2)− a(x, y1)| ≤ CM |y2 − y1| and

∣
∣
∣
∣

∂f

∂y
(x, y)

∣
∣
∣
∣
≤ φM (x) for a.e. x ∈ Ω .

(2.2)

Assumption 2.3 f is monotone non-decreasing with respect to the second vari-
able for almost all x ∈ Ω. There exist a positive constant αf > 0 and a subset
E ⊂ Ω such that |E| > 0 and

∂f

∂y
(x, y) ≥ αf ∀(x, y) ∈ E × R .

Here, |E| denotes the Lebesgue measure of E.

Given a Banach space V , we shall denote by 〈·, ·〉V ∗,V the duality product be-
tween its dual space V ∗ and V . When no ambiguity arises, we will abbreviate
〈·, ·〉V ∗,V by 〈·, ·〉. We also consider the space

W
1/p′,p(Γ) =

{

y
∣
∣
Γ

∣
∣
∣ y ∈ W 1,p(Ω)

}
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endowed with the standard norm

‖u‖W 1/p′,p(Γ) = inf
{

‖y‖W 1,p(Ω)

∣
∣
∣ y

∣
∣
Γ
= u

}

where 1
p + 1

p′
= 1 and y

∣
∣
Γ

is the trace of y on Γ, see Lions (1969). The dual

space of W 1/p′,p(Γ) is denoted by W−1/p′,p′

(Γ).
By BX(x, r) we denote the open ball in a normed space X with radius

r centered at x, and by B̄X(x, r) we denote its closure. By C (without index)
generic constants are denoted and in some formulas, the partial derivative ∂/∂xj
is sometimes abbreviated by ∂j ; σ stands for the usual one-dimensional measure
on Γ induced by the associated parametrization (remember that Γ is a Lipschitz
manifold).

Throughout the paper, the solutions of PDEs are understood in the weak
sense.

Theorem 2.1 Under the Assumptions 2.1-2.3, for any u ∈ Ls(Γ), s > 1, prob-
lem (1.1) has a unique solution yu ∈ H1(Ω) ∩ L∞(Ω). Moreover there exists
µ ∈ (0, 1) independent of u such that yu ∈ Cµ(Ω̄) and, for any bounded set
U ⊂ Ls(Γ),

‖yu‖H1(Ω) + ‖yu‖Cµ(Ω̄) ≤ CU ∀u ∈ U , (2.3)

with some constant CU > 0.

Proof. Existence of a solution. Depending on M > 0, we introduce the trun-
cated function aM by

aM (x, y) =







a(x, y) |y| ≤ M
a(x,+M) y > +M
a(x,−M) y < −M .

In the next step we will use the following identity

f(x, y(x)) = f(x, 0)+ f0(x, y(x))y(x), where f0(x, y) :=

ˆ 1

0

∂f

∂y
(x, θy) dθ .

In the same way, we define the truncation f0M of f0. Next we prove the existence
of a solution yM ∈ H1(Ω) of the equation with truncated coefficients
{

− div [aM (x, y(x))∇y(x)] + f0M (x, y(x))y(x) = −f(x, 0) in Ω ,

aM (x, y(x))∇y(x)·~n(x) = u(x) on Γ .
(2.4)

To do this, we fix u ∈ Ls(Γ) and M > 0 and define the mapping F : L2(Ω) →
L2(Ω) by F (z) = y, where y ∈ H1(Ω) is the unique solution to the linear
equation
{

−div [aM (x, z(x))∇y(x)] + f0M (x, z(x))y(x) = −f(x, 0) in Ω ,

aM (x, z(x))∇y(x)·~n(x) = u(x) on Γ .
(2.5)
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Thanks to the Assumptions 2.2 and 2.3, we have f(·, 0), f0M (·, z) ∈ Lp(Ω) and
0 < αf ≤ f0M (x, z), for each (x, z) ∈ E ×R, where E is introduced in Assump-
tion 2.3. Since (2.5) is a monotone linear equation, by applying Lax-Milgram
theorem we get the existence of a unique solution yM ∈ H1(Ω) of (2.5) and F
is well-defined. Furthermore, we have

‖yM‖H1(Ω) ≤ Ca,f

(
‖u‖Ls(Γ) + ‖f(·, 0)‖Lp(Ω)

)
, (2.6)

where Ca,f depends only on |Ω|, αa, αf , but neither on aM nor on f0M . Because
of the compact embedding of H1(Ω) in L2(Ω) it is easy to apply Schauder’s
theorem to prove the existence of a fixed point yM ∈ H1(Ω) of F , which is
obviously a solution of (2.4).

Now, applying Stampacchia’s truncation method (see, for instance, Stam-
pacchia, 1965, or the exposition for semilinear elliptic equations in Tröltzsch,
2010) we get

‖yM‖L∞(Ω) ≤ C∞
(
‖u‖Ls(Γ) + ‖f(·, 0)‖Lp(Ω)

)
, (2.7)

where the constant C∞ depends only on αa, αf , but neither on aM (·, yM ) nor
on f0M (·, yM ). By taking

M ≥ C∞
(
‖u‖Ls(Γ) + ‖f(·, 0)‖Lp(Ω)

)
,

(2.7) implies that aM (x, yM (x))=a(x, yM (x)) and f0M (x, yM (x))=f0(x, yM (x))
for a.e. x ∈ Ω, therefore yM ∈ H1(Ω)∩L∞(Ω) is a solution of (1.1). The Hölder
regularity is well known; see Murthy and Stampacchia (1972), Stampacchia
(1960), or Griepentrog and Recke (2001), Gröger (1989). The inequality (2.3)
follows from (2.6), (2.7) and the estimates in Stampacchia (1960).

Uniqueness of the solution. The proof is along the lines of the proof of Casas
and Tröltzsch (2009, Theorem 2.2), where the authors follow the method by
Hlaváček, Křížek and Malý (1994). The only difference in the case of Neumann
boundary conditions is the use of the inequality

‖z‖2L2(Ω) ≤ CE

(

‖∇z‖2L2(Ω) + ‖z‖2L2(E)

)

∀z ∈ H1(Ω) ,

see Nečas (1967), instead of Friedrich’s inequality.

By assuming that a is continuous on Ω̄× R, we can obtain higher regularity of
the solutions of (1.1).

Theorem 2.2 Let us suppose that Assumptions 2.1-2.3 hold. We also assume
that a : Ω̄ × R → R is continuous. Then there exists p̄ > 3 such that, for any
2 < p ≤ p̄ and any u ∈ Lp/2(Γ), (1.1) has a unique solution yu ∈ W 1,p(Ω).
Moreover, for any bounded set U ⊂ Lp/2(Γ), there exists a constant CU > 0
such that

‖yu‖W 1,p(Ω) ≤ CU ∀u ∈ U . (2.8)
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In addition, if Ω is convex, then the above conclusions remain valid for some
p̄ ≥ 6

3−
√
5
.

Proof. Here we follow the classical approach of freezing the coefficients around
certain points of the domain to perform a reduction from variable coefficients
to constant coefficients.

Due to Theorem 2.1, (1.1) admits a unique solution yu in H1(Ω) ∩ L∞(Ω).
We have to prove its W 1,p(Ω) regularity. Note that, thanks to our assumptions
and the continuity of y, ã(·) = a(·, yu(·)) is continuous in Ω̄.

Let ρ > 0, then there exists a finite number of boundary points {xj}
m
j=1 ⊂ Γ

such that Γ ⊂
⋃m

j=1 BR2(xj , ρ). Further, let U be an open set with regular

boundary such that U ⊂ Ū ⊂ Ω and Ω ⊂
⋃m

j=1BR2(xj , ρ) ∪ U . We also take

a partition of unity {ψj}
m
j=0 ⊂ C∞(R2) with

∑m
j=0 ψj(x) = 1, 0 ≤ ψj(x) ≤ 1

∀x ∈ Ω̄ and for j = 0, . . . ,m, supp ψ0 ⊂ U and supp ψl ⊂ BR2(xl, ρ) for l =
1, . . . ,m. Then yu =

∑m
j=0 yj , where yj := ψjyu. We prove that yj ∈ W 1,p(Ω)

for every j = 0, . . . ,m.
For j = 0 we get

− div [ã(x)∇y0] + y0 = − div [ã(x)ψ0∇yu]− div [ã(x)yu∇ψ0] + ψ0yu

= −ψ0div [ã(x)∇yu]− ã(x)∇yu ·∇ψ0 − div [ã(x)yu∇ψ0] + ψ0yu

= −ψ0f(x, yu)− ã(x)∇yu ·∇ψ0 − div [ã(x)yu∇ψ0] + ψ0yu

= G in Ω ,

with G ∈ W−1,p(Ω) and y0 = 0 on Γ. Hence the W 1,p(Ω) regularity of y0 follows
from Morrey (1996, pp. 156-157).
We fix now j = 1, . . . ,m and xj ∈ Γ. From the definition of the weak solution
yu in H1(Ω) of (1.1) we have for arbitrary z ∈ H1(Ω)

ˆ

Ω

ã(x)∇yu ·∇(ψjz) dx =−

ˆ

Ω

f(x, yu)ψjz dx+

ˆ

Γ

uψjz dσ(x) ,

therefore
ˆ

Ω

{ã(x)∇yj ·∇z + yjz}dx =

ˆ

Ω

{ã(x) [yu∇ψj ·∇z + ψj∇yu ·∇z] + yuψjz}dx

=

ˆ

Ω

{ã(x) [yu∇ψj ·∇z − z∇yu ·∇ψj ]− f(x, yu)ψjz+yuψjz}dx+

ˆ

Γ

uψjz dσ(x)

= F (z). (2.9)

F is a linear continuous functional on W 1,p′

(Ω). To verify this, consider, for
instance, the terms z∇yu and uz:

‖z∇yu‖L1(Ω) ≤ C‖z‖
L

2p′

2−p′ (Ω)
‖∇y‖

L
2p

p+2 (Ω)
≤ C‖z‖W 1,p′(Ω)‖∇y‖L2(Ω)
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the above being a consequence of the embedding W 1,p′

(Ω) ⊂ L
2p

p−2 (Ω) and the

fact that 2p′

2−p′
= 2p

p−2 > 2 for p > 2. Moreover, z
∣
∣
Γ
∈ W 1−1/p′,p′

(Γ) ⊂ L
p

p−2 (Γ),
hence Hölder’s inequality yields

‖zu‖L1(Γ) ≤ ‖u‖Lp/2(Γ)‖z‖L
p

p−2 (Γ)
≤ C‖u‖Lp/2(Γ)‖z‖W 1−1/p′,p′(Γ)

≤ C‖u‖Lp/2(Γ)‖z‖W 1,p′(Ω) .

From (2.9) we get for z ∈ W 1,p′

(Ω)
ˆ

Ω

{ã(xj)∇yj ·∇z + yjz} dx =

ˆ

Ω∩B
R2(xj ,ρ)

[ã(xj)− ã(x)]∇yj ·∇z dx+ F (z) .

Consider now the mapping F : W 1,p(Ω) → W 1,p(Ω), F(w) = yw, where yw is
the solution of the problem

ˆ

Ω

{ã(xj)∇yw ·∇z + ywz}dx =

ˆ

Ω∩B
R2(xj,ρ)

[ã(xj)− ã(x)]∇w · ∇z dx+ F (z) ,

(2.10)

for every z ∈ W 1,p′

(Ω). According to Dauge (1992, Corollary 3.10), F is well-
defined, since there exists p̄ > 3 such that, for any 2 < p ≤ p̄, (2.10) admits a
unique solution yw ∈ W 1,p(Ω). If Ω is assumed to be convex, then p̄ ≥ 6

3−
√
5
,

see Dauge (1992, Corollary 3.12). Next we prove that F is a contraction, so
that Banach’s fixed-point theorem is applicable to obtain yj ∈ W 1,p(Ω). For
wi ∈ W 1,p(Ω), i = 1, 2, we have

‖F(w2)−F(w1)‖W 1,p(Ω) ≤ C‖ã(xj)− ã(·)‖L∞(Ω∩B
R2 (xj,ρ))‖w2−w1‖W 1,p(Ω),

where C depends only on αa and not on xj . We can choose ρ sufficiently small,
such that C‖ã(xj)− ã(·)‖L∞(Ω∩B

R2 (xj ,ρ)) < 1, hence F is a contraction and the
proof is complete.

In the rest of the paper, p̄ is as in the statement of the previous theorem.

Remark 2.1 The paper by Dauge (1992), cited in the proof of the previous
theorem, deals only with problems in 3d, but the result is also valid for dimension
two. Indeed, given the solution y ∈ H1(Ω) of the problem

{

−∆y + cy = f in Ω ,

∇y ·~n = u on Γ ,

where c > 0, we introduce the prism Ω̃ = Ω× (0, 1) and consider the problem






−∆ỹ + cỹ = f̃ in Ω̃ ,

∇ỹ ·~n = ũ on Γ× (0, 1) ,

∇ỹ ·~n = 0 on Ω× {0, 1},
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where f̃ : Ω̃ × R → R and ũ : Γ × (0, 1) −→ R are defined by f̃(x̃) = f(x1, x2)
and ũ(x̃) = u(x1, x2), with x̃ = (x1, x2, x3). Then ỹũ ∈ W 1,p(Ω̃), but ỹũ(x̃) =
yu(x1, x2) for x̃ ∈ Ω̃, therefore yu ∈ W 1,p(Ω).

Remark 2.2 It is easy to see that Theorems 2.1 and 2.2 are still valid if we
require in Assumption 2.2 that φM belongs to Lq(Ω) with q ≥ 2p/(2 + p) > 1.
The reason for assuming φM ∈ Lp(Ω) becomes clear in the next two theorems.

Some additional assumptions yield higher regularity for the solutions of (1.1).

Theorem 2.3 Let us suppose that Assumptions 2.1-2.3 hold. Assume further
that for every M > 0, there exists a constant CM > 0 such that, for all xi ∈ Ω̄,
|yi| ≤M , i = 1, 2, the following local Lipschitz property is satisfied:

|a(x2, y2)− a(x1, y1)| ≤ CM (|x2 − x1|+ |y2 − y1|) .

Then, for any u ∈ L2(Γ), (1.1) has a unique solution yu ∈ H3/2(Ω). Moreover,
for any bounded set U ⊂ L2(Γ), there exists a constant CU > 0 such that

‖yu‖H3/2(Ω) ≤ CU ∀u ∈ U . (2.11)

Proof. From Theorem 2.2 we know that yu ∈W 1,3(Ω) ⊂ C(Ω̄). Let us show that
yu ∈ H

3/2(Ω). Thanks to the assumptions on a, it follows that a(·, yu(·)) ∈ C(Ω̄)
and (∂a/∂y)(·, yu(·)) ∈ L∞(Ω). Using the Lipschitz property of a, expanding
the divergence term of the equation (1.1) and dividing by a > 0 we find that

−∆yu =
1

a
︸︷︷︸

L∞(Ω)







− f(·, yu)
︸ ︷︷ ︸

Lp(Ω)

+

2∑

j=1

∂ja(·, yu)
︸ ︷︷ ︸

L∞(Ω)

∂jyu
︸︷︷︸

L3(Ω)

+
∂a

∂y
︸︷︷︸

L∞(Ω)

|∇yu|
2

︸ ︷︷ ︸

L3/2(Ω)








in Ω , (2.12)

∇yu ·~n =
u

a
on Γ . (2.13)

Hence the right-hand sides of (2.12) and (2.13) are in L
3/2(Ω) and L2(Γ), re-

spectively. Then the statement of the theorem follows from Theorem A.1, see
Appendix.

Theorem 2.4 Under the assumptions of Theorem 2.3 and assuming that Ω is
convex, there exists p0 > 2 depending on the measure of the angles in Γ such that
for any 2 ≤ p ≤ min{p0, p̄} (p̄ ≥ 6

3−
√
5
) and any u ∈ W 1−1/p,p(Γ), the solution

of (1.1) belongs to W 2,p(Ω). Moreover, for any bounded set U ⊂ W 1−1/p,p(Γ),
there exists a constant CU > 0 such that

‖yu‖W 2,p(Ω) ≤ CU , ∀u ∈ U . (2.14)
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Proof. First we prove the result for p ≤ p̄
2 . Since W 1−1/p,p(Γ) ⊂ Lr(Γ) for any

1 ≤ r <∞, we can apply Theorem 2.2 to get the existence of a unique solution
yu in W 1,2p(Ω) if p ≤ p̄

2 . We have to prove the W 2,p(Ω) regularity.

Repeating the steps of the proof of Theorem 2.3 we get that the right-hand
side of (2.12) is in Lp(Ω). Hence, it is enough to prove that u

a ∈ W 1−1/p,p(Γ).
Then a well-known result by Grisvard (1985, Corollary 4.4.3.8) on maximal
regularity yields the existence of p0 > 2 such that yu ∈ W 2,p(Ω), if 2 ≤ p ≤
min{p0,

p̄
2}. This p0 depends on the measure of the angles in Γ.

For any u ∈W 1−1/p,p(Γ) there exists at least one z ∈W 1,p(Ω) such that z
∣
∣
Γ
= u,

see Nečas (1967, Theorem 5.7). Moreover z
a ∈W 1,p(Ω), because z

a ∈ Lp(Ω) and
for i = 1, 2

∂i

[z

a

]

=
1

a
∂iz −

z

a2

[

∂ia+
∂a

∂y
∂iyu

]

belongs to Lp(Ω). Here we have used the boundedness of a, ∂ia and ∂a/∂y and
the fact that z ∈ W 1,p(Ω) ⊂ L2p(Ω) for p ≥ 2 and ∂iyu ∈ L2p(Ω). From z,
z
a ∈W 1,p(Ω) and z

∣
∣
Γ
= u, it is easy to get z

a

∣
∣
Γ
= u

a , hence u
a ∈ W 1−1/p,p(Γ).

Finally, we assume that p̄
2 < p ≤ min{p0, p̄}. From the first part of the proof

we know that yu ∈W 2, p̄2 (Ω) ⊂ C1(Ω̄). Then, the right hand side of (2.12) is in
Lp(Ω) and u

a ∈ W 1−1/p,p(Γ) once again. Therefore, as above we conclude that
yu ∈ W 2,p(Ω).

Remark 2.3 The proof of Theorem 2.1 on the existence and uniqueness of a
solution of (1.1) is valid for arbitrary Lipschitz domains in R

n. On the other
hand, the statements of Theorems 2.1, 2.2 and 2.4 hold true for dimension 2 or
3 assuming that Γ is of class C1,1. In the case of convex and polygonal domains
the H3/2(Ω) regularity of yu, for u ∈ L2(Γ), can be proved by decomposing
the Neumann problem into two different problems and combining the results by
Jerison and Kenig (1981, 1995). This technique is presented in Casas, Mateos
and Raymond (2009) and Casas, Mateos and Tröltzsch (2005).

3. Differentiability of the control-to-state mapping u 7→ y
u

In order to derive the first- and second-order optimality conditions for the con-
trol problem, we need some differentiability of the functions involved in the
control problem.

Assumption 3.1 The functions a and f are of class C2 with respect to the
second variable and, for any number M > 0, there exist constants DM , DM,a > 0
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such that

(1)

2∑

j=1

{∣
∣
∣
∣

∂ja

∂yj
(x, y)

∣
∣
∣
∣
+

∣
∣
∣
∣

∂jf

∂yj
(x, y)

∣
∣
∣
∣

}

≤ DM ,

(2)

∣
∣
∣
∣

∂ka

∂yk
(x1, y1)−

∂ka

∂yk
(x2, y2)

∣
∣
∣
∣
≤ DM,a (|x1 − x2|+ |y1 − y2|) ,

for a.a. x ∈ Ω and all xi ∈ Ω̄ and |y| , |yi| ≤M , i = 1, 2, k = 1, 2.

As a first step we study the linearized equation of (1.1) around a solution y







− div

[

a(x, y)∇z(x) +
∂a

∂y
(x, y)z∇y

]

+
∂f

∂y
(x, y)z = g in Ω ,

[

a(x, y)∇z +
∂a

∂y
(x, y)z∇y

]

·~n(x) = v on Γ .

(3.1)

We say that zv ∈ H1(Ω) is a solution of (3.1), if

ˆ

Ω

{

a(x, y)∇zv ·∇w +
∂a

∂y
(x, y)zv∇y ·∇w +

∂f

∂y
(x, y)zvw

}

dx

= 〈g, w〉H1(Ω)∗,H1(Ω) + 〈v, w〉H−1/2(Γ),H1/2(Γ) ∀w ∈ H1(Ω) .

In view of the lack of the monotonicity of the linear operator, the well-posedness
of (3.1) is not obvious.

Theorem 3.1 Suppose that the Assumptions 2.1-2.3 and 3.1-(1) hold. Given
y ∈ W 1,p(Ω), for any v ∈ H−1/2(Γ) and g ∈ H1(Ω)∗, the linearized equation
(3.1) has a unique solution zv ∈ H1(Ω).

Proof. The proof of the uniqueness follows the same steps as the one of Casas
and Tröltzsch (2009, Theorem 2.7) with obvious modifications. For the existence
we modify conveniently the arguments of Casas and Tröltzsch (2009, Theorem
2.7). For every t ∈ [0, 1] let us consider the linear operator Tt : H1(Ω) −→
H1(Ω)∗ given by

〈Ttz, w〉 =

ˆ

Ω

{

a(x, y)∇z ·∇w + t
∂a

∂y
(x, y)z∇y ·∇w +

∂f

∂y
(x, y)zw

}

dx . (3.2)

For t = 0, the resulting linear operator is monotone and by an obvious appli-
cation of the Lax-Milgram Theorem we know that it is an isomorphism. Let
us denote by S the set of points t ∈ [0, 1], for which the equation Tt defines
an isomorphism. S is not empty because 0 ∈ S. Setting tmax the supremum
of S, then we have that tmax ∈ S. Indeed, we are going to prove that Ttmax is
an isomorphism between H1(Ω) and H1(Ω)∗. Obviously it is continuous and
injective. It is enough to prove the surjectivity. Given h ∈ H1(Ω)∗, we have to
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find an element z ∈ H1(Ω) such that Ttmaxz = h. Take a sequence {tk}
∞
k=1 ⊂ S

such that tk → tmax when k → ∞ and denote by zk the element of H1(Ω) such
that Ttkzk = h. Then we have

‖zk‖H1(Ω) ≤ C

(

‖zk‖
L

2p
p−2 (Ω)

+ ‖h‖H1(Ω)∗

)

.

Arguing as in Casas and Tröltzsch (2009, Theorem 2.7), we get that {zk}
∞
k=1 is

bounded in H1(Ω) and the weak limit z of a subsequence satisfies that Ttmaxz =
h. Therefore, we conclude that tmax ∈ S.

Finally, we prove that tmax = 1. If it is false, then let us consider the
operators Ttmax+ε, Ttmax ∈ L(H1(Ω), H1(Ω)∗), for any ε > 0 with tmax + ε ≤ 1.
It is easy to check that

‖Ttmax+ε − Ttmax‖L(H1(Ω),H1(Ω)∗) ≤ Cε.

If we take 0 < ε < 1/C, then we have that Ttmax+ε is also an isomorphism,
which contradicts the fact that tmax is the supremum of S.

Remark 3.1 It is easy to check that the proof of Theorem 3.1 can be modified
in an obvious way to verify that for any given functions y ∈ W 1,p(Ω) and
yi ∈ L∞(Ω), 1 ≤ i ≤ 3, the equation







− div

[

a(x, y1)∇z(x) +
∂a

∂y
(x, y2)z∇y

]

+
∂f

∂y
(x, y3)z = g in Ω ,

[

a(x, y1)∇z(x) +
∂a

∂y
(x, y2)z∇y

]

·~n(x) = v on Γ ,

has a unique solution z ∈ H1(Ω) .

Theorem 3.2 Under the Assumptions 2.1-2.3 and 3.1-(1) and supposing that
a : Ω̄ × R −→ R is continuous, the control-to-state mapping G : L

p/2(Γ) →
W 1,p(Ω), G(u) = yu, is of class C2 for all p ∈ (2, p̄]. Moreover, for any
v, v1, v2 ∈ L

p/2(Γ), the functions zv = G′(u)v, zv1,v2 = G′′(u)[v1, v2] are the
unique solutions in W 1,p(Ω) of the equations







− div

[

a(x, yu)∇z +
∂a

∂y
(x, yu)z∇yu

]

+
∂f

∂y
(x, yu)z = 0 in Ω ,

[

a(x, yu)∇z +
∂a

∂y
(x, yu)z∇yu

]

·~n = v on Γ ,

(3.3)
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and







− div

[

a(x, yu)∇z +
∂a

∂y
(x, yu)z∇yu

]

+
∂f

∂y
(x, yu)z = −

∂2f

∂y2
(x, yu)z1z2

+div

[
∂a

∂y
(x, yu)(z1∇z2 + z2∇z1) +

∂2a

∂y2
(x, yu)z1z2∇yu

]

in Ω ,

[

a(x, yu)∇z +
∂a

∂y
(x, yu)z∇yu

]

·~n(x) =

−

[
∂a

∂y
(x, yu)(z1∇z2 + z2∇z1) +

∂2a

∂y2
(x, yu)z1z2∇yu

]

·~n on Γ ,

(3.4)

respectively, where zi = G′(u)vi, i = 1, 2.

Proof. Let us introduce the mapping F :W 1,p(Ω)× Lp/2(Γ) →W 1,p′

(Ω)∗ by

〈F (y, u), w〉 =

ˆ

Ω

{a(x, y)∇y ·∇w + f(x, y)w} dx−

ˆ

Γ

uw dσ(x) . (3.5)

From the Assumptions 2.2 and 3.1-(1) and the embedding W 1−1/p′,p′

(Γ) ⊂

L
p

p−2 (Γ)= L(p/2)′(Γ) it follows that F is well defined, of class C2, and F (yu, u) =
0 for every u ∈ L

p/2(Γ). Our goal is to prove that (∂F/∂y)(yu, u) : W
1,p(Ω) →

W 1,p′

(Ω)∗ defined by

〈
∂F

∂y
(yu, u)z, w

〉

=

ˆ

Ω

{

a(x, yu)∇z ·∇w+
∂a

∂y
(x, yu)z∇yu ·∇w+

∂f

∂y
(x, yu)zw

}

dx

is an isomorphism. Then we can apply the implicit function theorem to deduce
the differentiability properties of G stated in the theorem. The representations
(3.3) and (3.4) for G′ and G′′ are then obtained by simple computations as in
Casas and Tröltzsch (2009). According to Theorem 3.1, for any v ∈ H−1/2(Γ),
there exists a unique element z ∈ H1(Ω) such that

∂F

∂y
(yu, u)z = Bv ,

where the operatorB : H−1/2(Γ) → H1(Ω)∗ is defined by 〈Bv,w〉 =
´

Γ
vw dσ(x).

It is enough to prove that z ∈ W 1,p(Ω) if v ∈ L
p/2(Γ) ⊂ H−1/2(Γ). More

precisely, this means that the unique solution z ∈ H1(Ω) of (3.1), associated to
v ∈ Lp/2(Γ) and g = 0, belongs to W 1,p(Ω). First of all, let us note that

a(·, yu) ∈ L∞(Ω) ,
∂a

∂y
(·, yu)∇yu ∈ (Lp(Ω))2 ,

∂f

∂y
(·, yu) ∈ L∞(Ω) and

v ∈ L
p/2(Γ) ⊂W−1/p,p(Γ) .
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Therefore, we can apply a result by Stampacchia (1960) (see also Murthy and
Stampacchia, 1972; Gröger, 1989) to get that z ∈ C(Ω̄). For the problem







− div [a(x, yu)∇z] +
∂f

∂y
(x, yu)zv = div

[
∂a

∂y
(x, yu)z∇yu

]

in Ω ,

a(x, yu)∇z ·~n(x) = v(x)−
∂a

∂y
(x, yu)z∇yu ·~n(x) on Γ ,

(3.6)

we have, along with the identity ∇yu ·~n = u
a on Γ, that

v −
∂a

∂y
(·, yu)z∇yu ·~n ∈ L

p/2(Γ) and div

[
∂a

∂y
(·, yu)z∇yu

]

∈W 1,p′

(Ω)∗ .

To deduce the W 1,p(Ω) regularity of z we can follow the same steps as in the
Theorem 2.2 with obvious modifications. The existence and uniqueness of a
solution of (3.4) can be deduced by the same arguments as above.

If we assume that a is locally Lipschitz continuous and Ω is convex, then
from Theorem 2.4 we know that the states yu corresponding to controls u ∈
W 1−1/p,p(Γ), 2 ≤ p ≤ min{p0, p̄} for some p0 > 2 and p̄ ≥ 6

3−
√
5
, belong to

W 2,p(Ω). In this context, a natural question arises: Can we prove a result anal-
ogous to Theorem 3.2 with G :W 1−1/p,p(Γ) →W 2,p(Ω)? The answer is positive
if we assume some extra regularity of a, namely Assumption 3.1-(2).

Theorem 3.3 Under the Assumptions 2.1-2.3 and 3.1 and assuming that Ω is
convex, there exists p0 > 2 depending on the measure of the angles in Γ such
that the control-to-state mapping G : W 1−1/p,p(Γ) → W 2,p(Ω), G(u) = yu, is
of class C2 for 2 ≤ p ≤ min{p0, p̄}, with some p̄ ≥ 6

3−
√
5
. Moreover, for any

v, v1, v2 ∈ W 1−1/p,p(Γ), the functions zv = G′(u)v, zv1,v2 = G′′(u)[v1, v2] are the
unique solutions in W 2,p(Ω) of the equations (3.3) and (3.4), respectively.

Proof. Consider the Banach space

V (Ω) = {y ∈W 2,p(Ω)
∣
∣∇y ·~n ∈ W 1−1/p,p(Γ)} ,

endowed with the graph norm. Then, all the elements yu = G(u) belong to this
space provided that u ∈W 1−1/p,p(Γ). Let us define the mapping

F : V (Ω)×W 1−1/p,p(Γ) −→ Lp(Ω)×W 1−1/p,p(Γ)

by F (y, u) = (−div[a(x, y)∇y] + f(x, y), a(x, y)∇y·~n− u). Next, we verify that
F is well defined. By expanding the divergence term, we find

div [a(x, y)∇y] = [∇xa](x, y)·∇y +
∂a

∂y
(x, y) |∇y|

2
+ a(x, y)∆y .



470 E. CASAS, V. DHAMO

For y ∈ W 2,p(Ω), p ≥ 2, the right hand side of the previous equality is in Lp(Ω),
therefore it remains to show that a(·, y)∇y ·~n ∈ W 1−1/p,p(Γ) in order to deduce
that F is well defined. To this end, we use the following fact:

If b∈C0,µ(Γ), v∈W 1−1/p,p(Γ) with µ > 1− 1/p, then bv∈W 1−1/p,p(Γ), (3.7)

see Grisvard (1985, Theorem 1.4.1.1). Now, taking into account the Lipschitz
property of a with respect to x and y and the embedding H2(Ω) ⊂ C0,µ(Ω̄) for
every µ ∈ (0, 1), see Necǎs (1967, §2 Theorem 3.8), we have a(·, y(·)) ∈ C0,µ(Γ)
for all µ ∈ (1− 1

p , 1). This, along with (3.7), yields a(·, y)∇y ·~n ∈W 1−1/p,p(Γ).

On the other hand, it is obvious that F is a C2 mapping. We are going
to apply the implicit function theorem. To this end we need to prove that the
linear operator ∂yF (y, u) : V (Ω) −→ Lp(Ω) ×W 1−1/p,p(Γ) is an isomorphism.
First we note that

∂F

∂y
(y, u)z =

(

−div

[

a(x, y)∇z+
∂a

∂y
(x, y)z∇y

]

+
∂f

∂y
(x, y)z,

[

a(x, y)∇z +
∂a

∂y
(x, y)z∇y

]

·~n

)

,

for every z ∈ W 2,p(Ω). We have to prove the existence of a unique solution
z ∈ V (Ω) of (3.1) for any g ∈ Lp(Ω) and any v ∈ W 1−1/p,p(Γ). First, the
existence and uniqueness of a solution in H1(Ω)∩L∞(Ω) follows from Theorem
3.1. Moreover, due to the inclusion W 1−1/p,p(Γ) ⊂ Lr(Γ) for every r < ∞,
the W 1,p̄(Ω) regularity follows from Theorem 3.2. Finally we prove that z ∈
W 2,p(Ω). For this purpose, we follow the steps of the proof of Theorem 2.4 and
consider first the case when p ≤ p̄

2 . From (3.1) we get

−∆z =
1

a

[

g + div

[
∂a

∂y
(·, y)z∇y

]

+∇xa(·, y)·∇z +
∂a

∂y
(·, y)∇z ·∇y −

∂f

∂y
(·, y)z

]

=
1

a

[

g + z∇x
∂a

∂y
(·, y)·∇y +

∂2a

∂y2
(·, y)z |∇y|2 + 2

∂a

∂y
(·, y)∇z ·∇y

+
∂a

∂y
(·, y)z∆y +∇xa(·, y)·∇z −

∂f

∂y
(·, y)z

]

in Ω, (3.8)

∇z ·~n =
1

a

[

v −
∂a

∂y
(·, y)z∇y ·~n

]

on Γ. (3.9)

The right-hand sides of the above equations belong to Lp(Ω) and W 1−1/p,p(Γ),
respectively. Finally, as in the proof of Theorem 2.4, we apply again the regu-
larity result by Grisvard (1985, Corollary 4.4.3.8) that yields the existence of a
value p0 > 2 depending on the measure of the angles in Γ such that z ∈ W 2,p(Ω)
for 2 ≤ p ≤ min{p0,

p̄
2}. When p > p̄

2 we can proceed as at the end of the proof
of Theorem 2.4 to obtain the W 2,p(Ω) regularity.
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4. The control problem

In the following, we assume that 2 < p ≤ p̄ with p̄ taken from Theorem 2.2. We
associate with the state equation (1.1) the following optimal control problem

(P)







min J(u) =

ˆ

Ω

L(x, yu(x)) dx +

ˆ

Γ

l(x, yu(x), u(x)) dσ(x) ,

u ∈ L∞(Γ) ,
ua(x) ≤ u(x) ≤ ub(x) for a.e. x ∈ Γ ,

where L : Ω × R → R and l : Γ × R × R → R are Carathéodory functions and
ua, ub ∈ L∞(Γ), with ua ≤ ub a.e. on Γ.

Assumption 4.1 The functions L : Ω × R → R and l : Γ × R × R → R

are of class C2 with respect to the second variable and to the last two variables,
respectively. For any M > 0, there exist constants CL,M , Cl,M > 0 and functions
ψΩ,M ∈ Lp(Ω), ψ1,Γ,M ∈ Lp(Γ) and ψ2,Γ,M ∈ L2(Γ), such that
∣
∣
∣
∣

∂L

∂y
(x, y)

∣
∣
∣
∣
≤ ψΩ,M (x) ,

∣
∣
∣
∣

∂l

∂y
(s, y, u)

∣
∣
∣
∣
≤ ψ1,Γ,M (s) ,

∣
∣
∣
∣

∂l

∂u
(s, y, u)

∣
∣
∣
∣
≤ ψ2,Γ,M (s) ,

∥
∥
∥
∥

∂2L

∂y2
(x, y)

∥
∥
∥
∥
≤ CL,M ,

∥
∥
∥D2

(y,u)l(s, y, u)
∥
∥
∥ ≤ Cl,M ,

∣
∣
∣
∣

∂2L

∂y2
(x, y2)−

∂2L

∂y2
(x, y1)

∣
∣
∣
∣
≤ CL,M |y2 − y1| ,

∥
∥
∥D2

(y,u)l(s, y2, u2)−D2
(y,u)l(s, y1, u1)

∥
∥
∥ ≤ Cl,M (|y2 − y1|+ |u2 − u1|) ,

for a.a. x ∈ Ω, s ∈ Γ and |y|, |yi|, |u|, |ui| ≤ M , i = 1, 2, where D2
(y,u)l denotes

the second derivative of l w.r. to (y, u), i.e. the associated Hessian matrix.

The next theorem concerns the existence of a solution for problem (P). The
proof of this theorem is standard.

Theorem 4.1 Suppose that the Assumptions 2.1-2.3 hold and assume that a :
Ω̄ × R → R is continuous and l is convex w.r. to u. Assume further that, for
any M > 0, there exist functions ψl,M ∈ L1(Γ), ψL,M ∈ L1(Ω) such that

|L(x, y)| ≤ ψL,M (x) and |l(s, y, u)| ≤ ψl,M (s) ,

for a.e. x ∈ Ω, s ∈ Γ and |y|, |u| ≤ M . Then (P) has at least one optimal
solution ū.

Theorem 4.2 Assume that a : Ω̄× R → R is continuous and the Assumptions
2.1-2.3, 3.1-(1) and 4.1 hold. Then the function J : L∞(Γ) → R is of class C2.
Moreover, for every u, v, v1, v2 ∈ L∞(Γ), we have

J ′(u)v =

ˆ

Γ

(
∂l

∂u
(x, yu, u) + ϕu

)

v dσ(x) (4.1)
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and

J ′′(u)v1v2 =

ˆ

Γ

{
∂2l

∂y2
(x, yu, u)zv1zv2 +

∂2l

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)

+
∂2l

∂u2
(x, yu, u)v1v2

}

dσ(x) +

ˆ

Ω

[
∂2L

∂y2
(x, yu)− ϕu

∂2f

∂y2
(x, yu)

]

zv1zv2 dx

−

ˆ

Ω

∇ϕu ·

[
∂2a

∂y2
(x, yu)zv1zv2∇yu +

∂a

∂y
(x, yu) (zv1∇zv2 + zv2∇zv1)

]

dx , (4.2)

where ϕu ∈ W 1,p(Ω) is the unique solution of the adjoint equation






−div[a(x, yu)∇ϕ] +
∂a

∂y
(x, yu)∇yu ·∇ϕ+

∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu) in Ω,

a(x, yu)∇ϕ·~n(x) =
∂l

∂y
(x, yu, u) on Γ,

(4.3)

and zvi = G′(u)vi, is the solution of (3.3) for v = vi, i = 1, 2.

Proof. The first and second order derivatives of J can be obtained by an ele-
mentary calculus. We only show the existence and uniqueness of a solution of
the adjoint state equation (4.3).
To show the existence of ϕu ∈ H1(Ω) we consider the operator

T ∈ L(H1(Ω), H1(Ω)∗) ,

〈Tz, ϕ〉 =

ˆ

Ω

{

a(x, yu)∇z ·∇ϕ+
∂a

∂y
(x, yu)z∇yu ·∇ϕ+

∂f

∂y
(x, yu)zϕ

}

dx .

According to Theorem 3.1, T is an isomorphism and consequently its adjoint
operator T ∗ ∈ L(H1(Ω), H1(Ω)∗) is also an isomorphism. But this is equivalent
to the well-posedness of the adjoint equation (4.3) in H1(Ω). To obtain the
W 1,p(Ω) regularity of ϕu we can proceed as in Theorem 2.2, provided that the
term

w =
∂a

∂y
(x, yu)∇yu ·∇ϕu

belongs to W 1,p′

(Ω)∗. By using that ∇yu ∈ Lp(Ω), ∇ϕu ∈ L2(Ω) and invoking

the Hölder inequality, we get that ∇yu ·∇ϕu ∈ L
2p

p+2 (Ω), hence w belongs also

to L
2p

p+2 (Ω). Finally, the inclusion L
2p

p+2Ω) ⊂W 1,p′

(Ω)∗ and the same argumen-
tation as in the proof of the W 1,p(Ω) regularity of the solution of (3.3) yields
ϕu ∈W 1,p(Ω).

Remark 4.1 Let us remark that the previous theorem is still valid under the
weaker assumptions ψΩ,M ∈ Lq(Ω), q ≥ 2p/(p+ 2), and ψ1,Γ,M ∈ Lp/2(Γ); see
Assumption 4.1. The stronger assumptions made in 4.1 are only necessary to
prove a regularity result for the optimal solutions of (P); see Theorem 4.4.
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Remark 4.2 From the expression (4.2) for J ′′(u), it is obvious that J ′′(u) can
be extended to a continuous bilinear form J ′′(u) : L2(Γ)× L2(Γ) → R.

The first order optimality conditions stated in the next theorem follow from the
variational inequality J ′(ū)(u − ū) ≥ 0 for every ua ≤ u ≤ ub, along with the
expression of the derivative of J given by (4.1) and (4.3).

Theorem 4.3 Let the assumptions of Theorem 4.2 be satisfied. Then, if ū is a
local minimum of (P), there exists ϕ̄ ∈ W 1,p(Ω) such that







−div[a(x, ȳ)∇ϕ̄(x)]+
∂a

∂y
(x, ȳ)∇ȳ ·∇ϕ̄+

∂f

∂y
(x, ȳ)ϕ̄ =

∂L

∂y
(x, ȳ) in Ω ,

a(x, ȳ)∇ϕ̄·~n(x) =
∂l

∂y
(x, ȳ, ū) on Γ ,

(4.4)

ˆ

Γ

(
∂l

∂u
(x, ȳ, ū) + ϕ̄(x)

)

(u(x)− ū(x)) dσ(x)≥ 0 for all ua ≤ u ≤ ub , (4.5)

where ȳ is the state associated to ū.

If we define the Riesz representation of J ′,

d̄(x) =
∂l

∂u
(x, ȳ, ū) + ϕ̄(x) , (4.6)

then we deduce from (4.5) that

d̄(x) =







= 0 if ua(x) < ū(x) < ub(x)

≤ 0 if ū(x) = ub(x)

≥ 0 if ū(x) = ua(x) .

(4.7)

Finally, we give a result concerning the regularity of the optimal solutions of
(P). The statement and the proof of this result follow the ideas of Casas and
Tröltzsch (2009, Theorem 3.5), the main difference concerns the W 1−1/p,p(Γ)
boundary regularity of the optimal control and its proof.

Theorem 4.4 Let the assumptions of Theorem 4.2 be fulfilled and suppose that

∂l

∂u
: Γ× (R× R) → R be continuous , (4.8)

∃Λl > 0 such that
∂2l

∂u2
(x, y, u) ≥ Λl for a.a. x ∈ Γ and ∀(y, u) ∈ R

2 . (4.9)

Then, for every x ∈ Γ, the equation

∂l

∂u
(x, ȳ(x), t) + ϕ̄(x) = 0 (4.10)
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has a unique solution t̄ = s̄(x). The function s̄ : Γ → R is continuous and is
related to ū by the formula

ū(x) = Proj[ua(x),ub(x)]s̄(x) = max{min{ub(x), s̄(x)}, ua(x)} . (4.11)

If ua, ub are continuous on Γ, then ū is continuous, too. If ua, ub ∈ C0,1(Γ) and
for every M > 0 there exists a constant Cl,M > 0 such that

∣
∣
∣
∣

∂l

∂u
(x2, y, u)−

∂l

∂u
(x1, y, u)

∣
∣
∣
∣
≤ Cl,M |x2 − x1| ∀xi∈Γ and ∀|y|, |u| ≤M , (4.12)

then s̄, ū ∈W 1−1/p,p(Γ) for 2 < p ≤ min{p0, p̄}. In addition, if Ω is convex and
a : Ω̄× R −→ R is locally Lipschitz, then s̄, ū ∈ C0,1(Γ) and ȳ, ϕ̄ ∈ W 2,p(Ω).

Proof. Let us recall that ȳ, ϕ̄ ∈ W 1,p(Ω) ⊂ C(Ω̄), for some 2 < p ≤ p̄. We fix
x ∈ Γ and consider the real function g : R → R defined by

g(t) = ϕ̄(x) +
∂l

∂u
(x, ȳ(x), t) .

Then g is C1 with g′(t) ≥ Λl > 0. Therefore, g is strictly increasing and

lim
t→−∞

g(t) = −∞ and lim
t→+∞

g(t) = +∞ .

Hence, there exists a unique element t̄ ∈ R satisfying g(t̄) = 0, i.e. s̄ is well
defined.

Taking d̄ as defined in (4.6) and using (4.7) along with the strict monotonicity
of (∂l/∂u) with respect to the third variable, we obtain







if d̄(x) = 0 then ū(x) = s̄(x)

if d̄(x) < 0 then ub(x) = ū(x) < s̄(x)

if d̄(x) > 0 then ua(x) = ū(x) > s̄(x) ,

which implies (4.11).

To show the boundedness of s̄ on Γ we use the mean value theorem along
with (4.8), (4.9) and (4.10):

Λl |s̄(x)| ≤

∣
∣
∣
∣

∂l

∂u
(x, ȳ(x), s̄(x)) −

∂l

∂u
(x, ȳ(x), 0)

∣
∣
∣
∣
=

∣
∣
∣
∣
ϕ̄(x) +

∂l

∂u
(x, ȳ(x), 0)

∣
∣
∣
∣
,

therefore

|s̄(x)| ≤
1

Λl
max
x∈Γ

∣
∣
∣
∣
ϕ̄(x) +

∂l

∂u
(x, ȳ(x), 0)

∣
∣
∣
∣
<∞ .
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The continuity of s̄ at every point x ∈ Γ follows easily from the continuity
of ȳ and (∂l/∂u) by using the following inequality

|s̄(x)− s̄(x′)| ≤
1

Λl

∣
∣
∣
∣

∂l

∂u
(x′, ȳ(x′), s̄(x))−

∂l

∂u
(x′, ȳ(x′), s̄(x′))

∣
∣
∣
∣

≤
1

Λl

[

|ϕ̄(x′)− ϕ̄(x)| +

∣
∣
∣
∣

∂l

∂u
(x′, ȳ(x′), s̄(x))−

∂l

∂u
(x, ȳ(x), s̄(x))

∣
∣
∣
∣

]

. (4.13)

If ua, ub ∈ C(Γ), then the identity (4.11) and the continuity of s̄ imply that
ū ∈ C(Γ).

The traces of ȳ and ϕ̄ belong to W 1−1/p,p(Γ). Assuming that (4.12) holds
and ua, ub ∈ C0,1(Γ), taking the norm

‖z‖W 1−1/p,p(Γ) =

(

‖z‖pLp(Γ) +

ˆ

Γ

ˆ

Γ

|z(x)− z(x′)|p

|x− x′|p
dσ(x)dσ(x′)

)1/p

,

the W 1−1/p,p(Γ) regularity of ū and s̄ follows from (4.13) and (4.11). Now, if Ω is
assumed convex and the local Lipschitz property of a holds, then ȳ ∈ W 2,p(Ω).
The same is also true for ϕ̄, provided that (4.12) is satisfied. To this aim, we
prove that (∂l/∂y)(·, ȳ(·), ū(·)) ∈ W 1−1/p,p(Γ). Together with (∂L/∂y)(·, ȳ(·)) ∈
Lp(Ω) we can follow Theorem 2.4 to deduce ϕ̄ ∈ W 2,p(Ω). Using (4.12) and
Assumption 4.1 we get (∂l/∂y)(·, ȳ(·), ū(·)) ∈ Lp(Γ) and

∣
∣
∣
∣

∂l

∂y
(x, ȳ(x), ū(x))−

∂l

∂y
(x′, ȳ(x′), ū(x′))

∣
∣
∣
∣

≤ C (|x− x′|+ |ȳ(x)− ȳ(x′)|+ |ū(x) − ū(x′)|) ,

for a.a. x, x′ ∈ Γ. It follows that

∣
∣
∣
∣

∂l

∂y
(x, ȳ(x), ū(x)) −

∂l

∂y
(x′, ȳ(x′), ū(x′))

∣
∣
∣
∣

p

|x− x′|p

≤ Cp

[

1 +
|ȳ(x) − ȳ(x′)|p

|x− x′|p
+

|ū(x) − ū(x′)|p

|x− x′|p

]

=: z(x, x′)

and

ˆ

Γ

ˆ

Γ

z(x, x′)dσ(x)dσ(x′)<∞, therefore (∂l/∂y)(·, ȳ(·), ū(·)) ∈W 1−1/p,p(Γ).

Using the embedding W 2,p(Ω) ⊂ C0,1(Ω̄), see Nečas (1967, Chapter 2, Theorem
3.8), and (4.13) we get the Lipschitz regularity of ū and s̄.

Remark 4.3 The previous theorem is valid for domains Ω ⊂ R
n, n = 2 or 3,

non-convex and non-polygonal, assuming the C1,1 regularity of Γ.
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5. Pontryagin’s principle

In this section we derive the Pontryagin’s principle satisfied by a local solution
of (P), which is needed for the second-order analysis we study in Section 6. For
this purpose, we impose the following assumption:

Assumption 5.1 L : Ω × R → R and l : Γ × R × R → R are of class C1

with respect to the second variable, 2 < p ≤ p̄ and for any M > 0, there exist
functions ψΩ,M ∈ Lq(Ω), q ≥ 2p/(p+ 2), and ψΓ,M ∈ Lp/2(Γ), such that

∣
∣
∣
∣

∂L

∂y
(x, y)

∣
∣
∣
∣
≤ ψΩ,M (x) ,

∣
∣
∣
∣

∂l

∂y
(s, y, u)

∣
∣
∣
∣
≤ ψΓ,M (s)

hold for a.a. x ∈ Ω and all s ∈ Γ, |y|, |u| ≤M .

Let us introduce the Hamiltonian H associated to the control problem (P),

H(x, y, u, ϕ) = l(x, y, u) + ϕu .

The Pontryagin’s principle is formulated as follows.

Theorem 5.1 Let ū be a local solution of (P) and suppose that the Assumptions
2.1-2.3, 3.1-(1) and 5.1 hold. We also assume that a : Ω̄×R → R is continuous.
Then there exists ϕ̄ ∈ W 1,p(Ω) satisfying the adjoint equation (4.3) and the
minimum condition

H(x, ȳ(x), ū(x), ϕ̄(x)) = min
s∈[uaε̄ (x),ubε̄ (x)]

H(x, ȳ(x), s, ϕ̄(x)) for a.a. x∈Γ , (5.1)

where

uaε̄(x) = max{ua(x), ū(x) − ε̄} and ubε̄(x) = min{ub(x), ū(x) + ε̄} ,

ε̄ > 0 is the radius of the L∞(Γ)-ball where J achieves the (local) minimum
value at ū among all feasible controls.

If l is convex with respect to the 3rd variable, (5.1) follows immediately from
the variational inequality (4.5).

To prove this theorem, first the sensitivity of the state with respect to certain
pointwise perturbations of the control is studied. The following propositions are
crucial to accomplish these perturbations.

Proposition 5.1 Let ρ ∈ (0, 1), then a sequence of σ-measurable sets {Ek}
∞
k=1,

with Ek ⊂ Γ and σ(Ek) = ρσ(Γ), exists such that (1/ρ)χEk
⇀ 1 weakly∗ in

L∞(Γ) when k → ∞.

For the proof of Proposition 5.1, the reader is referred to Casas (1996).
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Proposition 5.2 Under the assumptions of Theorem 5.1, for any u ∈ L∞(Γ)
there exists a number 0 < ρ̂ < 1 and σ-measurable sets Eρ, with σ(Eρ) = ρσ(Γ)
for all 0 < ρ < ρ̂, that have the following properties: If we define

uρ(x) =

{

ū(x) if x ∈ Γ \ Eρ

u(x) if x ∈ Eρ ,

then

yρ = ȳ + ρz + rρ , lim
ρց0

1

ρ
‖rρ‖W 1,p(Ω) = 0 , (5.2)

J(uρ) = J(ū) + ρz0 + r0ρ , lim
ρց0

1

ρ
|r0ρ| = 0 (5.3)

hold true, where ȳ and yρ are the states associated to ū and uρ respectively, z is
the unique element of W 1,p(Ω) satisfying the linearized equation







− div

[

a(x, ȳ)∇z +
∂a

∂y
(x, ȳ)z∇ȳ

]

+
∂f

∂y
(x, ȳ)z = 0 , in Ω ,

[

a(x, ȳ)∇z +
∂a

∂y
(x, ȳ)z∇ȳ

]

·~n(x) = u− ū , on Γ

(5.4)

and

z0 =

ˆ

Ω

∂L

∂y
(x, ȳ)z dx+

ˆ

Γ

{
∂l

∂y
(x, ȳ, ū)z + l(x, ȳ, u)− l(x, ȳ, ū)

}

dσ(x) .

Proof. Since the proof is similar to that of Casas and Tröltzsch (2009, Propo-
sition 4.3) we only comment upon the main differences. We define g ∈ L1(Γ)
by

g(x) = l(x, ȳ(x), u(x)) − l(x, ȳ(x), ū(x)) .

Given ρ ∈ (0, 1), we take a sequence {Ek}
∞
k=1 as in Proposition 5.1. Since L∞(Γ)

is compactly embedded in W−1/p,p(Γ), there exists kρ such that
∣
∣
∣
∣

ˆ

Γ

[

1−
1

ρ
χEk

(x)

]

g(x) dσ(x)

∣
∣
∣
∣
+

∥
∥
∥
∥
(1−

1

ρ
χEk

)(u−ū)

∥
∥
∥
∥
W−1/p,p(Γ)

< ρ ∀k ≥ kρ. (5.5)

The inequality (5.5) is the analog of Casas and Tröltzsch (2009, Eq. (4.7)). The
same argumentation as in the proof of Casas and Tröltzsch (2009, Proposition
4.3) yields (5.2). To prove (5.3) we first introduce

Lρ(x) =

ˆ 1

0

∂L

∂y
(x, ȳ(x) + θ(yρ(x) − ȳ(x))) dθ ,

lρ(x) =

ˆ 1

0

∂l

∂y
(x, ȳ(x) + θ(yρ(x)− ȳ(x)), uρ(x)) dθ .
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Now, recalling the definition of g, and using (5.5), we have

J(uρ)− J(ū)

ρ
=

=

ˆ

Ω

L(x, yρ(x))− L(x, ȳ(x))

ρ
dx +

ˆ

Γ

l(x, yρ(x), uρ(x)) − l(x, ȳ(x), ū(x))

ρ
dσ(x)

=

ˆ

Ω

L(x, yρ(x))− L(x, ȳ(x))

ρ
dx +

ˆ

Γ

l(x, yρ(x), uρ(x)) − l(x, ȳ(x), uρ(x))

ρ
dσ(x)

+

ˆ

Γ

l(x, ȳ(x), uρ(x))− l(x, ȳ(x), ū(x))

ρ
dσ(x)

=

ˆ

Ω

Lρ(x)zρ(x) dx+

ˆ

Γ

{

lρ(x)zρ(x) +
1

ρ
χEρ(x)g(x)

}

dσ(x) →

→

ˆ

Ω

∂L

∂y
(x, ȳ(x))z(x) dx +

ˆ

Γ

{
∂l

∂y
(x, ȳ(x), ū(x))z(x) + g(x)

}

dσ(x) = z0 ,

which implies (5.3).

Proof of Theorem 5.1. Since ū is a local solution of problem (P), there exists
ε̄ > 0 such that J achieves the minimum at ū among all feasible controls of
B̄L∞(Γ)(ū, ε̄). Let us take u ∈ B̄L∞(Γ)(ū, ε̄) with ua ≤ u ≤ ub a.e. on Γ.
Following Proposition 5.2, we consider sets {Eρ}ρ>0 such that (5.2) and (5.3)
hold. Then uρ ∈ B̄L∞(Γ)(ū, ε̄) and (5.3) lead to

0 ≤ lim
ρց0

J(uρ)− J(ū)

ρ
= z0 .

By using the variational formulation of (5.4) and the adjoint state given by
(4.4), we get from the previous inequality after a integration by parts

0 ≤

ˆ

Γ

{ϕ̄(x)(u(x) − ū(x)) + l(x, ȳ, u)− l(x, ȳ, ū)} dσ(x)

=

ˆ

Γ

{H(x, ȳ(x), u(x), ϕ̄(x)) −H(x, ȳ(x), ū(x), ϕ̄(x))} dσ(x) . (5.6)

Since u is an arbitrary feasible control in the ball B̄L∞(Γ)(ū, ε̄), taking into
account the definitions of uaε̄ and ubε̄ given in the statement of Theorem 5.1,
we deduce from (5.6)

ˆ

Γ

H(x, ȳ(x), ū(x), ϕ̄(x)) dσ(x) = min
uaε̄≤u≤ubε̄

ˆ

Γ

H(x, ȳ(x), u(x), ϕ̄(x)) dσ(x) .

(5.7)

It remains to prove that (5.7) implies (5.1). To do this we can follow the lines
of the proof of Casas (1996, Theorem 1).
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6. Second-order optimality conditions

In this section we prove at first the necessary and next the sufficient second-order
optimality conditions. We suppose that the Assumptions 2.1-2.3, 3.1-(1) and 4.1
hold, 2 < p ≤ p̄ with p̄ taken from Theorem 2.2, and the function a : Ω̄×R → R

is continuous. Observe that Assumption 4.1 implies 5.1, therefore Theorem 5.1
holds.

If ū is a feasible control for problem (P) and there exists ϕ̄ ∈ W 1,p(Ω)
satisfying (4.4) and (4.5), then we introduce the cone of critical directions

Cū =







h ∈ L∞(Γ) |h(x)







≥ 0 if ū(x) = ua(x)

≤ 0 if ū(x) = ub(x)

= 0 if d̄(x) 6= 0

for x ∈ Γ







, (6.1)

where d̄ is defined by (4.6). In the previous section we introduced the Hamilto-
nian H associated to our problem (P). It follows easily that

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) = d̄(x) .

In the sequel, we will use the notation

H̄u(x) =
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) and H̄uu(x) =

∂2H

∂u2
(x, ȳ(x), ū(x), ϕ̄(x)) .

In the following theorem we state the necessary second-order optimality condi-
tions.

Theorem 6.1 Let ū be a local optimal solution of (P). Then the following
inequalities hold

{

J ′′(ū)h2 ≥ 0, ∀h ∈ Cū

H̄uu(x) ≥ 0, for a.a. x with H̄u(x) = 0 .
(6.2)

Proof. The first inequality of (6.2) can be proved by the arguments of Casas
and Tröltzsch (2009, Theorem 5.1). The second inequality follows easily from
(5.1). Indeed, it is an easy and well known conclusion of (5.1) that

H̄u(x)







≥ 0 if ū(x) = ua(x)

≤ 0 if ū(x) = ub(x)

= 0 if ua(x) < ū(x) < ub(x)

for a.a. x ∈ Γ

and

H̄uu(x) ≥ 0 if H̄u(x) = 0 for a.a. x ∈ Γ .
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Let us define the Lagrange function associated to (P),

L : L∞(Γ)×W 1,p(Ω)×W 1,p(Ω) → R

given by

L(u, y, ϕ) = J (y, u)−

ˆ

Ω

{a(x, y)∇y ·∇ϕ+ ϕf(x, y)} dx+

ˆ

Γ

ϕu dσ(x)

=

ˆ

Γ

H(x, y(x), u(x), ϕ(x)) dσ(x)+

ˆ

Ω

{L(x, y)− [a(x, y)∇y ·∇ϕ+ ϕf(x, y)]} dx,

where

J (y, u) =

ˆ

Ω

L(x, y) dx+

ˆ

Γ

l(x, y, u) dσ(x) .

By using the Lagrange function, we can express the second-order optimality
conditions in the form (6.3) below, which is more convenient in optimization
theory. This form is obtained as follows: Defining H̄y, H̄yy and H̄yu similarly
to H̄u and H̄uu we can write the first and second order derivatives of L w.r. to
(y, u) as follows

D(y,u)L(ū, ȳ, ϕ̄)(z, h) =

ˆ

Γ

{
H̄y(x)z(x) + H̄u(x)h(x)

}
dσ(x)

+

ˆ

Ω

{
∂L

∂y
(x, ȳ)z − ϕ̄

∂f

∂y
(x, ȳ)z −∇ϕ̄·

[

a(x, ȳ)∇z +
∂a

∂y
(x, ȳ)z∇ȳ

]}

dx .

If we take z as the solution of (3.1) associated to v = h and g = 0, along with
the adjoint state (4.4), we get

D(y,u)L(ū, ȳ, ϕ̄)(z, h) =

ˆ

Γ

H̄u(x)h(x)dσ(x) .

Moreover, we find

D2
(y,u)L(ū, ȳ, ϕ̄)(z, h)

2=

ˆ

Γ

{
H̄yy(x)z

2(x) + 2H̄yu(x)zh+ H̄uu(x)h
2(x)

}
dσ(x)

+

ˆ

Ω

{
∂2L

∂y2
(x, ȳ)z2− ϕ̄

∂f2

∂y2
(x, ȳ)z2 −∇ϕ̄·

[
∂2a

∂y2
(x, ȳ)z2∇ȳ +2

∂a

∂y
(x, ȳ)z∇z

]}

dx .

Once again, taking z as above, we deduce from (4.2)

J ′′(ū)h2 = D2
(y,u)L(ū, ȳ, ϕ̄)(z, h)

2 . (6.3)

The next theorem provides the second order sufficient optimality conditions of
(P).
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Theorem 6.2 Let ū be a feasible control for problem (P) and ϕ̄ ∈ W 1,p(Ω)
satisfying (4.4) and (4.5). We also assume that there exist µ > 0 and τ > 0
such that

{

J ′′(ū)h2 > 0 ∀h ∈ Cū \ {0}

H̄uu(x) ≥ µ if
∣
∣H̄u(x)

∣
∣ ≤ τ for a.a. x ∈ Γ .

(6.4)

Then there exist ε > 0 and δ > 0 such that

J(ū) +
δ

2
‖u− ū‖2L2(Γ) ≤ J(u)

for every feasible control u for (P), with ‖u− ū‖L∞(Γ) ≤ ε.

Proof. The proof follows the same steps as that of Casas and Tröltzsch (2009,
Theorem 5.2). Let us indicate some minor changes. We will argue by contradic-
tion. Let us assume that there exists a sequence {uk}

∞
k=1 ⊂ L∞(Γ) of feasible

controls for (P) with

‖uk − ū‖L∞(Γ) <
1

k
and J(ū) +

1

k
‖uk − ū‖2L2(Γ) > J(uk) . (6.5)

Let us define

yk = G(uk) = yuk
, ȳ = G(ū) = yū, ρk = ‖uk−ū‖L2(Γ) and vk =

1

ρk
(uk−ū) ,

then

lim
k→∞

‖yk − ȳ‖W 1,p(Ω) = 0, lim
k→∞

ρk = 0 and ‖vk‖L2(Γ) = 1 ∀k ∈ N . (6.6)

By taking a subsequence, if necessary, we can assume that vk ⇀ v weakly in
L2(Γ). We will prove that v ∈ Cū. For this, we will need the following result

lim
k→∞

1

ρk
(yk − ȳ) = z in H1(Ω) ,

where z ∈ H1(Ω) is the solution of (3.1) corresponding to the state ȳ and
g = 0, which we prove now. By setting zk = (yk − ȳ)/ρk, subtracting the state
equations satisfied by (yk, uk) and (ȳ, ū), dividing by ρk and applying the mean
value theorem we get






− div

[

a(x, yk)∇zk +
∂a

∂y
(x, ȳ + θk(yk − ȳ))zk∇ȳ

]

+
∂f

∂y
(x, ȳ + νk(yk − ȳ))zk = 0 in Ω ,

[

a(x, yk)∇zk +
∂a

∂y
(x, ȳ + θk(yk − ȳ))zk∇ȳ

]

·~n(x) = vk on Γ .

(6.7)
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Notice that θk, νk are functions depending on the space variable and their
measurability can be shown by applying Ekeland and Temam (1976, Theorem
1.2, p. 236, and Proposition 1.1, p. 234) to the positive functions

g1 : Ω̄× [0, 1] → R ,

g1(x, t) =

∣
∣
∣
∣
a(x, yk(x)) − a(x, ȳ(x)) −

∂a

∂y
(x, ȳ(x) + t(yk(x)− ȳ(x)))

∣
∣
∣
∣
,

and

g2 : Ω× [0, 1] → R ,

g2(x, t) =

∣
∣
∣
∣
f(x, yk(x)) − f(x, ȳ(x)) −

∂f

∂y
(x, ȳ(x) + t(yk(x)− ȳ(x)))

∣
∣
∣
∣
,

respectively. Using similar arguments as in the proof of Casas and Tröltzsch
(2009, Theorem 5.2), we can pass to the limit in (6.7) and deduce







− div

[

a(x, ȳ)∇z +
∂a

∂y
(x, ȳ)z∇ȳ

]

+
∂f

∂y
(x, ȳ)z = 0 in Ω ,

[

a(x, ȳ)∇z +
∂a

∂y
(x, ȳ)z∇ȳ

]

·~n(x) = v on Γ .

(6.8)

It remains to show the strong convergence zk → z in H1(Ω). This can be done
by using (6.7), (6.8), and the uniform convergence yk → ȳ. It can be shown
easily that

ˆ

Ω

a(x, ȳ) |∇zk|
2
dx→

ˆ

Ω

a(x, ȳ) |∇z|
2
dx .

Finally, this convergence, along with the weak convergence of {zk}
∞
k=1 in H1(Ω)

implies the strong convergence zk → z in H1(Ω). With the help of this con-
vergence we can prove that v ∈ Cū; see Casas and Tröltzsch (2009, Theorem
5.2).

Our next goal is to prove that v does not satisfy the first condition of (6.4),
which leads immediately to the identity v = 0 and then to the final contradiction.
By using the definition of L, (6.5) and the fact that (yk, uk) and (ȳ, ū) satisfy
the state equation, we get

L(uk, yk, ϕ̄) = J (yk, uk) < J (ȳ, ū) +
1

k
‖uk − ū‖2L2(Γ)

= L(ū, ȳ, ϕ̄) +
1

k
‖uk − ū‖2L2(Γ) . (6.9)

By performing a Taylor expansion up to the second order, we obtain

L(uk, yk, ϕ̄) = L(ū+ ρkvk, ȳ + ρkzk, ϕ̄) = L(ū, ȳ, ϕ̄) + ρkD(u,y)L(ū, ȳ, ϕ̄)(zk, vk)

+
ρ2k
2
D2

(u,y)L(ū+ θkρkvk, ȳ + νkρkzk, ϕ̄)(zk, vk)
2.
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Taking into account (6.9) and (6.5), the last equality leads to

ρkD(u,y)L(ū, ȳ, ϕ̄)(zk, vk)+
ρ2k
2
D2

(u,y)L(wk, ξk, ϕ̄)(zk, vk)
2<

1

k
‖uk− ū‖2L2(Γ)=

ρ2k
k
,

where ξk := ȳ + νkρkzk and wk := ū + θkρkvk. Obviously, ξk → ȳ in W 1,p(Ω)
and wk → ū in L∞(Γ). Taking into account the expressions obtained for the
derivatives of L we get, after dividing the previous inequality by ρ2k,

1

ρk

ˆ

Γ

H̄u(x)vk(x) dσ(x) +
1

2

[
ˆ

Γ

{
Hk

yy(x)z
2
k(x) + 2Hk

yu(x)(zk, vk)

+Hk
uu(x)v

2
k(x)

}
dσ(x) +

ˆ

Ω

{
∂2L

∂y2
(x, ξk)z

2
k − ϕ̄

∂f2

∂y2
(x, ξk)z

2
k

−∇ϕ̄·

[
∂2a

∂y2
(x, ξk)z

2
k∇ξk + 2

∂a

∂y
(x, ξk)zk∇zk

]}

dx

]

<
1

k
, (6.10)

where

Hk
yy(x) = Hyy(x, ξk(x), wk(x), ϕ̄(x)) ,

with analogous definitions for Hk
yu(x) and Hk

uu(x). It is easy to check that

{

(Hk
yy(x), H

k
yu(x), H

k
uu(x)) → (H̄yy(x), H̄yu(x), H̄uu(x))

|Hk
yy(x)| + |Hk

yu(x)| + |Hk
uu(x)| ≤ C

for a.a. x ∈ Γ ,

for some constant C < ∞. The following convergence properties can also be
verified easily







∂ja

∂yj
(x, ξk)zk∇ϕ̄→

∂ja

∂yj
(x, ȳ)z∇ϕ̄, j = 1, 2 ,

∇zk → ∇z and zk∇ξk → z∇ȳ , in L2(Ω)2 and

ϕ̄
∂2f

∂y2
(x, ξk)zk → ϕ̄

∂2f

∂y2
(x, ȳ)z , in L2(Ω) .

Using the above properties we can pass to the limit in (6.10) as follows

lim sup
k→∞

{
1

ρk

ˆ

Γ

H̄u(x)vk(x) dσ(x) +
1

2

ˆ

Γ

Hk
uu(x)v

2
k(x) dσ(x)

}

+
1

2

[
ˆ

Γ

{
H̄yy(x)z

2(x) + 2H̄yu(x)zv
}
dσ(x) +

ˆ

Ω

{
∂2L

∂y2
(x, ȳ)z2

− ϕ̄
∂f2

∂y2
(x, ȳ)z2−∇ϕ̄·

[
∂2a

∂y2
(x, ȳ)z2∇ȳ + 2

∂a

∂y
(x, ȳ)z∇z

]}

dx

]

≤0. (6.11)
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Now, we prove that the above upper limit is bounded from below by

1

2

ˆ

Γ

H̄uu(x)v
2(x) dσ(x).

This can be done as in Casas and Tröltzsch (2009, Theorem 5.2) by a convexity
argument for which the second condition of (6.4) plays an essential role. The
difficulty in achieving this goal is due to the fact that we only have a weak con-
vergence vk ⇀ v. Once the mentioned lower estimate is proved, from (6.11) and
(6.3) we deduce that J ′′(ū)v2 = D2

(y,u)L(ū, ȳ, ϕ̄)(z, v)
2 ≤ 0. Finally, according

to (6.4) this is possible only if v = 0. To get this estimate we use the following
inequality, proved in Casas and Tröltzsch (2009, Theorem 5.2) for distributed
controls, but there is no difference in the arguments,

lim sup
k→∞

{
1

ρk

ˆ

Γ

H̄u(x)vk(x) dσ(x) +
1

2

ˆ

Γ

Hk
uu(x)v

2
k(x) dσ(x)

}

≥ lim sup
k→∞

{
ˆ

{|H̄u|>τ}

[

‖H̄uu‖L∞(Γ)+
1

2
H̄uu

]

v2k dσ(x)+
1

2

ˆ

{|H̄u|≤τ}
H̄uuv

2
k dσ(x)

}

≥
1

2

ˆ

Γ

H̄uuv
2 dσ(x) . (6.12)

Finally, using that ‖vk‖L2(Γ) = 1, along with (6.11), (6.12), the second
condition of (6.4) and the fact that v = 0, we deduce

0≥ lim sup
k→∞

{
ˆ

{|H̄u|>τ}

[

‖H̄uu‖L∞(Γ)+
1

2
H̄uu

]

v2k dσ(x)+
1

2

ˆ

{|H̄u|≤τ}
H̄uuv

2
k dσ(x)

}

≥ lim sup
k→∞

{

‖H̄uu‖L∞(Γ)

2

ˆ

{|H̄u|>τ}
v2k dσ(x) +

µ

2

ˆ

{|H̄u|≤τ}
v2k dσ(x)

}

≥
min{‖H̄uu‖L∞(Γ), µ}

2
lim sup
k→∞

{
ˆ

Γ

v2k dσ(x)

}

=
min{‖H̄uu‖L∞(Γ), µ}

2
> 0 ,

yielding the contradiction we were looking for.

Remark 6.1 Let us note that H̄uu(x) = (∂2l/∂u2)(x, ȳ(x), ū(x)). Therefore, if
the second derivative of l w.r. to u is strictly positive, then the second condition
of (6.4) is satisfied. A standard example is given by the function

l(x, y(x), u(x)) = l0(x, y(x)) +
λ

2
u2 , with λ > 0 .

In this case the control ū given in the statement of Theorem 6.2 is locally optimal
even in the sense of L2(Γ). To prove this, we follow the same lines of the
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previous proof with the following differences. Instead of (6.5) we assume the
existence of a sequence {uk}

∞
k=1 ⊂ Uad with

‖uk − ū‖L2(Γ) <
1

k
and J(ū) +

1

k
‖uk − ū‖2L2(Γ) > J(uk) .

Then, by using the identity H̄uu(x) ≡ λ and ‖vk‖L2(Γ) = 1, we can considerably
shorten the previous proof in the following way

0 ≥ lim sup
k→∞

{
1

ρk

ˆ

Γ

H̄u(x)vk(x) dσ(x) +
1

2

ˆ

Γ

Hk
uu(x)v

2
k(x) dσ(x)

}

= lim sup
k→∞

{
1

ρk

ˆ

Γ

|H̄u(x)||vk(x)| dσ(x) +
1

2

ˆ

Γ

H̄uu(x)v
2
k(x) dσ(x)

}

≥ lim sup
k→∞

{
λ

2

ˆ

Γ

v2k(x) dσ(x)

}

=
λ

2
.

This yields the desired contradiction.

We give another sufficient optimality condition equivalent to (6.4), which is very
useful for numerical purposes. The proof of this equivalence is carried out in
Casas and Mateos (2002, Theorem 4.4).

Theorem 6.3 Let ū be a feasible control for problem (P). We assume that there
exists ϕ̄ ∈ W 1,p(Ω) satisfying (4.4) and (4.5). Then (6.4) holds if and only if
there exist δ, ρ > 0 such that

J ′′(ū)h2 ≥ δ‖h‖2L2(Γ) ∀h ∈ Cρ
ū , (6.13)

where

Cρ
ū =







h ∈ L2(Γ) |h(x)







≥ 0 if ū(x) = ua(x)

≤ 0 if ū(x) = ub(x)

= 0 if |d̄(x)| > ρ

for a.a. x ∈ Γ







.

Remark 6.2 Comparing the first inequality of (6.4) with the analogous one of
(6.2), we notice that the gap is minimal between the necessary and sufficient
conditions. On the other hand, the second inequality of (6.4) is stronger than
the corresponding one of (6.2). In general we cannot take τ = 0 in (6.4). The
reader is referred to Dunn (1998) for a simple example proving the impossibility
of taking τ = 0.

A. Regularity results for solutions of elliptic PDEs in non-

convex polygons

In this appendix we study the following Neumann problem
{

−∆y = f in Ω ,

∇y ·~n = g on Γ ,
(A.1)
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where Ω ⊂ R
2 is a (non necessarily convex) polygonal open and bounded set,

Γ = ∂Ω, f ∈ Lp(Ω) with p > 4/3 and g ∈ L2(Γ). We assume the compatibility
condition

ˆ

Ω

f(x) dx +

ˆ

Γ

g(x) dσ(x) = 0 . (A.2)

It is well known that (A.1) has a solution in H1(Ω) that is unique up to an
additive constant.

Theorem A.1 Let y ∈ H1(Ω) be a solution of (A.1), then y ∈ H
3/2(Ω) and

there exists a constant C > 0 independent of f and g such that

‖y‖H3/2(Ω) ≤ C

(

‖f‖Lp(Ω) + ‖g‖L2(Γ) +

∣
∣
∣
∣

ˆ

Ω

y(x) dx

∣
∣
∣
∣

)

. (A.3)

The last term in the inequality (A.3) is a consequence of the uniqueness of y up
to an additive constant. To prove the previous theorem we will use the following

Lemma A.1 There exists s > 3/2 independent of f such that the problem

{

−∆y1 = f in Ω ,

y1 = 0 on Γ ,
(A.4)

has a unique solution in Hs(Ω). Moreover

‖y1‖Hs(Ω) ≤ Cs‖f‖Lp(Ω) .

Proof. According to Dauge (1988, Theorem 23.3), see also Dauge (1989, Theo-
rem 3), there exists s0 ∈ (3/2, 5/2) depending on the angles of Ω and the mini-
mum positive eigenvalue of the Laplace operator in Ω, such that y1 ∈ Hs(Ω) if
f ∈ Hs−2(Ω) and 3/2 < s < s0. Moreover, the following estimate holds

‖y1‖Hs(Ω) ≤ Cs‖f‖Hs−2(Ω) .

The proof is concluded if we prove that Lp(Ω) ⊂ Hs−2(Ω) for 3/2 < s < s0. For
0 < 2− s < 1/2, we have that Hs−2(Ω) = H2−s(Ω)∗. Taking into account that
H1/2(Ω) ⊂ L4(Ω), we can get ε > 0 small enough and s close to 3/2 such that
p > (4 − ε)/(3 − ε) and H2−s(Ω) ⊂ L4−ε(Ω). Then, Lp(Ω) ⊂ L

(4−ε)/(3−ε)(Ω) =
L4−ε(Ω)∗ ⊂ H2−s(Ω)∗ = Hs−2(Ω).

Proof of Theorem A.1. Let y1 ∈ Hs(Ω) be the solution of (A.4), then ∇y1 ·~n ∈
Hs−3/2(Γ) ⊂ L2(Γ). Using (A.2) and integrating the equation (A.1) we obtain

−

ˆ

Γ

g(x) dσ(x) =

ˆ

Ω

f(x) dx = −

ˆ

Ω

∆y1(x) dx = −

ˆ

Γ

∇y1(x)·~n(x) dσ(x) ,
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therefore the Neumann problem
{

−∆y2 = 0 in Ω ,

∇y2 ·~n = g −∇y1 ·~n on Γ ,
(A.5)

has a solution in H1(Ω). Moreover, this solution is in H
3/2(Ω) (see Jerison and

Kenig, 1981, and Kenig, 1994) and from Lemma A.1 it follows that

‖y2‖H3/2(Ω) ≤ C

(

‖g −∇y1 ·~n‖L2(Γ) +

∣
∣
∣
∣

ˆ

Ω

y2(x) dx

∣
∣
∣
∣

)

≤ C

(

‖g‖L2(Γ) + ‖y1‖Hs(Ω) +

∣
∣
∣
∣

ˆ

Ω

y2(x) dx

∣
∣
∣
∣

)

≤ C

(

‖g‖L2(Γ) + ‖f‖Lp(Ω) +

∣
∣
∣
∣

ˆ

Ω

y2(x) dx

∣
∣
∣
∣

)

.

Finally, it is clear that y1 + y2 ∈ H3/2(Ω) and y = y1 + y2 + constant, which
concludes the proof.

Theorem A.2 If y ∈ H3/2(Ω) and ∆y ∈ Lp(Ω), then y
∣
∣
Γ
∈ H1(Γ) and ∇y·~n ∈

L2(Γ) and the following estimate holds

‖y
∣
∣
Γ
‖H1(Ω) + ‖∇y ·~n‖L2(Γ) ≤ C

(

‖y‖H3/2(Ω) + ‖∆y‖Lp(Ω)

)

. (A.6)

Proof. As we stated in the proof of Theorem A.1 y = y1 + y2 + constant, with
y1 ∈ Hs(Ω) ∩H1

0 (Ω) and y2 ∈ H3/2(Ω) harmonic. Following Jerison and Kenig,
1995, Theorem 5.6 and Corollary 5.7, we have that y2

∣
∣
Γ
∈ H1(Γ), ∇y2·~n ∈ L2(Γ)

and

‖y2
∣
∣
Γ
‖H1(Γ) + ‖∇y2 ·~n‖L2(Γ) ≤ C‖y2‖H3/2(Ω) . (A.7)

On the other hand, y1
∣
∣
Γ
= 0, therefore y

∣
∣
Γ
= y2

∣
∣
Γ
+ constant ∈ H1(Γ). Since

y1 ∈ Hs(Ω), with s > 3/2, it holds that ∇y1 ·~n ∈ L2(Γ) and

‖∇y1 ·~n‖L2(Γ) ≤ C‖y1‖Hs(Ω) ≤ C‖f‖Lp(Ω) . (A.8)

Thus we have that ∇y·~n = ∇y1·~n+∇y2·~n ∈ L2(Γ) and (A.6) follows from (A.7)
and (A.8).

Corollary A.1 Let a ∈ Lp(Ω) satisfy 0 ≤ a and a 6≡ 0 at least on a subset of
Ω with positive measure. Then the problem

{

−∆y + a(x)y = f in Ω ,

∇y ·~n = g on Γ ,

has a unique solution y ∈ H3/2(Ω) such that

‖y‖H3/2(Ω) ≤ C
(
‖f‖Lp(Ω) + ‖g‖L2(Γ)

)
,

where C > 0 depends on ‖a‖Lp(Ω) but it is independent of f and g.
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