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Abstract: In this paper, an asymmetric version of the k-
centroids clustering algorithm is proposed. The asymmetry arises
from the use of the asymmetric dissimilarities in the k-centroids al-
gorithm. Application of the asymmetric measures of dissimilarity is
motivated by the basic nature of the k-centroids algorithm, which
uses dissimilarities in the asymmetric manner. It finds the minimal
dissimilarity between an object being currently allocated, and one
of the clusters centroids. Clusters centroids are treated as the do-
minant points governing the asymmetric relationships in the entire
cluster analysis. The results of the experimental study on real and
simulated data have shown the superiority of the asymmetric dissi-
milarities employed for the k-centroids method over their symmetric
counterparts.
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1. Introduction

We are used to consider symmetry as a preferable property in many aspects of
our life. We use to associate it with the state of balance and harmony, especially
in science. However, there might be some cases, when our expectations or even
requirements may be quite opposite, and an asymmetric view on the problem
might be more advantageous.

Thus, for instance, we are used to demand the symmetry for dissimilarities
as one of their most important properties. And, when it comes to deal with an
asymmetric dissimilarity we often attempt to symmetrize it someway. This paper
describes a problem, which as we claim, presents the circumstances suggesting
employing the asymmetric measure of dissimilarity, as more desirable.

The k-centroids clustering algorithm (Chaturvedi et al., 1997; Czekala and
Kuziak, 1999; Leisch, 2006) is a data analysis tool used to form arbitrary number
of clusters in the analyzed data set. The algorithm aims to separate clusters
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of possibly most similar objects. The similarity between two objects needs to
be expressed with a certain chosen measure of similarity, or proximity, or in
other cases dissimilarity, in the specific space. Each object, in turn, needs to be
represented by a vector of reasonably selected features. Object represented as a
vector of d features can be interpreted as a point in d-dimensional space. Hence,
according to its geometric nature, the k-centroids clustering algorithm can be
formulated as follows: given n points in d-dimensional space and the number of
desired clusters k, the algorithm seeks a set of k clusters so as to minimize the
sum of dissimilarities between each point and its cluster centroid. The cluster
centroid is a point being possibly the best representation of the whole cluster.

One particular implementation of the k-centroids algorithm became very fa-
mous and is widely used for clustering, mainly because of its computational effi-
ciency. It is called “k-means” after MacQueen’s publication (MacQueen, 1967),
where the name “k-means” was used for the first time. However, the algorithm
itself was known much earlier. It was introduced by Steinhaus (1956). The k-
means algorithm is a well-known cluster analysis tool, and, over the years, it has
been extensively studied (Kanungo et al., 2002; Olszewski et al., 2010; Xiong et
al., 2009).

Application of the asymmetric proximities in data analysis has been ex-
tensively studied by Okada and Imaizumi (Okada, 2000; Okada and Imaizumi,
1997, 2007). They have concentrated in their work on the multidimensional scal-
ing for analyzing one-mode two-way (object × object) and two-mode three-way
(object × object × source) asymmetric proximities. They have introduced the
dominant point governing asymmetry in the proximity relationships among ob-
jects, represented as points in the multidimensional Euclidean space. They claim
that ignoring or neglecting the asymmetry in proximity analysis discards poten-
tially valuable information. An asymmetric version of the k-means algorithm is
presented in Olszewski (2011).

Our method can be regarded as an extension of these solutions for the k-
centroids clustering algorithm, where centroids of clusters are treated as the
dominant points governing the multiple allocations of objects, and consequently,
governing the whole clustering process. Therefore, the distinction between a
centroid and a single object is that the centroid is a privileged entity acting
as an attractor of objects in the analyzed data set. Our solution can be also
interpreted as a generalization of Okada’s and Imaizumi’s idea for the multidi-
mensional non-Euclidean spaces, associated with the non-standard asymmetric
dissimilarity measures, like, e.g., the Kullback-Leibler divergence. Finally, we
wanted to confirm their assertion that the property of asymmetry does not have
to be considered as an inhibiting shortcoming, but, quite the contrary, in certain
areas of research, it can be even significantly beneficial.

The k-centroids algorithm forms clusters on the basis of multiple allocations
of objects to the nearest clusters. The nearest cluster is the one with the minimal
dissimilarity between its centroid and the object considered. Hence, the princi-
pal behavior of the discussed algorithm is based on evaluating the dissimilarity
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measure between two distinct entities (object vs. cluster centroid). Therefore,
the choice of the dissimilarity measure for this algorithm may have significant
influence on its performance. When asymmetry arises, symmetric dissimilarities
produce big values for most pairs of data points, and do not reflect accurately
the object relationships (Martín-Merino and Muñoz, 2005). We propose employ-
ing the asymmetric dissimilarities as dissimilarity measures in the k-centroids
algorithm, since we claim that it is more consistent with the fundamental nature
of this algorithm, i.e., properly reflects the asymmetric relationship between a
single object and a cluster centroid.

The relationship between a cluster centroid and a single object can be consid-
ered to be asymmetric, because of the hierarchical association between these two
entities. The hierarchical associations in data are closely related to the asym-
metry. This relation has been noticed in Muñoz et al. (2003). The dissimilarity
from a more general entity to a more specific one should be greater than in the
opposite direction. As stated in Martín-Merino and Muñoz (2005), asymmetry
can be interpreted as a particular type of hierarchy. A cluster centroid is a one-
point representation of the entire cluster, and it is computed on the basis of all
current members of the cluster. Therefore, it reflects the properties of all objects
in the cluster. On the other hand, a single object is an elementary portion of
data in the analyzed set. Consequently, it can be regarded as a sub-element with
respect to centroid. Hence, the dissimilarity from a centroid to an object should
be greater than from an object to a centroid.

In other words, we can assert that following the Okada’s and Imaizumi’s
work, we treat centroids of the clusters as the dominant points responsible for
the asymmetry in the cluster analysis. Therefore, they act as privileged entities
“attracting” the objects in the analyzed data set.

Our method maintains the advantages of the symmetric k-centroids algo-
rithm, i.e., efficiency, flexibility, and computational simplicity for large data sets
with both numerical and categorical attributes.

2. k-centroids clustering algorithm

The k-centroids clustering algorithm can be formulated in two different ver-
sions: the batch version and the online version. The difference between these
two variants refers to the execution of Step 1 of the algorithm (see below). In
case of the batch version, the algorithm, in Step 1, iterates over the entire data
set, and assigns each object to the nearest cluster. On the other hand, in case
of the online version, Step 1 consists of only one assignment of a single object
to the nearest cluster. Consequently, in case of the batch variant, the clusters
centroids are recalculated after allocation of each object from the entire data
set, while, in case of the online variant, the clusters centroids are moved after
each allocation of a single object to the nearest cluster. We focus on the batch
version, and this kind of approach will be considered throughout this paper.
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Procedure 1 The k-centroids algorithm starts from a random choice of k sam-
ples from the entire data space. Then, the algorithm consists of two alternating
steps:

Step 1. Forming of the clusters: The algorithm iterates over the entire data set,
and allocates each sample to the cluster represented by the centroid –
nearest to this sample. The nearest centroid is determined with use of a
chosen dissimilarity measure.

Step 2. Finding centroids for the clusters: For each cluster, a centroid is deter-
mined on the basis of samples belonging to this cluster. The algorithm
calculates centroids of the clusters so as to minimize a formal objective
function, the error distortion:

e (Xj) ≡
nj
∑

i=1

d (xi, cj) , (1)

where Xj, j = 1, . . . , k is the j-th cluster, xi, i = 1, . . . , nj are the
data samples in the j-th cluster, nj, j = 1, . . . , k, is the number of data
samples in the j-th cluster, cj, j = 1, . . . , k, is the centroid of the j-th
cluster, k is the number of clusters, and d (a, b) is a chosen dissimilarity
measure.

Both these steps must be carried out with the same dissimilarity measure, in
order to guarantee the monotone property of the k-centroids algorithm.

Steps 1 and 2 have to be repeated until the termination condition is met.
The termination condition might be either reaching convergence of the iterative
application of the objective function (2), or reaching the pre-defined number of
cycles.

After each cycle (Step 1 and 2), the value of the following objective function
needs to be computed, in order to track the convergence of the whole clustering
process:

e (X) ≡
k
∑

j=1

nj
∑

i=1

d (xi, cj) , (2)

where X is the analyzed set of data samples, and the rest of notation is described
in (1).

The most commonly used implementation of the k-centroids clustering algo-
rithm – the k-means algorithm employs the Euclidean distance. In our paper,
we propose application of the asymmetric dissimilarities in the k-centroids algo-
rithm, since we claim they are more advisable for this algorithm than popular
symmetric quantities. We claim that they are consistent with operating of the
k-centroids in its both steps.

A serious problem concerning the k-centroids algorithm is that the cluster-
ing process may not converge to an optimal or near-optimal configuration. The
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algorithm can assure only local optimality, which depends on the initial loca-
tions of samples. An exhaustive study of asymptotic behavior of the k-means
algorithm was conducted by MacQueen (1967), where the convergence of the
clustering process is proved under certain assumptions. However, MacQueen in-
dicates that the process is not convergent in general. Also, Selim and Ismail
(1984) give a rigorous proof of the finite convergence of the k-means-type algo-
rithm, noting that under certain conditions the algorithm may fail to converge
to a local optimum, and that it converges under differentiability conditions to
the Kuhn-Tucker point.

3. Symmetric and asymmetric dissimilarities

In this section, we present six dissimilarity measures. Three of them are sym-
metric (the Hellinger distance, the total variation distance, and the Euclidean
distance), one is asymmetric (the Kullback-Leibler divergence), and two are ei-
ther symmetric, or asymmetric, depending on the values of their parameters
(the Chernoff distance, and the Lissack-Fu distance). Some of these measures
are metrics (satisfy all metric conditions) and some are not, but they still present
interesting properties.

3.1. Notation

Throughout this section, we will use the following notation. Let P and Q denote
two probability measures on a measurable space Ω with σ-algebra F . Let λ be a
measure on (Ω,F) such that P and Q are absolutely continuous with respect to
λ, with corresponding probability density functions p and q (e.g., λ can be taken
to be (P+Q) /2, or can be the Lebesgue measure). For a countable space Ω,
measures P and Q on (Ω,F) are N - tuples (p1, p2, . . . , pN) and (q1, q2, . . . , qN ),
respectively (also called as the probability mass functions), satisfying the follow-
ing conditions: pi ≥ 0, qi ≥ 0,

∑

i pi = 1, and
∑

i qi = 1. All of the definitions
presented in this section do not depend on the choice of the measure λ.

3.2. Symmetric dissimilarities

3.2.1. Hellinger distance

Definition 1 (Gibbs and Su, 2002) The Hellinger distance between P and Q

on a continuous measurable space (Ω,F) is defined as

dH (P,Q) ≡





1

2

∫

Ω

(

√

dP

dλ
−
√

dQ

dλ

)2

dλ





1/2

=

[

1

2

∫

Ω

(
√
p−√q)2 dλ

]1/2

. (3)
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For a countable space Ω, the definition is formulated as follows:

Definition 2 (Gibbs and Su, 2002) The Hellinger distance between P and Q

on a discrete measurable space (Ω,F) is defined as

dH (P,Q) ≡
[

1

2

∑

i∈Ω

(
√
pi −

√
qi)

2

]1/2

. (4)

3.2.2. Total variation distance

Definition 3 The total variation distance between P and Q on a continuous
measurable space (Ω,F) is defined as

‖P−Q‖1 ≡ 2 sup
A⊂Ω
|P (A)−Q (A)| = max

|h|≤1

∣

∣

∣

∣

∫

Ω

h dP−
∫

Ω

h dQ

∣

∣

∣

∣

, (5)

where h : Ω→ R satisfies |h (x)| ≤ 1. Total variation distance is a metric, which
assumes values in the interval [0, 2]. Total variation distance is often called the
L1-norm of P−Q, and is denoted by ‖P−Q‖1.

For a countable space Ω, the definition above becomes:

Definition 4 (Gibbs and Su, 2002) The total variation distance between P and
Q on a discrete measurable space (Ω,F) is defined as

‖P−Q‖1 ≡
∑

i∈Ω

|pi − qi| . (6)

3.2.3. Euclidean distance

This measure is used to determine the distance between two points in the Eu-
clidean space.

Definition 5 The Euclidean distance between points p and q in the N -
dimensional Euclidean space is defined as

dE (p, q) ≡
√

∑

i∈Ω

(pi − qi)
2
. (7)

The Euclidean distance is a metric, which takes values from the interval
[0,∞]. It can be interpreted as a generalization of distance between two points
in a plane, i.e., in the 2-dimensional Euclidean space, which can be derived from
the Pythagorean theorem.
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3.3. Asymmetric dissimilarity

3.3.1. Kullback-Leibler divergence (relative entropy)

Definition 6 (Kullback and Leibler, 1951) The Kullback-Leibler divergence be-
tween P and Q on a continuous measurable space (Ω,F) is defined as

dKL (P,Q) ≡
∫

S(P)

p log2

(

p

q

)

dλ, (8)

where S (P) is the support of P on Ω. According to the convention, the value of
0 log 0

q is assumed as 0 for all real q, and the value of p log p
0 is assumed as ∞

for all real non-zero p. Therefore, relative entropy takes values from the interval
[0,∞]. The Kullback-Leibler divergence is not a metric, since it is not symmetric
and it does not satisfy the triangle inequality.

For a countable space Ω the definition is formulated as follows:

Definition 7 (Gibbs and Su, 2002) The Kullback-Leibler divergence between P

and Q on a discrete measurable space (Ω,F) is defined as

dKL (P,Q) ≡
∑

i∈S(P)

pi log2

(

pi
qi

)

. (9)

3.4. Parameterized dissimilarities

In this subsection, we present two dissimilarities, whose definitions involve pa-
rameters. Depending on the parameters values, these dissimilarities can be either
symmetric, or asymmetric. This is a very convenient property for the purpose
of this paper, since it allows for investigating the influence of symmetrizing and
asymmetrizing the same dissimilarity on the final results of clustering.

3.4.1. Chernoff distance

Definition 8 (Chernoff, 1952) The Chernoff distance between P and Q on a
continuous measurable space (Ω,F) is defined as

dCH (P,Q) ≡ − log2

(
∫

Ω

pαq1−αdλ

)

, (10)

where 0 < α < 1.

Depending on the choice of the parameter α, Chernoff distance can be either
symmetric or asymmetric. For α = 0.5, it is symmetric, and for all other values
of this parameter, it is not. We have chosen α = 0.1 and α = 0.9, in order to
obtain the asymmetric dissimilarity, while α = 0.5 resulted in the symmetric
dissimilarity.

For a countable space Ω the definition has the following form:
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Definition 9 The Chernoff distance between P and Q on a discrete measurable
space (Ω,F) is defined as

dCH (P,Q) ≡ − log2

(

∑

i∈Ω

pαi q
1−α
i

)

. (11)

3.4.2. Lissack-Fu distance

Definition 10 (Lissack and Fu, 1976) The Lissack-Fu distance between P and
Q on a continuous measurable space (Ω,F) is defined as

dLF (P,Q) ≡
∫

Ω

|pPa − q Pb|α

|pPa + q Pb|α−1 dλ, (12)

where 0 ≤ α ≤ ∞.

Changing the values of the parameters Pa and Pb enables to obtain either
symmetric, or asymmetric dissimilarity. For Pa = Pb, one has a symmetric
measure, and for Pa 6= Pb, the measure is asymmetric. The value of α does not
affect the symmetry property of the dissimilarity. Therefore, in our experiments,
we have fixed α = 0.5.

For a countable space Ω the definition is formulated as follows:

Definition 11 The Lissack-Fu distance between P and Q on a discrete mea-
surable space (Ω,F) is defined as

dLF (P,Q) ≡
∑

i∈Ω

|pi Pa − qi Pb|α

|pi Pa + qi Pb|α−1 . (13)

4. k-centroids algorithm with asymmetric dissimilarities

The enhancement to the k-centroids clustering algorithm, proposed in this pa-
per, consists in utilization of the asymmetric measure of dissimilarity in this
algorithm. We consider the batch variant of the algorithm. The starting phase
of our algorithm is exactly the same as in case of the symmetric k-centroids
method. As stated in Section 2, the k-centroids algorithm, essentially, consists
of two alternating steps, i.e., Step 1 and Step 2 of Procedure 1 in Section 2.

Step 1. Forming of the clusters: The algorithm iterates over the entire set of
objects and assigns each object to the cluster with the nearest centroid.
The nearest centroid is determined by the minimal asymmetric dissim-
ilarity between a given object and one of the centroids. Therefore, for
each object, the following has to be found:

min
i

dASYM (FEnew,FEci) , (14)
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where dASYM is the asymmetric dissimilarity, FEnew is the vector of
features of a given object in the analyzed data set, and FEci is the
vector of features of the i-th cluster centroid, i = 1, . . . , k.

We apply the definitions of the asymmetric dissimilarities in their dis-
crete forms, since the vectors of features are considered in (14). More-
over, the N -tuples in these definitions (Section 3) are of finite length,
since the feature-vectors in (14) are of finite length, as well.

This process can be presented with the following pseudocode:

1: for x ∈ X do
2: min←MAX_V ALUE
3: for c ∈ centroids do
4: if min > dASYM (x, c) then
5: min← dASYM (x, c)
6: x temporarily belongs to cluster cluster (c)
7: end if
8: end for
9: end for

After the execution of this pseudocode, each object x, from the entire
data set X , is allocated to the cluster represented by the centroid –
nearest to this object. The centroids variable stores the set of all current
centroids, cluster (c) denotes the cluster with centroid c, min is an
auxiliary variable, while the MAX_V ALUE is the maximal value of
the min variable.

Step 2. Finding centroids for the clusters: Cluster centroids are computed on
the basis of minimization of the objective function (1), where a cho-
sen dissimilarity measure d (a, b) should be the asymmetric dissimilarity
measure dASYM (a, b). As for optimization technique, we do not focus
on this problem, i.e., any minimization technique is allowed. Minimiza-
tion algorithm used in our experimental study was the complete search.
For the numerical simplicity and speed, we have limited the variables
space to the points corresponding to the current members of the specific
cluster. This means that the search process was carried out in the set
of current members of the considered cluster. This kind of approach is
sometimes referred to as the k-medoids algorithm.

These two steps are repeated until the termination condition is met. The
termination condition is either reaching the convergence of the whole clustering
process, i.e., the convergence of the iterative application of the objective function
(2) with the asymmetric dissimilarity inserted as the dissimilarity, or reaching
the pre-defined number of iterations (Step 1 and 2). The value of the objec-
tive function (2) should be computed after each iteration (execution of Steps 1
and 2), in order to track the convergence of the cluster analysis. This conver-
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gence, generally, is not guaranteed by the algorithm, as stated in Section 2.
Therefore, the second termination condition (maximal number of iterations)
secures the algorithm from the infinite execution.

The objective function (2), with the asymmetric dissimilarity, is the criterion
optimized by our algorithm.

Application of different asymmetric dissimilarities is possible, however, what
needs to be ensured is that both steps (Step 1 and 2) are implemented with
the same asymmetric dissimilarity, in order to guarantee the monotone prop-
erty of the algorithm, and consequently, a reasonable solution returned by the
algorithm. In our experiments, we have tested several kinds of asymmetric dis-
similarities, in order to evaluate their usefulness in supporting our k-centroids
method improvement.

All of the drawbacks of the symmetric k-centroids algorithm, mentioned
in Section 2, still hold. Thus, a random choice of the initial centroids of the
clusters does not necessarily lead to the proper solution. Furthermore, there
is a slight chance that a single run of the algorithm will return a satisfactory
result. Therefore, the whole process needs to be replicated, i.e., multistarted
with random starts.

Notice that the asymmetric k-centroids algorithm maintains the simplicity
of the original algorithm, and does not add computational burden (discussed in
more details in Subsection 4.1).

4.1. Computational complexity

Computational complexity of the asymmetric k-centroids algorithm is exactly
the same as in case of the symmetric version of the algorithm. Hence, the esti-
mated complexity of Step 1 isO (knd), where k is the number of clusters, n is the
number of objects, and d is the dimensionality (the number of features of each
object in the analyzed data set). The complexity of Step 2 depends on minimiza-
tion technique employed for the clusters centroids computation. Minimization
technique, we have employed is based on simple complete search, therefore, it
is not computationally efficient, however, the matter of optimization technique
is not the subject of our paper, and a simple and numerically - easy method
was chosen to do not distract the reader’s attention from the main issues of this
work. Consequently, in case of our minimization method the estimated compu-

tational complexity of Step 2 is O
(

n2d
k

)

. Therefore, the complexity of Steps 1

and 2 is O
((

k + n
k

)

nd
)

. And, considering the number of iterations t, the entire
estimated computational complexity of the chosen implementation of our algo-
rithm is O

(

t
(

k + n
k

)

nd
)

. However, use of an efficient optimization technique
in Step 2 will significantly reduce its complexity, and generally, will lead to
computational complexity, of the entire proposed algorithm, of order O (tknd).
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5. Experiments

We have tested the performance of the discussed asymmetric k-centroids cluster-
ing algorithm by carrying out the experiments on real data: in the field of signal
recognition, i.e., piano music composer clustering, and human heart rhythm clus-
tering. Human heart rhythms are represented with the ECG recordings derived
from the MIT-BIH ECG Databases. This clustering process leads to cardiac
arrhythmia detection and recognition. Asymmetric k-centroids algorithm was
forming clusters representing normal sinusoidal heart rhythm and two types of
arrhythmia. Performance of the considered clustering algorithm is evaluated on
the basis of the clustering accuracy. We have employed different symmetric,
asymmetric, and parametrized dissimilarities presented in Section 3, in order to
evaluate their effectiveness in cooperating with the discussed k-centroids cluster-
ing algorithm. Consequently, we verify the main assertion of this paper, which
is the proposal of applying the asymmetric dissimilarities as more recommended
for the k-centroids algorithm.

We report also the experimental results obtained with use of the mixture-
model-based clustering method and two classical methods, i.e., the traditional
k-means algorithm (Ward’s criterion) and the agglomerative hierarchical cluster-
ing algorithm, for the purpose of comparing them with the results obtained with
use of our asymmetric method. The mixture-model-based clustering method es-
timates the parameters of statistical mixture models, and forms the clusters
corresponding to components of mixtures. In our research, this clustering was
carried out using the MCLUST Version 3 package (Fraley and Raftery, 2006) for
the R programming language (R Development Core Team, 2010). We have used
the Gaussian Mixture Models (GMMs) with parameters estimated via the EM
algorithm. Specific covariance structure and the number of components of the
mixture were selected using the Bayesian Information Criterion (BIC).

The Ward’s criterion refers to the k-means algorithm with centroids of the
clusters computed as the arithmetic averages. The agglomerative hierarchical
clustering was performed using the single linkage criterion (the nearest distance
method) and the Euclidean distance for creating the hierarchical cluster tree.

Finally, we have carried out the experiments on simulated 2-dimensional
data, where the convergence of the objective function (2) was considered pro-
viding the insight into the algorithm.

In each part of our experiments, the “correct” number of clusters was assumed
(i.e., three clusters), except for the GMM-based clustering, where also the BIC
criterion was employed for choosing the number of clusters.

5.1. Piano music composer clustering

5.1.1. Experimental setup

In this part of our experiments, we have tested the asymmetric k-centroids algo-
rithm forming three clusters representing three piano music composers: Johann
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Sebastian Bach, Ludwig van Beethoven, and Fryderyk Chopin. The numbers of
music pieces belonging to each of these composers are given in Table 1. Each
music piece was represented with a 20-seconds sound signal sampled with the
44100 Hz frequency. The entire data set was composed of 32 sound signals.
The feature extraction process was carried out according to the Digital Fourier
Transform based method.

5.1.2. Experimental results

The results of this part of our experiments are shown in Table 1, presenting
the accuracy degree of clustering with our k-centroids algorithm cooperating
with different symmetric, asymmetric, and parameterized dissimilarities. Table 1
shows, also, clustering results obtained with use of the GMM-based method and
two classical methods, i.e., the traditional k-means algorithm (Ward’s criterion)
and the agglomerative hierarchical clustering algorithm. The numbers 1 and
2 given with each asymmetric dissimilarity denote this dissimilarity computed
in two different directions, i.e., dASYM1 = dASYM (p, q) (i.e. computed in such
way that the dissimilarity from centroid to object is greater than from object
to centroid) and dASYM2 = dASYM (q, p). The asymmetric Chernoff distance
was obtained by applying parameter α = 0.9, while the symmetric Chernoff
distance was obtained with α = 0.5. The asymmetric Lissack-Fu distance, in
turn, was obtained by applying parameters Pa = 0.5 and Pb = 1.0, while the
symmetric form of this quantity was obtained with the Pa = 1.0 and Pb = 1.0.
Fig. 1 presents the BIC values for different covariance structures and numbers
of components of GMM. For details on the covariance structures see Fraley and
Raftery (2006).

The accuracies were calculated on the basis of the following accuracy degree:

ai ≡
xi
max

Ni
, (15)

where ai, i = 1, 2, 3, is the accuracy degree for the i-th composer, xi
max, i =

1, 2, 3, is the maximal number of music pieces of the i-th composer in any of the
clusters, Ni, i = 1, 2, 3, is the total number of music pieces of the i-th composer.

Once the accuracy degree for the i-th composer is calculated, the corre-
sponding cluster is not considered in calculations of the accuracy degrees for
the remaining composers.

Each row with the accuracy entries ends with the average accuracy degree,
estimating the quality of each clustering approach. It is the arithmetic average
of all three accuracy degrees associated with all three composers:

aaverage ≡
a1 + a2 + a3

3
. (16)

This average accuracy degree is used as the basis of comparison between
investigated approaches.
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Table 1. Accuracies of Piano Music Composer Clustering

Bach Beethoven Chopin
Average

Accuracy

Number of Signals 11 12 9

Kullback-Leibler Divergence 1 0.818 0.750 0.778 0.781

Kullback-Leibler Divergence 2 0.727 0.667 0.778 0.719

Asymmetric Chernoff Distance 1 0.818 0.750 0.778 0.781

Symmetric Chernoff Distance 0.727 0.750 0.778 0.750

Asymmetric Chernoff Distance 2 0.727 0.667 0.778 0.719

Asymmetric Lissack-Fu Distance 1 0.818 0.750 0.778 0.781

Symmetric Lissack-Fu Distance 0.727 0.750 0.778 0.750

Asymmetric Lissack-Fu Distance 2 0.727 0.667 0.778 0.719

Hellinger Distance 0.727 0.750 0.778 0.750

Total Variation Distance 0.636 0.750 0.778 0.719

Euclidean Distance 0.818 0.583 0.556 0.656

GMM-based Clustering 0.636 1.000 0.778 0.805

Traditional K-Means 0.909 0.250 0.778 0.625

Hierarchical Clustering 0.636 0.500 0.778 0.638
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Figure 1. The BIC values for various covariance structures and numbers of com-
ponents of GMM, where EII is the spherical-distributional equal-volume equal-
shape covariance structure, VII is the spherical-distributional variable-volume
equal-shape covariance structure, EEI is the diagonal-distributional equal-
volume equal-shape covariance structure, VEI is the diagonal-distributional
variable-volume equal-shape covariance structure, EVI is the diagonal-
distributional equal-volume variable-shape covariance structure, and VVI is the
diagonal-distributional variable-volume variable-shape covariance structure
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5.1.3. Discussion

Table 1 shows that clustering with the asymmetric k-centroids algorithm allowed
for obtaining superior results than with the original version of the algorithm.
What is worth noting, is the fact that the clustering performance strongly de-
pends on the direction of asymmetry in case of the asymmetric dissimilarities,
i.e., whether we consider dASYM (p, q) or dASYM (q, p). This is consistent with the
justification of our proposal, according to which the dissimilarity from centroid
to object should be greater than in the opposite direction. And, in this case,
our method appeared superior over the symmetric one. We have checked the
other “incorrect” direction of asymmetry only to confirm the justification of our
method. Moreover, our method outperformed two investigated classical cluster-
ing methods: k-means and the hierarchical clustering method. Note that the
hierarchical clustering method uses hierarchy only as a technique for generating
the clustering tree, and does not regard the hierarchical asymmetric relations
in data, when a symmetric dissimilarity (e.g., the Euclidean distance) is ap-
plied. Therefore, it should not be surprising that it produces the inferior results.
An open problem is application of the asymmetric dissimilarities in hierarchical
clustering algorithms.

On the other hand, the GMM-based method with the enforced number of
components (i.e., number of clusters) to three, and the VEI model providing the
highest clustering accuracy among all GMMs available in MCLUST, returned the
result superior over our method. The GMM-based method for the non-spherical
covariance structures is more advanced and sophisticated than the k-centroids-
type approaches, therefore, such result should not be surprising. However, each
non-spherical-distributional model leads to higher computational complexity
than the spherical ones (which lead to the k-means criterion). Estimating of
more complex covariance structures is, naturally, more computationally expan-
sive. Specifically, the three-component VEI model (with the covariance matrix
Σk = λkA) requires k times greater complexity than our method, see Subsec-
tion 4.1 and Fraley and Raftery, 2006).

The experiments with automatic model selection showed that according to
the BIC-based model selection, the best model is the VEI model with four
components (Fig. 1). Hence, the choice of the components’ number was slightly
missed in context of our knowledge about the data.

5.2. Human heart rhythm clustering

5.2.1. Experimental setup

In this part of our experiments, we have investigated our algorithm forming
three clusters representing three types of human heart rhythms: normal sinus
rhythm, atrial arrhythmia, and ventricular arrhythmia. This kind of clustering
can be recognized as cardiac arrhythmia detection and recognition based on the
ECG recordings. In general, the cardiac arrhythmia disease may be classified
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either by rate (tachycardias – the heart beat is too fast, and bradycardias –
the heart beat is too slow), or by site of origin (atrial arrhythmias – they be-
gin in the atria, and ventricular arrhythmias – they begin in the ventricles).
Our clustering recognizes the normal rhythm, and also, recognizes arrhythmias
originating in the atria, and in the ventricles. We have analyzed 20-minutes
ECG holter recordings sampled with the 250 Hz frequency. The entire data set
was composed of 63 ECG signals. The numbers of recordings belonging to each
rhythm type are given in Table 2. The feature extraction process was carried
out in the same way as in case of the piano music composer clustering.

5.2.2. Experimental results

The results of this part of our experiments are shown in Table 2, constructed
in the same way as Table 1, and Fig. 2 presents the BIC values for different
covariance structures and numbers of components of GMM.

5.2.3. Discussion

Table 2 shows results very similar to the results of the previous part of our
experiments. The same effect can be observed due to the direction of asymmetry,
in case of the asymmetric dissimilarities. In one of the directions of asymmetry
(the “correct” direction), the asymmetric dissimilarities outperform symmetric
ones, while in the other direction (the “incorrect” direction), they provide lower
clustering performance. This behavior was observed in case of both parts of our
experiments on real data. Table 2 reports also the superiority of our approach
over two tested classical clustering methods, just like in the previous subsection.
Again, the VEI mixture model, with the number of components set to three,
outperformed our method, and according to the BIC criterion the best model is
the VEI model with four components (Fig. 2). Naturally, our expectation was
three components.

5.3. Simulated 2-dimensional data clustering

5.3.1. Experimental setup

In the last part of our experiments, we have carried out clustering of the simu-
lated points in the 2-dimensional (x, y) space. The entire analyzed set consisted
of 60 points. The points are shown in Figs. 3(a)-10(a). Their locations were
chosen randomly from the uniform distribution with the spread ±20 units in
both dimensions around the chosen central points ((15, 90) , (80, 20) , (150, 150)),
and then the coordinates were normalized. In this way, we intended to gather
the points around the chosen central points, in order to form certain divisions
in the analyzed data set. However, after normalization, the divisions were not
very clear so as to enable verification of effectiveness of investigated algorithms.
We have normalized the features, just like in the experiments on real data in
the previous subsections. Therefore, all points in our data set lay on the axis
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Table 2. Accuracies of Human Heart Rhythm Clustering

Normal Atrial Ventricular Average

Rhythm Arrhythmia Arrhythmia Accuracy

Number of Signals 18 23 22

Kullback-Leibler Divergence 1 0.944 0.783 0.773 0.825

Kullback-Leibler Divergence 2 0.944 0.826 0.636 0.794

Asymmetric Chernoff Distance 1 0.944 0.826 0.773 0.841

Symmetric Chernoff Distance 0.944 0.826 0.727 0.825

Asymmetric Chernoff Distance 2 0.944 0.826 0.636 0.794

Asymmetric Lissack-Fu Distance 1 0.944 0.826 0.773 0.841

Symmetric Lissack-Fu Distance 0.944 0.826 0.727 0.825

Asymmetric Lissack-Fu Distance 2 1.000 0.826 0.636 0.810

Hellinger Distance 0.944 0.783 0.727 0.810

Total Variation Distance 0.944 0.826 0.682 0.810

Euclidean Distance 0.833 0.739 0.636 0.730

GMM-based Clustering 0.636 1.000 1.000 0.879

Traditional K-Means 0.889 0.435 0.773 0.730

Hierarchical Clustering 0.636 0.583 0.889 0.703
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Figure 2. The BIC values for various covariance structures and numbers of com-
ponents of GMM, where EII is the spherical-distributional equal-volume equal-
shape covariance structure, VII is the spherical-distributional variable-volume
equal-shape covariance structure, EEI is the diagonal-distributional equal-
volume equal-shape covariance structure, VEI is the diagonal-distributional
variable-volume equal-shape covariance structure, EVI is the diagonal-
distributional equal-volume variable-shape covariance structure, and VVI is the
diagonal-distributional variable-volume variable-shape covariance structure
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x+y−1 = 0. Additionally, we have analyzed the values of the objective function
(2) computed in ten iterations of the single k-centroids cycle (Steps 1 and 2,
described in Section 4).

5.3.2. Experimental results

The results of this part of our experiments are demonstrated with Figs. 3-
10. Figures 3(a)-10(a) present the generated clusters, while Figs. 3(b)-10(b)
show the corresponding values of the objective function (2) for ten iterations
of the k-centroids cycle. The clustering results are presented graphically, where
the clusters obtained with the investigated algorithms are shown with different
shapes (squares, circles, and triangles). Clusters centroids are marked with the
asterisk character.

The quality of clustering with symmetric and asymmetric dissimilarities was
evaluated on the basis of the objective function (2) final values, i.e. when the
function (2) converged. The objective function (2) is the criterion minimized
by the k-centroids algorithm, therefore, it can be used for our clustering per-
formance evaluation. Additionally, the values of (2) computed in ten iterations
of the single k-centroids cycle allow for tracking of the convergence speed of
(2), providing the insight into the algorithm. Just like in the previous experi-
ments, the numbers 1 and 2 given with the asymmetric dissimilarities denote
the specific dissimilarity computed in two different directions.

5.3.3. Discussion

The experiments on simulated data confirmed our observations and conclusions
referring to the previous parts of our empirical study on real data. The asym-
metric dissimilarities outperform their symmetric counterparts. Analysis of the
objective function (2) values in ten iterations of the k-centroids cycle aims to
determine the clustering quality of each of tested methods, and verify the con-
vergence of (2). The clustering quality can be assessed on the basis of the final
value of (2). The lower is that value, the better is the clustering result.

The objective function (2) converges within ten iterations of the k-centroids
cycle in all tested cases. Fig. 6(b) shows the slowing down of the convergence of
(2), however, sometimes the problem can be more serious, and, the convergence
of (2) may be disrupted, i.e., the objective function may not converge at all
to an optimal or near-optimal solution (discussed in Sections 2 and 4). Never-
theless, according to our results, the asymptotic behavior of (2) does not differ
for the asymmetric and symmetric dissimilarities. Therefore, regarding the fact
of higher clustering accuracy, we conclude that the k-centroids clustering with
asymmetric dissimilarities can be considered as superior over the same algorithm
with symmetric counterparts.
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Figure 3. Clustering results for the Kullback-Leibler divergence 1

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x normalized

y
 n

o
rm

a
liz

e
d

(a) Clusters

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Iteration Number

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

(b) Objective function

Figure 4. Clustering results for the Kullback-Leibler divergence 2
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Figure 5. Clustering results for the asymmetric Lissack-Fu distance 1
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Figure 6. Clustering results for the symmetric Lissack-Fu distance
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Figure 7. Clustering results for the asymmetric Lissack-Fu distance 2
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Figure 8. Clustering results for the Hellinger distance
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Figure 9. Clustering results for the total variation distance
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Figure 10. Clustering results for the Euclidean distance

6. Summary and concluding remarks

This paper presented an improvement to the k-centroids clustering algorithm.
We proposed application of the asymmetric dissimilarities, in this algorithm, as
more consistent with the behavior of the algorithm than the most commonly
employed symmetric dissimilarities, e.g., the Euclidean distance. We claim that
asymmetric measures are more suitable for the k-centroids technique, because
this clustering method evaluates the dissimilarity between two distinct entities
(object vs. cluster centroid). The k-centroids algorithm consists of two alternat-
ing steps (Section 2), and, in both these steps, the dissimilarity is used between
the entities of different nature: clusters centroids, being the privileged domi-
nant points, and single objects “attracted” by the centroids. In other words,
the k-centroids method is based on asymmetric relationships. Therefore, em-
ploying of the asymmetric measures tends to fit this property. Consequently, we
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wanted to assert that asymmetric dissimilarities, in certain areas of research,
can be regarded as superior over their symmetric counterparts, on the contrary
to the frequent opinion, considering them as the mathematically inconvenient
quantities.
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