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Abstract: In 1970 a negative solution to the tenth Hilbert
problem, concerning the determination of integral solutions of dio-
phantine equations, has been published by Y. W. Matiyasevich (see
Matiyasevich, 1970). Despite this result, we can present algorithms
to compute integral solutions (roots) for a wide class of quadratic
diophantine equations of the form q(x) = d, where q : Zn −→ Z is a
homogeneous quadratic form. We will focus on the roots of one (i.e.,
d = 1) of quadratic Euler forms of selected posets from Loupias’
list (see Loupias, 1975). In particular, we will describe the roots of
positive definite quadratic forms and the roots of quadratic forms
that are principal (see Simson, 2010a). The algorithms and results
we present here are successfully used in the representation theory of
finite groups and algebras.
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1. Introduction

The problem of finding a general procedure solving any diophantine equation
had been posed by David Hilbert in 1900 during the International Congress
of Mathematicians in Paris. This problem was open for many years, until Y.
W. Matiyasevich published the negative solution of the Tenth Hilbert Prob-
lem in 1970 (see Matiyasevich, 1970). Despite the result of Matiyasevich, it
is possible to algorithmically describe the roots for selected classes of diophan-
tine equations. We follow one of attempts, concerning integral quadratic forms,
developed in Simson (2010b). One of problems stated in Simson (2010a) asks
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for a method to exhibit Z-bilinear equivalence between poset from the lists of
Loupias (1975) and Zavadskij-Shkabara (1976), and extended Dynkin diagrams.
This kind of equivalence for one poset from these lists is presented in this pa-
per. Precisely, we show that L9 is Z-bilinearly equivalent to oriented extended

Dynkin diagram Ẽ8. The scheme we introduce is universal enough to be applied
for the remaining posets from the mentioned lists.

We denote by Z the ring of integers, by N the set of non-negative integers.
Given n ≥ 1, we denote by Mn(Z) the Z-algebra of all square n by n matrices
with coefficients in Z, and by e1, . . . , en the standard basis of the free abelian
group Z

n
. In our work we focus on unit quadratic forms q : Z

n
−→ Z, with q

defined by the formula q(x) =
n∑

i=1

qiix
2
i +

∑
1≤i<j≤n

qijxixj for qij ∈ Z and i, j ∈

N. A collection of algorithms describing the sets of roots of these forms, i.e.,
the sets Rq = {v ∈ Z

n; q(v) = 1}, is presented. We give the procedures
allowing us to describe the roots of positive definite forms (i.e., forms satisfying
q(v) > 0 for any 0 6= v ∈ Z

n) and principal forms (see Simson, 2011). Our
main result consists in showing that posets from the list of Loupias (1975) and
Zavadskij-Shkabara (1976) (LZS for short) and forms associated to extended
Dynkin diagrams are Z-bilinearly equivalent (Section 4). These equivalences
are presented with a few selected example posets from the mentioned list, but
the procedures described in this paper can be applied to any poset from the
LZS list, in accordance with theses contained in the author’s prepared doctoral
dissertation.

A number of criteria coupled with algorithms are recalled in Section 2, al-
lowing for deciding if a given form q is positive definite or positive semi-definite.
These criteria are utilized in Section 4 to verify if a given form is principal. In
case of principal forms full description of corresponding sets of roots is possible.

Section 3 is devoted to graphs and quadratic forms associated to them. An
important example of graphs is made up of Dynkin diagrams and extended
Dynkin diagrams (see Simson, 2010b). A number of theorems characterizing
these diagrams is given. In particular, the sets of roots of forms associated to
these diagrams are characterized. Next, Z-bilinear equivalence of two forms
is defined and illustrated by an example. Then, Z-bilinear equivalence of Z-
bilinear Euler form, associated to a poset, with Z-bilinear Euler form of oriented
Dynkin diagram is shown. The results have important applications in represen-
tation theory of groups, algebras, quivers and partially ordered sets, as well as
in the study of derived categories of module categories.

In Section 4 the principal form and defect are defined, and some algorithms
to automate our calculations are presented. We give a procedure to find the
roots of principal forms. The Z-bilinear equivalence between Euler forms of
LZS posets and forms associated to extended Dynkin diagrams is shown, which
is a result of the author’s research in the field of the roots of quadratic forms,
and constitutes one of the most important results contained in this article.
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Diophantine equations in practical applications

The integral quadratic forms, considered by us, are nothing else than quadratic
diophantine equations. The problem of determining their integral solutions
such that q(x) = d for d an integer, is NP-hard, as was shown in 1978 by
Adleman and Manders (1976). The situation that we describe concerns the
quadratic diophantine equations of the form q(x) = 1. If q is positive definite,
then we are able to find all roots of an equation q(x) = 1 by applying the
restrictively counting algorithm (see Simson, 2010a). In this work we focus on
semi-positive definite quadratic forms which, as we known from Claim 1 (see
Marczak, Polak and Simson, 2010), have infinitely many roots. In Section 4
we propose a geometric method which can be used to determine all roots of
an equation q(x) = 1, in case when q is semi-positive definite, and Ker q is
generated by a single non-zero vector.

Diophantine equations have numerous important applications in representa-
tion theory and in combinatorics (see Ringel, 1984; Simson, 1992). They are
also used in public-key cryptography, as well as in the analysis of stability of
nonlinear systems (see Buchmann and Vollmer, 2007). Moreover, diophantine
equations can be used commercially in the economic model, described below.

Primitive commercial wandering

Assume that a producer of beer has n ≥ 2 breweries located in different touris-
tically attractive cities A1, . . . , An, situated in the mountains. We write i < j
if there is a one-way highway from Ai to Aj , Aj is more attractive than Ai,
and the mountain of Aj is higher than that of Ai. Let us assume that vj ≥ 0
is the number of bottles of beer that are selling in Aj a year, and we define
v = (v1, . . . , vn) ∈ Z

n
to be the selling vector. Assume that the annual profit

of selling the beer in Aj equals qiiv
2
i +

∑
i<j qijvivj . It follows that the annual

profit function is given by

q(v) =

n∑

i=1

qiiv
2
i +

∑

1≤i<j≤n

qijvivj .

It is nothing else than an integral quadratic form that we consider. In other
words, the annual profit is positive (respectively non-negative) if and only if q is
positive (respectively non-negative). Moreover, given a profit q being a positive
integer d ∈ N, we can describe the finite set of all selling vectors such that the
year profit q(v) equals d.

In this work we consider the case of all selling vectors v ∈ Z
n

such that
q(v) = 1, i.e., there is a profit. We demonstrate the algorithm (see Algorithm 4)
that we use to describe a set of all selling vectors v ∈ Z

n such that q(v) =
1 in case q is positive semi-definite (so the yearly profit from selling beer is
nonnegative). If q is positive definite, the number of selling vectors is finite, and
may be described by the restrictively counting algorithm (see Simson, 2010a)
(in exponential time). If q is positive semi-definite (i.e., non-negative), which is
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the case considered in this work, then the number of all selling vectors satisfying
q(v) = 1 is infinite (see Marczak, Polak and Simson, 2010). However, we are able
to describe it using the algorithms that we propose in Section 4. We determine
a certain finite subset Ř ⊂ Rq, where Rq is an infinite set of all selling vectors
(roots), and we align the vectors from Ř in a mesh graph, labeled with the
roots. The mesh graph is infinite, but we determine a finite piece of it, labeled
with selling vectors from the finite set Ř. All the remaining selling vectors for
q(v) = 1 may be generated by means of simple operations (adding or subtracting
vectors, multiplying vectors by scalars).

Our algorithms concern the case of q(v) = d for d = 1 (or d = 0, which is
simple). If d ≥ 2 and q is positive definite, then all integral roots from d may
be described by the restrictively counting algorithm (see Simson, 2010a). If q
is positive semidefinite and d ≥ 2, then the problem of determining all integral
roots remains open.

2. Positive definite forms and positive semi-definite forms,

the Sylvester criterion

By an integral quadratic form we mean a map q : Zn −→ Z defined by the
formula

q(x) =

n∑

i=1

qiix
2
i +

∑

1≤i<j≤n

qijxixj ,

where qij ∈ Z and i, j ∈ N. Mostly we consider unit forms, i.e., forms satisfying
q11 = . . . = qnn = 1. We recall a few necessary definitions and criteria for
positive definiteness and positive semi-definiteness of given quadratic form. We
present the algorithms implementing these criteria, utilized in Section 4 for
describing the roots of positive definite forms and of positive semi-definite forms.

Definition 2.1 A form q : Zn −→ Z is called:
(a) positive definite, if q(v) > 0 for every 0 6= v ∈ Z

n,
(b) positive semi-definite, if q(v) ≥ 0 for every v ∈ Z

n
,

(c) weakly positive, if q(v) > 0 for every 0 6= v ∈ N
n,

(d) weakly non-negative, if q(v) ≥ 0 for every 0 6= v ∈ N
n.

Definition 2.2 To a quadratic form q : Zn −→ Z, defined by the formula

q(x) = q(x1, ..., xn) =
n∑

i=1

qiix
2
i +

∑
1≤i<j≤n

qijxixj , qij ∈ Z, we associate the

Gram matrix

Gq =




q̂11 . . . q̂1n
...

. . .
...

q̂n1 . . . q̂nn


 ∈Mn(Z),

in which q̂jj = qjj for j = 1, . . . , n, and q̂ij = q̂ji =
1
2qij for i 6= j.
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Theorem 2.1 A quadratic and symmetric form q : Rn −→ R is positive definite
if and only if its Gram matrix Gq = [q̂ij ] satisfies the following conditions of
Sylvester:

q̂11 > 0, det

[
q̂11 q̂12
q̂21 q̂22

]
> 0, . . . , det




q̂11 . . . q̂1s
... . . .

...
q̂s1 . . . q̂ss


 > 0,

detGq > 0, for 2 ≤ s ≤ n.

The description of this algorithm, called from now on the SylvesterCriterion,
can be found in Simson (2010a). The next theorem motivates the algorithm for
testing positive semi-definiteness of a form:

Theorem 2.2 A quadratic form q : R
n
−→ R is positive semi-definite if and

only if the following inequality holds for Gq = [q̂ij ]:

det




q̂i1i1 . . . q̂i1ir
...

. . .
...

q̂iri1 . . . q̂irir


 ≥ 0,

for every r = {1, . . . , n} and 1 ≤ i1 < . . . < ir ≤ n.

We concentrate on Euler integral quadratic forms of posets. Let I ≡(I, �)
denote a poset, for which |I| = n. An incidence matrix of I is defined as

CI =




c11 . . . c1n
...

. . .
...

cn1 . . . cnn


 ∈Mn(Z), where n = |I| and cij =

{
0, if i 6� j
1, if i � j

for any i, j ∈ I. An Euler integral quadratic form qI : Z
n
−→ Z of a given

poset I is defined with the formula

qI(x) = x · C−1
I · xtr ,

where C−1
I = [cij ] ∈ Mn(Z). For q : Zn −→ Z a quadratic form, we call the

vector v ∈ Z
n
, for which q(v) = 1, an integral root of one of this form. We denote

by Rq = {v ∈ Z
n; q(v) = 1} the set of all roots of q. In case of a positive semi-

definite form we are also interested in its kernel, Ker q={v ∈ Z
n; q(v) = 0}. A

number of known theorems characterizing the sets Rq for positive definite forms
and for positive semi-definite forms will be stated (see Barot and de la Pena,
1999; Simson, 1992, 2004-2009).

The following algorithm (Algorithm 1) tests if a given Euler form of poset I
is positive semi-definite (see Appendix for explanation of the used MAPLE
procedures).
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Algorithm 1 GeneralizedSylvesterCriterion(C−1)

Input: C−1 – an inverse of incidence matrix of poset.
Output: 1 if q is positive semi-definite; 0 otherwise.

1. n← coldim(C−1)
2. Gram← (C−tr + C−1)
3. L←choose(n)
4. for i = 2 to nops(L) do // L[1]=[]
5. if det (submatrix(Gram,L[i], L[i]))< 0 then

6. return 0
7. end if

8. end for

9. return 1

The algorithm presented is a consequence of the well-known generalized
Sylvester criterion. We decided to present it here due to its usefulness in further
algorithms.

Theorem 2.3 Let q : Zn −→ Z be a quadratic form defined by the formula

q(x) =
n∑

i=1

x2
i +

∑
1≤i<j≤n

qijxixj , where qij ∈ Z.

(a) If q is positive definite, then |Rq | <∞.
(b) If q is weakly positive, then |R+

q | <∞.
(c) If q is positive definite and qij < 0 for i < j, then Rq = R+

q ∪R
−
q , where

R−
q = {−v; v ∈ R+

q }.
(d) If q is positive semi-definite, qij < 0 for i < j, and Ker q=Z · h, for h

sincere, i.e., hi 6= 0, for any i ∈ {1, . . . , n}, then Rq = R+
q ∪R

−
q .

Definition 2.3 Let I be a poset, |I| = n, and let C−1
I be an inverse of incidence

matrix of I such that det C−1
I = 1, or det C−1

I = −1.
• The Coxeter-Euler matrix of I is defined as CoxI := −C−1

I ·C
tr
I ∈Mn(Z),

• The Coxeter-Euler transformation of I is a homomorphism ΦI : Z
n
−→

Z
n of the Z

n group, defined by the formula ΦI(x)=x · CoxI ,
• The Coxeter-Euler polynomial can be calculated as F I(t) = det (t · E −

CoxI) ∈ Z[t], where E ∈Mn(Z) is the identity matrix.

Definition 2.4 Let I be a poset with Z-invertible incidence matrix CI . Let
RqI

= {v ∈ Z
n; qI(v) = 1} be the set of integral roots of Euler form qI . By the

ΦI-orbit of a vector v ∈ RqI
we mean the set

ΦI-Orb(v) = ΦI-O(v) = {Φ
m

I (v)}
m∈Z

.

Definition 2.5 Let I be a poset, C−1
I ∈ Mn(Z) a matrix with determinant

equal to 1 or -1, and ΦI an Euler-Coxeter transformation. A ΦI-mesh is com-

posed of the set of vectors v, Φ
−1

I (v), v(1), . . . , v(s) for any 2 ≤ s ∈ N, satisfying:
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(i) v +Φ
−1

I (v) = v(1) + . . .+ v(s).
(ii) Each of vectors v, v(1), . . . , v(s) is situated in another ΦI-orbit. The fol-

lowing picture is a way of visualizing a ΦI-mesh:
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To a ΦI−mesh one associates the ΦI−mesh translation quiver Γ(RqI ,ΦI).
See Simson (2010a) for a detailed description of mesh translation quivers.

3. Quadratic forms of graphs and their equivalences with

Dynkin diagrams and with Euler diagrams

Let Q = (Q0, Q1) be a finite graph, Q0 its vertex set, and Q1 its edge set. We
briefly recall the definition of a quadratic form of a graph, introduced in Sim2.
By a quadratic form of a graph Q we mean the form qQ : R

Q0 −→ R defined by

the formula qQ(x) =
∑

i∈Q0

x2
i −

∑
i−j

dQijxixj , for any x = (xj)j∈Q0
∈ R

Q0 , where

n = |Q0|, and dQij = |Q1(i, j)| counts the edges connecting i and j in Q, and the
sum is taken over all unordered pairs i−j of vertices i, j ∈ Q0 connected with at
least one edge. An important example of graphs is given by the Dynkin diagrams
and the extended Dynkin diagrams (also known as Euclidean diagrams). A
detailed study of these diagrams can be found in Simson (2010a,b). Description
of the roots of Dynkin diagrams is known (see Polak and Simson, 2010).

We now recall the definition of Z−bilinear Euler form Sim3, because we need
it to exhibit the Z-bilinear equivalence of forms. A form bqI : Zn × Z

n −→ Z,
defined by the formula bqI (x, y) = x · C−1

I ytr, where CI is an incidence matrix
of poset I, is called Z-bilinear Euler form.

We focus on the Loupias-Zavadski-Shkabara posets, LZS in short, presented
independently by Loupias (1975) and by Zavadski-Shkabara (1976). It is one of
our main objectives in this article to show that for any subposet I of a poset
from the LZS list (see Drozdowski and Simson, 1978), for which qI is positive
definite, there exists precisely one Dynkin diagram ∆, such that F (t)I = F∆(t)
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and Z−bilinear forms associated to this subposet I, and to Dynkin diagram
∆, are Z−bilinearly equivalent. At the beginning of this section we recall the
principal configuration of roots for an oriented Dynkin diagram (see Simson,
2010a). These configurations, which in essence are fragments of mesh translation
quivers for oriented Dynkin diagrams and Euclidean diagrams, containing the
basis vectors e1, . . . , en, are used in a proof of Z-bilinear equivalence of forms.
We consider Dynkin diagrams for a particular, fixed orientation. The reader
may use another orientation, but one needs to keep in mind that in such case
the principal configuration for Dynkin diagrams will be different. The Z-bilinear
equivalence of Euler forms for a subposet I of an LZS poset (precisely, a subposet
for which qI is positive definite), with a Dynkin diagram, when shown, delivers
the full description of the set of roots RqI

= {v ∈ Z
n; qI(v) = 1}.

We are now in position to present the oriented Dynkin diagrams (Table 1)
and to recall the principal configuration of roots for those diagrams (Table 2),
with this particular orientation, which can be found in Simson (2010a). The
mentioned principal configuration of roots will be used to prove Z-bilinear equiv-
alence between the forms of positive definite subposets of LZS posets and the
forms associated to oriented Dynkin diagrams D7, E6, E7, E8.

Table 1. Canonically oriented Dynkin diagrams

2

��

D7 : 1 // 3 4oo 5oo 6oo 7oo

4

��

E6 : 1 // 2 // 3 5oo 6oo

4

��

E7 : 1 // 2 // 3 5oo 6oo 7oo

4

��

E8 : 1 // 2 // 3 5oo 6oo 7oo 8oo
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Table 2. Principal configurations of roots for the Dynkin diagrams (Table 1)
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We now collect a number of theorems (see Simson, 2004-2009, 2010) that we
use to show Z-bilinear equivalence of quadratic forms. Their proofs are left as
easy exercises.

Theorem 3.1 Let bA, bA′ : Zn×Zn −→ Z be forms defined by matrices A, A′,
respectively. In addition, assume that determinants of these matrices are equal
to 1 or -1. The following diagram:

Z
n × Z

n
Z

hB×hB

y≃ ր bA ,

Z
n × Z

n

(1)

for hB(x) = x ·B an isomorphism of the Zn group, is commutative if and only if
there exists a matrix B ∈Mn(Z) satisfying det B ∈ {−1, 1} and A′ = B ·A·Btr.

Theorem 3.2 Let ΦA, ΦA′ : Zn −→ Z
n be Coxeter-Euler transformations,

defined respectively for matrices A, A′ ∈Mn(Z), whose determinants are equal
to 1 or -1. If the diagram (1) is commutative, then the following diagram is
commutative as well:

Z
n ΦA′

←→
Φ−1

A′

Z
n

hB

x≃ hB

x≃

Z
n ΦA←→

Φ−1

A

Z
n

.

Corollary 3.1 Let A, A′ ∈ Mn(Z) be matrices defined as previously. If the
diagram (1) is commutative, then

(a) CoxA′ = B−1 · CoxA · B,
(b) FΦA′

(t) = FΦA
(t),

(c) cA = cA′ .



500 A. POLAK

The next theorem is the result of the author’s work on the roots of quadratic
forms and constitutes one of the most important results contained in this paper.

Theorem 3.3 Let L9 be the poset from the LZS list, presented in Fig. 9 in
Drozdowski and Simson (1978, page 16), and I its subposet, visible in the fol-
lowing figure:

I : •

•

•

•• •

•

•

HHHHHY

�����*

HHHHHY 6

6
-

�����*

1 3 6 8

2

4

5

7

����������*

(a) FI(t) = FE8
(t),

(b) There is a matrix B = BI ∈M8(Z), for which det B = 1 or det B = −1
and the following diagram is commutative:

Z
8 × Z

8 bE8−−−−→ Z

hBI
×hBI

x∼= ր bI ,

Z
|I|
× Z

|I|

(2)

i.e., bI is Z-equivalent to bE8
.

One can easily show that qI is positive definite. It suffices to apply the
Sylvester criterion, described in Section 2. In order to show that the Dynkin
diagram E8 satisfies the following conditions, we act according to the following
scheme:

A scheme of dealing with the E8 Dynkin diagram

Stage 0◦ Take n = |I|.
Stage 1◦ Calculate the Coxeter polynomial FI(t) ∈ Z[t].
Stage 2◦ Verify if the equality FI(t) = FE8

(t) holds; if so, go to 3◦; otherwise
stop.

Stage 3◦ Fix an orientation for the Dynkin diagram E8; in our examples we
take the orientation shown in Table 1. In addition, list the principal
configuration of roots (see Table 2) for chosen orientation.

Stage 4◦ Apply the mesh algorithm (described in Simson, 2010a) to build a
fragment of ΦI - mesh translation quiver of roots Γ(RqI ,ΦI).

Stage 5◦ Look at the obtained fragment of a mesh translation quiver and
find "‘hypothetical vectors"’ e′1 = hB(e1), . . . , e

′
n = hB(en) of the prin-

cipal configuration of roots, through a "‘hypothetical isomorphism"’ hB :
Z

n −→ Z
n in diagram (2). Write a matrix B = [e′1, . . . , e

′
n]

tr ∈Mn(Z).
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Stage 6◦ Verify, if det B ∈ {1, −1}, and if the equality C−1
E8

= B ·C−1
I ·B

tr is
satisfied, i.e., if diagram (2) is commutative (see Theorem 3.1).

Proof. (a) and (b) We notice that Euler matrix C−1
I for poset I has the following

form:

C−1
I =




1 1̂ 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 1 0 1̂ 0 0 0

0 0 0 1 0 0 1̂ 0

0 1̂ 0 0 1 0 0 0

0 0 0 0 1̂ 1 0 1̂

0 0 1̂ 0 1 1̂ 1 0
0 0 0 0 0 0 0 1




.

In our example, n = 8 (stage 0◦). We easily compute the Coxeter polynomial
for I: F I(t)=det (tE−CoxI)=t8+ t7− t5− t4− t3+ t+1. Coxeter polynomials
for Dynkin diagrams are presented in Simson (2010b), including F E8

. Thus, the
equality

F I(t) = F E8
(t) = t8 + t7 − t5 − t4 − t3 + t+ 1

holds (stage 2◦). We fix an orientation for Dynkin diagram E8, as demonstrated
in Table 1. A principal configuration of roots for a Dynkin diagram, oriented in
this way, can be found in Table 2 (stage 3◦). The following picture visualizes a
fragment of a mesh translation quiver Γ(RqI ,ΦI) for poset I (stage 4◦).
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++WWWW

''OOOOOOOOOOO
•

66lllllll

((QQQQQQQ

""DD
DD

DD
DD

•

•

66mmmmm
01212211

33gggggggg
•

66mmmmmmm

•

<<zzzzzzz

((RRR
RR •

77oooooooooooo

++WWWWWWWW •

<<zzzzzzzz

((RRRRRRR

•

66lllllll
11101100

33gggggggg

00101111

66lllll
•

Hence,

h(e1) = 11101100, h(e2) = 00101111, h(ê3) = 1̂2̂3̂1̂4̂4̂2̂2̂, h(e4) = 01212211,

h(e5) = 00001100, h(e6) = 11111111, h(e7) = 01101110, h(e8) = 00000101.

Therefore, the quested matrix B, corresponding to above fragment of a ΦI -mesh
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translation quiver, has the following form (see stage 5◦),

B =




1 1 1 0 1 1 0 0
0 0 1 0 1 1 1 1

1̂ 2̂ 3̂ 1̂ 4̂ 4̂ 2̂ 2̂
0 1 2 1 2 2 1 1
0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1
0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 1




,

where â = −a for 0 < a ∈ N. We calculate A′ as A′ = B · C−1
I · Btr.

A′ =



1 1 1 0 1 1 0 0
0 0 1 0 1 1 1 1

1̂ 2̂ 3̂ 1̂ 4̂ 4̂ 2̂ 2̂
0 1 2 1 2 2 1 1
0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1
0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 1




×




1 1̂ 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 1 0 1̂ 0 0 0

0 0 0 1 0 0 1̂ 0

0 1̂ 0 0 1 0 0 0

0 0 0 0 1̂ 1 0 1̂

0 0 1̂ 0 1 1̂ 1 0
0 0 0 0 0 0 0 1




×




1 0 1̂ 0 0 1 0 0

1 0 2̂ 1 0 1 1 0

1 1 3̂ 2 0 1 1 0

0 0 1̂ 1 0 1 0 0

1 1 4̂ 2 1 1 1 0

1 1 4̂ 2 1 1 1 1

0 1 2̂ 1 0 1 1 0

0 1 2̂ 1 0 1 0 1




By performing multiplication, we get

A′ =




1 0 0 0 0 0 0 0

1̂ 1 0 0 0 0 0 0

0 1̂ 1 1̂ 1̂ 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 1 1̂ 0 0

0 0 0 0 0 1 1̂ 0

0 0 0 0 0 0 1 1̂
0 0 0 0 0 0 0 1




,

which is equal to C−1
E8

for the E8 diagram (stage 6◦), with the following orien-
tation:
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4

1 2oo 3

OO

oo // 5 // 6 // 7 // 8

4. Principal forms and their roots

In this section we are concerned about principal forms, defined in Simson
(2010a). We are able to give a full algorithmic description of a set of roots
for this kind of form. It is our main objective in this article to show that for
any poset I from the LZS list (see Drozdowski and Simson, 1978), for which qI
is principal, there exists precisely one extended Dynkin diagram ∆̃, such that
F (t)I = F ∆̃(t) and Z−bilinear forms associated to this poset I, and to extended

Dynkin diagram ∆̃, are Z-bilinearly equivalent. A proof of this fact is an unpub-
lished result of the author. We focus on a few selected posets from the LZS list,
but presented procedures and algorithms can be applied to any poset from this
list (for which qI is principal). This result is a part of a doctoral dissertation,
written by the author. We prove that the Euler form associated to L9 poset
(Fig. 9 in Drozdowski and Simson, 1978, page 16) is Z-bilinearly equivalent to
Euler form of oriented extended Dynkin diagram. These proofs of Z−bilinear
equivalence of Euler forms of selected principal posets from the LZS list, with
Euler forms of oriented Euclidean diagrams, are author’s own contribution to
the research on quadratic diophantine equations.

Similarly to the previous section, we recall a principal configuration of roots
for oriented extended Dynkin diagrams (also called Euclidean diagrams), see
Simson (2010a). These configurations are used in a proof of Z-bilinear equiva-
lence of forms.

We begin this section with a presentation of oriented extended Diagrams,
together with a principal configuration of roots for this orientation. Then, we
recall the definition of principal forms, for which we exhibit the mentioned
Z−bilinear equivalence. We also define a defect of Coxeter-Euler transformation
(see Simson, 2010a, 2011), which is helpful for description of a full set of roots
of a principal form.

The following table (Table 3) contains extended Dynkin diagrams D̃7, Ẽ6,

Ẽ7, Ẽ8, with fixed orientation. Principal configurations of roots with a negative
defect (see Simson, 2010a, 2011) for extended Dynkin diagrams oriented this
way are presented below (Table 4).
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Table 3. Oriented extended Dynkin diagrams

2

��

8

��
˜D7 : 1 // 3 4oo // 5 6oo // 7

4

��
˜
E6 :

5

��
1 // 2 // 3 6oo 7oo

5

��
˜
E7 :

1 // 2 // 3 // 4 6oo 7oo 8oo

4

��
˜
E8 :

1 // 2 // 3 5oo 6oo 7oo 8oo 9oo

Table 4. Principal configurations of roots for extended Dynkin diagrams
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Definition 4.1 Let I be a poset, qI : Zn −→ Z an Euler form, defined by the
formula qI(x) = x · C−1

I xtr, and GqI
the Gram matrix of this form.

(a) A form qI : Z
n
−→ Z is called principal, if

(a1) qI is positive semi-definite,

(a2) its kernel has the form Ker qI = Z · hqI , where 0 6= hqI ∈ Z
n
.
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(b) A bilinear Euler form bqI : Zn × Z
n −→ Z is called principal, if qI :

Z
n −→ Z results in qI(x) = bqI (x, x) being principal.

We now present an algorithm verifying whether an Euler form C−1
I of poset I,

encoded with a matrix C−1
I , is principal. This algorithm makes use of the

Sylvester criterion, described in Theorem 2.1, and a function Kernel, computing
the kernel. A function computing the kernel of Euler form (i.e., a set Ker
qI = {v ∈ Z

n; qI(v) = 0}), utilizes Lagrange algorithm (see Simson, 2010a,
2011), which reduces given form to a cannonical form (a sum of squares). With
a cannonical form, computation of kernel reduces to solving a system of linear
equations.

Algorithm 2 IsPrincipal(C−1)

Input: C−1 – an inverse of incidence matrix of poset.
Output: 1 - if q is principal; 0 - in the other case.

1. if SylvesterCriterion(C−1)=1 then

2. return 0
3. end if

4. if GeneralizedSylvesterCriterion(C−1)=1 then

5. h=Kernel(C−1)
6. if nops(h)>1 or nops(h)=∅ then

7. return 0
8. end if

9. return 1
10. else

11. return 0
12. end if

The following theorem is useful for proving Z-bilinear equivalences, see Sim-
son (2010b) for the proof.

Theorem 4.1 Let I be a poset, and C−1
I ∈ Mn(Z) a nonsingular incidence

matrix of I, satisfying det C−1
I = 1 or det C−1

I = −1. Let Φ : Z
n
−→ Z

n

be a Coxeter-Euler transformation defined by this matrix. If a bilinear form
bI : Zn×Zn −→ Z, defined with the formula bI(x, y) = x ·C−1

I ·y
tr, is principal,

and the kernel is of the form KerqI = Z · h, then there exists a natural number
c ≥ 1 and a group homomorphism ∂I : Zn −→ Z, yielding Φ

c
(x) = x+ ∂I(x) ·h

for any x ∈ Z
n.

Definition 4.2 Minimal c from Theorem 4.1 will be called a reduced Coxeter
number of C−1

I , and denoted by čI. ∂I will be called a defect of the Coxeter
transformation Φ or a defect of C−1

I .
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Algorithm 3 determines a defect of the Coxeter transformation for an Euler
form qI encoded by C−1

I . A reduced Coxeter number čI is also computed by
this procedure.

Algorithm 3 CalculateDefect(C−1)

Input: C−1 – an inverse of incidence matrix of poset.
Output: A defect if it exists; 0 in the other case.

1. h←Kernel(C−1)
2. if nops(h)>1 or nops(h)=∅ then

3. return 0
4. end if

5. Cox1← −C−1 · Ctr; X ← [x[1], . . . , x[n]] // n is size of matrix C−1

6. if IsPrincipal(C−1)=0 then

7. return 0
8. end if

9. c← 1; Cox← Cox1
10. while true do

11. T ← X · Cox−X; defect← gcd(T [1, 1], . . . , T [1, n])
12. if defect = 1 then

13. c← c+ 1; Cox← Cox · Cox1
14. else

15. for j = 1 to nops(defect) do

16. h1[1, j]← T [1,j]
defect

17. end for

18. if h1 = h or h1 = −h then

19. return defect

20. else

21. c← c+ 1; Cox← Cox · Cox1
22. end if

23. end if

24. end while

25. return 0

An algorithm computing, in particular, the defect of the Coxeter transfor-
mation and reduced Coxeter number, has been presented in Simson (2010a).
Our procedure is simpler as it contains only the computations required in this
paper. Nonetheless, it is based on the same ideas as the algorithm from Simson
(2011). No better algorithms are known that would compute these invariants.

The next two theorems characterize the sets of roots for principal forms (see
Simson, 2011). They have been proved in Simson (2004-2010).
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Theorem 4.2 If Q is one of canonically oriented Euclidean diagrams D̃6, D̃7,

Ẽ6, Ẽ7, Ẽ8, presented in Table 3, then

(a) qQ : Zn −→ Z is principal and Ker qQ = Z · hQ, where

hQ =





(1 1 . . . 1 1), when Q = Ãn,

(1 1 2 . . . 2 1 1), when Q = D̃n, n ≥ 4,

(3 2 1 2 1 2 1), when Q = Ẽ6,

(4 3 2 1 2 3 2 1), when Q = Ẽ7,

(6 4 2 3 5 4 3 2 1), when Q = Ẽ8,

(b) Γ(Rq
L
∪Ker q

L
,ΦQ) has a shape of a ΦQ-mesh translation quiver and the

following equality holds:

Γ(Rq
L
∪Ker q

L
,ΦQ) = Γ(∂

−

L
Rq

L
,ΦQ)∪Γ(∂

+

L
Rq

L
,ΦQ)∪Γ(∂

0

L
∪Ker q

L
,ΦQ),

where Γ(∂
−

L
Rq

L
,ΦQ) = −Γ(∂

+

L
Rq

L
,ΦQ), and Γ(∂

0

L
∪Ker q

L
,ΦQ) is a sand-

glass tube of rank

mQ =





(2, 2, n− 2), when Q = D̃n,

(2, 3, 3), when Q = Ẽ6,

(2, 3, 4), when Q = Ẽ7,

(2, 3, 5), when Q = Ẽ8

.

An exhaustive study on sand-glass tubes can be found in Simson (2010a,
2011).

Definition 4.3 Let I be a poset, and qI : Zn −→ Z a unit Euler form x ·C−1
I ·

xtr. Assume that qI is principal, its kernel has the form Ker qI = Z · h, and
j-th coordinate hj of h is positive. By a root reducer of Rq modulo hj we mean

the set R
(hj)
q = {v ∈ Rq ; 0 ≤ vj ≤ hj − 1}.

Theorem 4.3 Let I be a poset, qI : Zn −→ Z a quadratic Euler form qI(x) =
x · C−1

I · xtr, and det C−1
I ∈ {1, −1}. In addition, assume that qI is principal,

its kernel has the form KerqI = Z · h and j-th coordinate hj of h is positive.
Then, the following conditions are satisfied:

(a) Rq =
⋃

m∈Z

tmh R
(hj)
q , where tmh : Z

n
−→ Z

n
is a translation defined by the

formula tmh (v) = v +m · h,

(b) the set R
(hj)
q is finite,

(c) ∂
0

IRq =
⋃

m∈Z

tmh ∂
0

IR
(hj)
q , where tmh : Zn −→ Z

n is a translation defined by

the formula tmh (v) = v +m · h.
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We are ready to present the algorithm determining the roots of an Euler
form, which is principal, and for which a defect of Coxeter-Euler transformation
equals zero.

Theorem 4.3 asserts that this set is finite. Algorithm 4 makes use of the
restrictively counting algorithm, described in Simson (2010a, 2011), which com-
putes a list of roots for a positive definite form.

Algorithm 4 CalculateRootsWithZeroDefect(C−1)

Input: C−1 – an inverse of incidence matrix of poset.
Output: list of roots in ∂0Rq ; 0 - if q is not principal or list of roots is empty.

1. if GeneralizedSylvesterCriterion(C−1)=0 then

2. return 0
3. end if

4. h←Kernel (C−1)
5. if nops(h)>1 or nops(h)=∅ then

6. return 0
7. end if

8. h← h[1]
9. if first j such that h[j] 6= 0 is h[j] < 0 then

10. h← −h
11. end if

12. hj ← j where j is first index such that h[j] 6= 0
13. create matrix OE with matrix C by inserting 0 in C[i, hj ] for i 6= j

14. OE ← OE−1

15. L← RestrictivelyCountingAlgorithm(C−1)
16. if L = ∅ then

17. return 0
18. end if

19. G← []
20. for i = 1 to nops(L) do

21. // algorithm 3 gives the defect, and here we evaluate its value for L[i]
22. if defect(L[i])=0 then

23. G← G ∪ L[i]
24. end if

25. end for

26. return G

No algorithms are known to compute the roots in a zero defect case that
would be superior to this one. The notion of defect is quite new and has been
introduced in Simson (2010a).

The next theorem is the result of author’s own research on the roots of
quadratic forms and constitutes one of the most important results of this paper.
We show a Z-bilinear equivalence between an Euler form of a poset I from the
LZS list, and an Euler form, associated to one of extended Dynkin diagrams

D̃6, D̃7, Ẽ6, Ẽ7, Ẽ8.
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Theorem 4.4 Let L be the Loupias’s poset L9, drawn in the following image:

L9 : •

•

•

••• •

•

•

- �
�

�
�

��
HHHHHY

@
@

@
@

@I
�����*

HHHHHY 6

6
-

�����*

1 2 4 7 9

3

5

6

8

(a) bqL : Z
|L|
× Z

|L|
−→ Z is a principal form, the defect is of the form

∂L = x2 − x3 + x4 − x5 + x7, and the reduced Coxeter number čL = 30.

(b) There exists precisely one extended (oriented) Dynkin diagram, ∆̃L = Ẽ8,
and there exists a matrix B = BL ∈ M(Z), with determinant equal to 1
or -1, such that

FL(t) = F∆̃L

(t),

and the following diagram is commutative:

Z
|∆̃L| × Z

|∆̃L|
b
∆̃L−−−−→ Z

hBL
×hBL

x∼= ր bL ,

Z
|L| × Z

|L|

(3)

i.e., bL and b∆L
are Z-bilinearly equivalent.

(c) ΦL-orbits of the set RqL∪ Ker qL constitute a ΦL-mesh translation quiver
of the form

Γ(RqL∪Ker qL,ΦL) = Γ(∂
−

L
RqL ,ΦL)∪Γ(∂

+

L
RqL ,ΦL)∪Γ(∂

0

L
∪Ker qL,ΦL),

where Γ(∂
+

L
RqL ,ΦL) = Γ(∂

−

L
RqL ,ΦL) are connected infinite subquivers

consisting of |L| orbits and Γ(∂
0

L
∪ Ker qL,ΦL) is a sand-glass tube of

rank mL=(2,3,5) for L = L9.

In order to prove Theorem 4.4, we act according to the following scheme:
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A scheme of dealing with extended Dynkin diagrams

An Euler form q
L

is given. We aim at finding an extended (oriented) Dynkin
diagram ∆L, such that a diagram from the above theorem is commutative.

Stage 0◦ Take n = |L|.
Stage 1◦ Calculate the Coxeter polynomial FL(t).
Stage 2◦ Let ∆L be an extended Dynkin diagram, for which Coxeter polyno-

mials FL(t) and F∆L
(t) are identical.

Stage 3◦ Fix an orientation for ∆L; in our examples we take the orientation
shown in Table 1. In addition, list the principal configuration of roots (see
Table 2) for chosen orientation.

Stage 4◦ Apply the mesh algorithm to describe a fragment of ΦL-mesh trans-
lation quiver Γ(RqL ,ΦL) of roots.

Stage 5◦ Look at the obtained fragment of a mesh translation quiver and find
‘hypothetical vectors’ e′1 = hB(e1), . . . , e

′
n = hB(en), corresponding to

vectors e1, . . . , en of the principal configuration of roots, through a ‘hy-
pothetical isomorphism’ hB : Zn −→ Z

n in diagram (3). Write a matrix
B = [e′1, . . . , e

′
n]

tr ∈Mn(Z).
Stage 6◦ Verify, if det B ∈ {1, −1}, and if the equality C−1

Ẽ8

= B ·C−1
L
·Btr is

satisfied, i.e., if diagram from the above theorem is commutative.

Proof. (a) Use the IsPrincipal procedure to verify, if q
L
= q

L9
is a principal

form. Hence, a defect and reduced Coxeter number exist, and we calculate them
with the help of CalculateDefect. We obtain ∂L=x2 − x3 + x4 − x5 + x7

and čL = 30 .

(b) Let L = L9. Notice that L9 and Ẽ8 have the same Coxeter polynomial.
Below we show a fragment of ΦL-mesh translation quiver Γ(∂+

L
RqL ,ΦL), upon

which we write down a matrix B.

0 00 0 00 1 00

))TTTT 0 0 0 10 0 01 0

,,XXXXXXX 01 0 01 0 11 1

,,XXXXXXX 111111110

((QQQ 001̂000000

•

55kkkk

**UUUUUU •

22fffffff

,,YYYYYYYYYYY •

33gggggg

,,XXXXXXXXXX •

66mmm

))SSSSS

•

44iiiiii

**UUUUUU •

22eeeeeeeeeee

,,YYYYYYYYYYY •

22eeeeeeeeeee

,,YYYYYYYYYYY •

55kkkkk

))SSSSS •

•

44iiiiii

**UUUUUU •

22eeeeeeeeeee

,,YYYYYYYYYYY •

22ffffffffff

,,XXXXXXXXXX •

55kkkkk

))SSSSS

•

44iiiiii

**TTTTTT •

22eeeeeeeeeee
,,YYYYYYY •

22eeeeeeeeeee

,,YYYYYYYYYYY •

55kkkkk

))RRRRR •

•

44jjjjjj

))TTTTTT

$$IIIIIII 12 0 33 2 44 2

22eeeeeee

,,XXX

((RRRRRRRRRR
•

33ffffffffff

++XXXXXXXXXX

((PPPPPPPPPP •

55lllll

((RRRRR

""EE
EE

EE

•

55jjjjjj
•

22fffffff
01 0 22 1 22 1

22fffffff
•

66lllll
•

•

::uuuuuuu

**TTTTTT •

66llllllllll

,,YYYYYYY •

66llllllllllll

,,YYYYYYY •

<<yyyyyy

))RRRRR •

•

44jjjjjj
11 0 11 0 11 1

22eeeeeee
00 0 11 1 2 21

33ffffff
•

55lllll

Therefore,

h(ê1) = 1̂1̂01̂1̂01̂1̂1̂, h(ê2) = 0001̂1̂1̂2̂2̂1̂, h(e3) = 120332442, h(ê4) = 01̂02̂2̂1̂2̂2̂1̂,

h(ê5) = 001000000, h(ê6) = 1̂1̂1̂1̂1̂1̂1̂1̂0, h(ê7) = 01̂001̂01̂1̂1̂, h(ê8) = 0001̂0001̂0,

h(ê9) = 0000001̂00.
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The B matrix, obtained in stage 5◦, has the following form:

B =




1̂ 1̂ 0 1̂ 1̂ 0 1̂ 1̂ 1̂

0 0 0 1̂ 1̂ 1̂ 2̂ 2̂ 1̂
1 2 0 3 3 2 4 4 2

0 1̂ 0 2̂ 2̂ 1̂ 2̂ 2̂ 1̂
0 0 1 0 0 0 0 0 0

1̂ 1̂ 1̂ 1̂ 1̂ 1̂ 1̂ 1̂ 0

0 1̂ 0 0 1̂ 0 1̂ 1̂ 1̂

0 0 0 1̂ 0 0 0 1̂ 0

0 0 0 0 0 0 1̂ 0 0




,

and its determinant equals -1 and C−1
L

=




1 1̂ 0 0 0 0 0 0 0

0 1 1̂ 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 0 1̂ 0 0 0

0 1̂ 1 0 1 0 0 1̂ 0

0 0 1̂ 0 0 1 0 0 0

0 0 0 0 0 1̂ 1 0 1̂

0 0 0 1̂ 0 1 1̂ 1 0
0 0 0 0 0 0 0 0 1




.

The B · C−1
L
·Btr = A′, where

A′ =




1 0 0 0 0 0 0 0 0

1̂ 1 0 0 0 0 0 0 0

0 1̂ 1 1̂ 1̂ 0 0 0 0
0 0 0 1 0 0 0 0 0

0 0 0 0 1 1̂ 0 0 0

0 0 0 0 0 1 1̂ 0 0

0 0 0 0 0 0 1 1̂ 0

0 0 0 0 0 0 0 1 1̂
0 0 0 0 0 0 0 0 1




and is equal to C−1

Ẽ8

matrix for Ẽ8 diagram, oriented in the following way:

4

1 2oo 3oo

OO

// 5 // 6 // 7 // 8 // 9

(c) The roots of the mesh translation quiver Γ(∂
+

L
RqL ,ΦL) for L = L(9) have

been described in (b) of the above theorem. We notice that

Γ(∂
−

L
RqL ,ΦL) = −Γ(∂

+

L
RqL ,ΦL).

Hence, it suffices to describe the roots for the mesh translation quiver Γ(∂
0

L
∪

Ker qL,ΦL). We know from (a) and (b) that an Euler form is Z-bilinearly
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equivalent to the form of an extended Dynkin diagram Ẽ8, and that the defect
for L = L9 equals ∂L(x) = x2 − x3 + x4 − x5 + x7. The kernel Ker qL is of
the form Ker qL = Z · h, for h = 00101̂101̂0. Theorem 4.3 implies that in

order to determine all roots with zero defect ∂
0

L
RqL , it suffices to find a defect

and the roots with zero defect for a root reducer ∂
0

L
R

(hj)
qL . For the L9 we take

j = 3. The roots for a root reducer R
(h3=1)
qL with zero defect can be calculated

by CalculateRootsWithZeroDefect. We align these roots in root orbits
so as to obtain the following fourteen orbits (Table 5):

Table 5. Root orbits for L9

I II III IV V V I V II

001101000 001̂1̂01̂000 000000001 001001101 001̂001̂1̂00 001̂001̂1̂01̂ 00101̂0000

0001̂1̂001̂0 000110010 001001100 00101̂101̂1̂ 000010111 001̂011̂011 011001000

00001̂01̂1̂1̂ 00001̂01̂1̂0 000000001̂ 000010110 11100101̂0

01̂001̂101̂0

1̂1̂001̂001̂0

V III IX X XI XII XIII XIV

011000000 00101̂001̂0 111000000 000000010 010010010 110010010 110011̂010

111001000 00101̂1000 000001000 010010000 110010000 001̂010000 001̂010010

00000101̂0 01100101̂0 00000001̂0 100000000 01̂1̂000000 01̂1̂001̂000 001̂011̂000

01̂001̂001̂0 10101̂101̂0 01̂001̂0000 1̂1̂1̂000000 1̂1̂1̂001̂000 1̂1̂1̂001̂010 01̂1̂001̂010

1̂1̂001̂0000 1̂1̂001̂101̂0 1̂00000000 000001̂000 000001̂010 010011̂010 1̂01̂011̂010

After aligning the roots in ΦL−orbits, we obtain two tubes of rank 2, four
tubes of rank 3, and eight tubes of rank 5. The following image contains the
"crown" of one of rank 2 tubes:

0

((QQ
QQ

Q 0

((QQQQQ 0

''PPPP 0

((PPPPP

0 0 1 1 0 1 0 0 0

66mmmmm

((QQQQQ 0 0 0 1̂ 1̂ 0 0 1̂ 0

66mmmmm

((QQQQ
0 0 1 1 0 1 0 0 0

66mmmmm

((QQQQQ 0 0 1̂ 1̂ 0 0 1̂ 0

77nnnn

''PPPP
0 1 1 0 1 0 0 0 .

h

66nnnnn

h

66mmmmm
h

77nnnn

h

66nnnnn

It remains to verify that vectors in tubes, constructed with mesh algorithm

(see Simson, 2010a), are in ∂
0

L
RqL . It suffices to notice that for a rank 2 tube,

and v(1)=01101000 ∈ ∂
0

L
RqL , the following formula holds:

v(m) =

{
−v(1) +m · h, for m even,

v(1) + (m− 1) · h, for m odd.

Similar formulas can be derived for higher rank tubes.
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5. Concluding remarks

A number of algorithms useful for computing the roots of integral quadratic
forms have been described in this paper. Beside the generalized Sylvester al-
gorithm, which results from the well known Sylvester criterion, the presented
algorithms are novel. Described algorithms are based on methods covered in
detail in Simson (2010a).

One of the problems stated in Simson (2011) asked for a method to ex-
hibit Z-bilinear equivalence between posets from the lists of Loupias (1975)
and Zavadskij-Shkabara (1976), and extended Dynkin diagrams. A scheme of
dealing with these cases has been presented in this article. It has been shown
that for the L9 poset from Loupias (1975) and Zavadskij-Shkabara (1976) lists

there exists precisely one Dynkin diagram (in this case, ∆ = Ẽ8), such that
coxI = cox∆ and bI is Z-bilinearly equivalent to b∆. Nevertheless, presented
schemes are universal and can be successfully applied to show Z-bilinear equiv-
alence for the remaining posets from the above list.

Appendix

The algorithms presented in this paper utilize the capabilities built into the
MAPLE symbolic computations package. We now remind the purpose of func-
tions used in our listings:

• choose(n) — gets a list of subsets of n-element set,
• coldim(C) — returns the number of columns of supplied matrix,
• gcd(a1, a2, . . . , an) — computes the greatest common divisor of numbers
a1, . . . , an,

• nops(h) — takes a list and returns its size,
• submatrix(C,[1,2,3],[2,3,4]) — gets a submatrix of C, containing rows,

whose indices are given as the second parameter ([1,2,3]), and whose
columns are given as the third parameter ([2,3,4]).

References

Adleman, L. and Manders, K. (1976) Diophantine complexity, Proc. 17th
IEEE Symposium on Foundations of Computer Science, Proc. IEEE, New
York, 81-88.

Barot, M. and de la Pena, J.A. (1999) The Dynkin type of a non-negative
unit form, Expo. Math., 17, 339-348

Buchmann, J. and Vollmer, U. (2007) Binary Quadratic Forms: An Algo-
rithmic Approach (Algorithms and Computation in Mathematics). Sprin-
ger, Berlin-Heidelberg.

Drozdowski, G. and Simson, D. (1978) Remarks on posets of finite repre-
sentation type, http : //www− users.mat.umk.pl/ simson/Drozdowski-
Simson1978.pdf . Wydział Matematyki i Informatyki UMK, Toruń.



514 A. POLAK

Loupias, M. (1975) Indecomposable representations of finite partially ordered
sets. Lecture Notes in Math., 488, Springer-Verlag, Berlin-Heidelberg-
New York, 201-209.

Marczak,M., Polak,A. and Simson,D. (2010) P-critical integral quadra-
tic forms and positive unit forms: An algorithmic approach. Linear Alge-
bra and its Applications, 433, 1873-1888.

Matiyasevich, Y. (1970) Enumerable sets are Diophantine. Doklady Akade-
mii Nauk SSSR, 191, English translation in Soviet Mathematics Doklady,
11 (2), 279-282.

Polak, A. and Simson, D. (2010) Peak P-critical Tits forms of one-peak
posets, preprint.

Ringel, C.M. (1984) Tame Algebras and Integral Quadratic Forms, Lec-
ture Notes in Math., 1099, Springer-Verlag, Berlin-Heidelberg-New York-
Tokyo.

Simson, D. (1992) Linear Representations of Partially Ordered Sets and Vec-
tors Space Categories. Algebra, Logic and Applications, 4. Gordon &
Breach Science Publishers, Switzerland.

Simson, D. (1992) Diagramy Coxetera-Dynkina i problemy macierzowe (Co-
xeter-Dynkin diagrams and matrix problems; in Polish). Instytut Matem-
atyki UMK, Toruń.

Simson, D. (2004-2009) Pierwiastki funkcjonałów kwadratowych, diagramy
Dynkina i zbiory częściowo uporządkowane (Roots of square functionals,
Dynkin diagrams and partially ordered sets; in Polish). Wyklad mono-
graficzny, Faculty of Mathematics and Computer Science, Nicolaus Coper-
nicus University, Toruń.

Simson, D. (2010a) Mesh geometries of root orbits of integraf quadratic forms.
J. Pure Appl. Algebra, 215, 13-34 .

Simson, D. (2010b) Integral bilinear forms, Coxeter transformations and Cox-
eter polynomials of finite posets. Linear Algebra and Appl., 433, 699-717.

Simson, D. (2011) Mesh algorithms for solving principal diophantine equa-
tions, sand-glass tubes and tori of roots. Fundamenta Informaticae, 109,
425-462.

Zavadskij, A.G. and Shkabara, A.S. (1976) Commutative quivers and ma-
trix algebras of finite type. Preprint IM-76-3, Institute of Mathematics AN
USSR, Kiev (in Russian).


