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Abstract: A context pattern is a frequent subsequence mined
from the context database containing set of sequences. This kind
of sequential patterns and all elements inside them are described
by additional sets of context attributes e.g. continuous ones. The
contexts describe circumstances of transactions and sources of se-
quential data. These patterns can be mined by an algorithm for the
context based sequential pattern mining. However, this can create
large sets of patterns because all contexts related to patterns are
taken from the database. The goal of the generalization method is
to reduce the context pattern set by introducing a more compact
and descriptive kind of patterns. This is achieved by finding clus-
ters of similar context patterns in the mined set and transforming
them to a smaller set of generalized context patterns. This process
has to retain as much as possible information from the mined con-
text patterns. This paper introduces a definition of the generalized
context pattern and the related algorithm. Results from the general-
ization may differ as depending on the algorithm design and settings.
Hence, generalized patterns may reflect frequent information from
the context database differently. Thus, an accuracy measure is also
proposed to evaluate the generalized patterns. This measure is used
in the experiments presented. The generalized context patterns are
compared to patterns mined by the basic sequential patterns mining
with prediscretization of context values.

Keywords: knowledge discovery, context based sequential pat-
tern mining, sequential context pattern clustering, pattern accuracy.

1. Introduction

The problem of the sequential pattern mining as defined in Agrawal and Sirkant
(1995) introduces a task of finding all frequent subsequences from a set of se-
quences. The set of sequences constitutes the mined database. In this problem

∗Submitted: March 2011; Accepted: August 2011.



586 R.Z. ZIEMBIŃSKI

definition each sequence is a list of elements where each element is a non-empty
set of items. A subsequence must be supported by the sufficient number of se-
quences to be considered as a pattern. This threshold determines the minimum
support value for the mined patterns. A notion of support can be compared to
the pattern inclusion in the sequence from the database.

Sequential pattern mining is a popular method of knowledge retrieval with
a wide area of practical applications. Complementary mining strategies im-
plemented in algorithms such as breadth-first in AprioriAll from Agrawal and
Sirkant (1995) and depth-first in PrefixSpan from Han et al. (2001) made fea-
sible mining in sets of sequences with different frequency characteristics. This
method has been successfully used to solve real-life problems in genetics, web
mining, network monitoring and medical or financial data analysis. However,
the basic version of this method does only allow to process nominal data. Some
generalizations or extensions have been proposed in literature e.g. Agrawal and
Sirkant (1996) to handle additional information.

Another extension to the basic method is the context based sequential pat-
terns mining as formulated initially in Stefanowski and Ziembiński (2005) and
discussed here. The basic sequential pattern mining problem definition does
not distinguish between context and transactional information. The context
information considered here should be understood as additional information,
specifying elements or sequences. It is affecting the mining process by reducing
its scope to subsets of data from the database. The notions of the item and
the context in a real-life example may be understood through the difference be-
tween a car as an object and its current velocity or direction. Another approach
utilizing the context for describing whole sequences is the multidimensional se-
quential patterns mining formulated in Pinto et al. (2001). It was extended in
Plantevit and Choong (2005) and Plantevit and Laurent (2008).

Also, it can be noticed that the basic problem definition is cumbersome
when context information is expressed by continuous attributes. Continuous
attributes have properties that cannot be fully represented by a database built
on sets of nominal items. In the basic method each database containing continu-
ous data must be converted, usually by discretization before mining, to produce
database compatible to the problem definition. However, the conversion intro-
duces granularity and causes some loss of information. Thus, an option to the
conversion is proposed in this paper. Alternatively, context databases can be
mined without prediscretization by the context based sequential pattern mining
method.

The way of continuous data handling causes that results from the mining
may differ even for the same context database and a requested value of the
minimal support threshold. Therefore, it is necessary to introduce the notion
of accuracy to describe differences in algorithm results. The accuracy will be
understood as a degree of representativeness of frequent information existing in
the context database by mined patterns. The notion of accuracy forms a new
dimension in a comparison of different mining methods for context databases.
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This paper begins from a short introduction to the problem of the context
based sequential patterns mining. It contains references to related works. Then,
the definition of the generalized context pattern is introduced. It is followed
by the proposal of an example generalization algorithm. The following section
introduces the accuracy measure used in experiments. Results from these exper-
iments validate assumptions taken for the generalization method. Experiments
are discussed with some conclusions inferred in the final sections of this paper.

2. Context based sequential pattern mining

and the mining algorithm

The definition of the context based sequential pattern mining introduces many
changes to the method known from Agrawal and Sirkant (1995). The detailed
definition can be found in Stefanowski and Ziembiński (2005). Some algorithms
compatible with the definition were proposed in Ziembiński (2007), where some
evaluation results of respective computational costs can be found. Then, Ste-
fanowski and Ziembiński (2009) describe an experimental evaluation of the con-
text method accuracy. There, the accuracy was measured in reference to the
basic approach with prediscretization of continuous context attribute values.
This paper follows that study by introducing a more sophisticated method of
context pattern post-processing. The proposed method produces less patterns,
but they are more descriptive. They retain much from original context pattern
information.

The definition of the context based sequential pattern mining changes data
structures and alters the mining process. However, these changes have been
introduced in a non-invasive way to ensure maximum compatibility with the
basic method. Thus, the sequential pattern mining problem is a boundary case
of the context approach.

The first modification involves an introduction of two sets of context at-
tributes describing sequences and elements. However, the set describing se-
quences is different from the set describing elements. The sequence context is
denoted D = {d1,d2,...dv} and the element context is C = {c1,c2,..., cw}. The
context bound to sequence may be used to store information on patient pro-
file data like age, living place or weight. The element context may be useful
if detailed information on patient’s current state or drug prescriptions have to
be stored. In the following description some Greek symbols are used in the
superscript to label object instances.

A comparison of elements with contexts involves their evaluation with sim-
ilarity functions. A two step procedure leads to the evaluation of a context
pair. At the beginning, customized similarity functions related to particular
context attributes evaluate pairs of attribute values. Then, a single value from
the set of partial evaluations obtained in the previous step is calculated with
a similarity aggregation function. Similarity functions dedicated to particular
context attributes are denoted σD

k (dαk , d
β
k ), k = 1...v, for the sequence contexts
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and σC
k (c

α
k , c

β
k), k = 1...w, for the element context. These functions return val-

ues ranging from 0.0 to 1.0. Attribute values are considered as identical if the
similarity function returns 1.0. In the opposite case the result is 0.0. Similarity
aggregation functions are denoted ΘD(Dα, Dβ) and ΘC(Cα, Cβ), respectively,
for two kinds of contexts. They also return values between 1.0 and 0.0 with the
same interpretation. Similarity functions do not have to possess properties of
the measure and they even do not have to be symmetric. The similarity evalu-
ation results are continuous values difficult in processing during mining. Thus,
a discrete answer on context similarity is required. Hence, two related minimal
similarity thresholds have been added for both contexts. If ΘD(Dα, Dβ) > θD

min

then the pair of sequence contexts is considered as similar. The same is true for
the pair of elements’ contexts when ΘC(Cα, Cβ) > θC

min
.

The context database has a more complex structure than the basic counter-
part. An element with context information has the definition ce = 〈C,X〉, where
X is item set. The element ceα is supported by the element ceβ in the context
approach if Xα ⊆ Xβ and ΘC(Cα, Cβ) > θC

min
. Sequences are lists of elements

and have the definition cs = 〈D, {ce1, ce2, ..., cel}〉, where l is sequence length.
The context database DB contains a finite set of sequences of known lengths.
As the pattern is a subsequence of a sequence from the database its definition
is identical to the sequence definition. However, the pattern will be denoted as
cp to differentiate them. The pattern cpα is supported by a sequence from the
database csβ if ΘD(Dα, Dβ) > θD

min
and elements of cpα are supported by some

elements from csβ in the same way as defined in the basic approach but with
an assumption that element contexts are compared as described above. Finally,
the subsequence cpα becomes the pattern if its support is equal or greater than
the minimal support threshold supportDB(cp

α) ≥ supportmin . The goal of the
context based sequential pattern mining is to find all context patterns in the
DB .

According to the definition, algorithms for context pattern mining named
ContextMapping and ContextApriori were proposed in Ziembiński (2007). Ex-
periments conducted there proved that ContextApriori is inefficient. However,
computational efficiency of ContextMapping is sufficient for practical applica-
tions. ContextMapping is the depth-first algorithm that performs a conversion
of the context database to the equivalent database compatible with the basic
database structure. It creates a new database containing results from compar-
isons between contexts. Thus, it does not convert continuous data describing
contexts prior to the mining but stores relations between contexts. The context
comparison result is binary information and may be mined in a similar way to
any other nominal data. However, some modifications had to be introduced in
ContextMapping to handle database obtained from conversion efficiently. They
make the algorithm different from other algorithms used in the basic approach.
The mining using ContextMapping can be summarized as follows:
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Figure 1. Examples of the non-context basic pattern, the context pattern and
the generalized context pattern

1. The context database is converted to its basic equivalent. All contexts
from different sequences are replaced by two related artificial items if they
are similar to a currently mapped context. The first item is placed instead
of the mapped context. However, the second one is put to all elements
from other sequences in the mapped database whose equivalent elements
in the context database contain contexts similar to those replaced by the
first one. Thus, the second item represents similarity of the context pair.
The mapping procedure repeats for all element and sequence contexts.
However, sequence contexts are mapped to additional artificial elements
and related items in the procedure independent from the element contexts
processing. Additionally, in this step all infrequent contexts are omitted
in the mapping and artificial items are not created for them.

2. All frequent item sets are mapped to artificial items representing them
in the mapped database. This step ensures that infrequent item sets are
removed from the mapped database and do not undergo further processing.

3. Elements are removed from the mapped database if they do not contain
item mapping their frequent context or items representing similarity of
contexts or items mapping frequent item sets. Moreover, a whole sequence
has to be removed if this happens for the element and items representing
sequence context and related similarity mapping. This step saves resources
by ensuring that infrequent information is not stored and unnecessarily
processed during the mining.
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4. The depth-first algorithm mines patterns. During the mining, all items
representing similarity of contexts support asymmetrically related items
representing contexts. In the output set, all mined patterns have artificial
elements with items representing their sequence contexts. Moreover, all
elements from each pattern must have a pair of items. The first from them
maps the frequent context and the other one maps its frequent item set.

5. All mappings in mined patterns are reverted. Thus, all artificial items in
mined patterns are replaced by original contexts and item sets. The mined
set of context patterns undergoes maximization where shorter patterns
included in the longer ones are removed. Algorithm finishes the processing.

3. Generalized context patterns

The context based sequential pattern mining method tends to enumerate all
frequent and distinct subsequences. Thus, it enumerates all contexts in differ-
ent patterns even if sequences of item sets in these patterns are identical. It
significantly increases size of the pattern set for large databases. Although full
set of context patterns is an accurate representation of frequent information
from the database, the overall legibility may be considered poor because of its
impractical size.

The traditional approach suggests use of discretization to process context
data before mining. It is possible to convert such context information to a no-
minal representation. Thus, continuous context information can be represented
by one or more artificial items representing discretization folds embracing many
similar context values. So, the mined set of patterns may be significantly smaller
as the context information is processed and represented as discretization folds.
Additionally, the basic mining method described in Agrawal and Sirkant (1995)
can be applied to mine patterns without modifications. The prediscretization
can be done efficiently with a clustering algorithm. There are many algorithms
for clustering proposed in literature, see, e.g., Ng and Han (2002), Guha et al.
(2000) or Yang et al. (2003). Recently proposed grid-based algorithms are fast
and produce accurate clusters, e.g. Pilevar and Sukumar (2005).

A solution to the problem of the set size can be pattern clustering after min-
ing. It maps information from a huge set of context patterns to a smaller set
of generalized context patterns. This method should find all mutually similar
subsets of pattern set and define clusters containing them. Then, each clus-
ter of patterns can be compacted and treated as a single generalized context
pattern. The definition of the generalized context pattern extends the def-
inition of the context pattern. The generalized context element has a form
ge = 〈pf C(C

α, Cβ , Cγ , ...), X〉 and the generalized context pattern is gp =
〈pf D(Dα, Dβ, Dγ , ...), {ge1, ge2, ..., gel}〉, where pf is a presentation function.
The presentation function converts a set of context attribute values to simple
and readable form, e.g. some descriptive statistics. The presentation function
output may be delivered in the form of value ranges derived from the contexts.
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This concept may be considered similar to fold borders in the basic approach.
Context pattern clustering and presentation can be realized by different meth-
ods. Thus, the content of a generalized context pattern set would depend on
the choice of the generalization algorithm and the presentation function. The
Fig. 1 contains some examples of different kinds of patterns.

Context pattern generalization causes loss of information. Precise informa-
tion on context values is distorted after the transformation by the presentation
functions. The distortion can be minimized if generalization avoids merging ele-
ments with different item sets. Information in item set is related to the transac-
tion itself and is usually more crucial than the context representing transaction
circumstances. The proposed generalization method obeys this assumption and
two patterns can be merged only if matching item sets in correspondent elements
are identical. This method does not exclude merging of a shorter pattern with a
longer one. In such cases it must be verified if the shorter pattern matches the
longer one in different ways. The generalization method has to account for all
these matches during the clustering to improve the accuracy. It is also possible
to use minimal similarity thresholds to exclude the compacting of patterns with
insufficiently similar contexts.

An experimental study of the mined set accuracy has been done in Ste-
fanowski and Ziembiński (2009). Methods evaluated there were the context
based sequential patterns mining and the basic sequential pattern mining with
prediscretization. Prediscretization was done by two different methods. The
first one was with fold splits of equal widths and the other one was with split
ensuring equal frequencies of context occurrences inside folds. Experimental
study showed that the first one gave more accurate result.

4. Generalization algorithm

The proposed generalization algorithm may be seen as an example of many
possible solutions of the problem. Input data for the algorithm is the set of
context patterns and the settings used in mining like thresholds and similarity
functions. Output is a set of generalized context patterns approximating the
input set of patterns.

In the first step of the algorithm the input set of context patterns is sorted
in accordance to pattern lengths and supports. Patterns of the same lengths
are sorted as to their support values. Both sorts are decreasing. This sorting
step is meant to improve algorithm efficiency. The clustering procedure begins
the processing from longer patterns and allows to accumulate shorter patterns
in the accretion process. Thus, the sorting solves issues related to pattern order
in the clustering.

After sorting, the algorithm creates assignment matrix for all pairs of pat-
terns from the mined set. Each cell of this matrix contains assignment list. The
list stores all possible associations between two considered patterns. All associ-
ations must fulfill constraints related to the distortion of information mentioned
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in the previous section. An assignment from the list is a sequence of pairs of
similar elements from compared patterns preserving element order in these pat-
terns. A shorter context pattern can match a longer pattern in many different
ways. Thus, an assignment list may have zero or more assignments. This is
exemplified by a context patterns list of Fig. 2, where pattern 3 is similar to
some parts of pattern 1. Because they do not violate constraints the appropriate
list of assignments is created in row 3 and column 1 of the matrix.

In the following step of the algorithm a recursive procedure builds clusters
of patterns. The procedure begins from the longest pattern with the greatest
support. It seeks relevant assignments in subsequent patterns from the related
assignment lists. This approach assumes that considering longer patterns at
the beginning gives greater chance to accumulate shorter and similar patterns
around them. The procedure reviews the entire assignment matrix. Thus, all
assignments matching the longer pattern from the matrix are found. They form
a cluster that will undergo conversion to a single generalized context pattern.

All assignments moved to the cluster are removed from the matrix and they
do not play a role in subsequent clustering. This step eliminates the possibility
of overlapping ranges of the generalized context pattern context values. A pat-
tern already associated to some other pattern is labeled as the visited one and
will not create its own cluster in future iterations. If the recursive accretion of
assignments has been finished for a given pattern then the next iteration be-
gins. A subsequent yet unvisited pattern is chosen from the sorted list and the
accretion procedure repeats until no unvisited pattern can be found on the list.
The algorithm is illustrated in Fig. 3.

Clearly, the proposed clustering algorithm forms clusters around seeds from
longer patterns with higher support. The longer patterns can be considered
as recommended in the output set because they are often the most valuable
patterns. Then, it must be noted that the step of building of the assignment
matrix can be expensive. It involves detection of all possible matches between
each pair of context patterns. However, all matches have to be accounted for
to minimize accuracy loss during generalization. Thus, the trade-off between
processing costs and output quality privileges accuracy over performance. A
different approach, consisting in clustering on the basis of common subsequences
was described in Morzy et al. (1999) or Yang and Wang (2003).

5. Evaluation method of the pattern set accuracy

Evaluation with computational efficiency of the context mining algorithms is
not relevant for this study. This is true because mined sets of patterns have
different qualities in a term of accurate representation of frequent information
from the database. Thus, another method has been proposed in Stefanowski
and Ziembiński (2009) to solve the issue. It aims at evaluating similarity be-
tween two sets of context patterns. Hence, it is useful in cases where context
information in patterns is represented as a set of context attribute values or a set
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Figure 2. The sorted list of context patterns and the produced assignment
matrix

Figure 3. The activity diagram for the clustering algorithm
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of discretization folds. The proposed method compares mined patterns to a ref-
erence set of context patterns existing in the context database. In experiments
discussed later a known set of reference patterns is hidden in the database. The
result is a single value between 0 and 1. It reflects accuracy of the reference
patterns’ description by mined patterns.

The method described in Stefanowski and Ziembiński (2009) compares all
pairs of patterns from both sets. It uses a complex equation evaluating differ-
ences in values and structures of compared context patterns. In the first step
the method finds all possible matches of pairs of elements. If the elements of a
pattern match elements of the counterpart then a sequence of pairs of elements
called comparison core is created . The core must preserve the order of elements
in both patterns. However, there may be many comparison cores if lengths of
compared patterns differ. This happens if a shorter pattern matches different
layouts of elements of a longer pattern. Hence, this method creates a list of
comparison cores similar to the assignment list in pattern clustering. After the
matching step, each core from the list is evaluated and its similarity value is
calculated from its content. Average evaluation from all comparison cores is
treated as similarity value of two compared patterns.

Details of the introduced method for the core evaluation are as follows. The
core similarity value is a product of values representing difference in lengths of
patterns, similarity of sequence contexts and averaged sum of similarities in pairs
of elements associated to the core. The value reflecting the difference in lengths
is calculated as the ratio of the length of the comparison core to the length of the
longer pattern. The similarity between a pair of elements is a product of values
representing similarity between element contexts and similarity of item sets.
Hence, the similarity between contexts is calculated using similarity functions
chosen to mine these patterns from the database. However, the similarity of item
sets is calculated as Jaccard coefficient. A different approach has to be used to
compare intervals to a single value. If border values of a fold are compared to
a single context value then the average similarity value is calculated between
them and the context value. An experimental evaluation of this approach shows
that it gives a small error for triangle similarity functions. However, in the
case of more complex similarity functions a more precise numeric integration
of similarity values could be used. All similarity evaluation values are in the
normalized range from 0.0 to 1.0. The value of 0.0 means that compared objects
are dissimilar. The value if 1.0 is obtained only for identical objects.

The comparison result for all patterns from both sets is stored in a similarity
matrix. The matrix rows represent the reference patterns and columns reflect
the mined patterns. A final value representing similarity of two sets of context
patterns is an aggregate calculated from the similarity matrix. Two methods of
matrix aggregation called reconstruction measure and average similarity mea-
sure are given in Stefanowski and Ziembiński (2009). The reconstruction mea-
sure averages similarity values of pairs representing the best match of mined
patterns to reference patterns. It assigns mined patterns to related reference



Accuracy of generalized context patterns in the context based sequential pattern mining 595

patterns only if they are the most similar ones from the whole set of mined
patterns. Then similarity evaluation values for selected pairs are averaged. The
average similarity measure calculation is simpler and it is the average value of
the similarity matrix. Thus, the average similarity value can be equal to 1.0
only if both sets contain the same context pattern.

6. Possible errors in prediscretization

There are some theoretical reasons for the context approach to be more accu-
rate than the basic approach with prediscretization. The first one is related
to the way of representation of context information. Context patterns contain
exact attribute values from the database while the basic approach can mine
patterns with context information expressed as artificial items representing pre-
discretization folds. Thus, the internal distribution of context values is ignored
inside a discretization fold, leading to some errors after mining, related to this
simplification. Reasons of these errors are as follows:

• Prediscretization can disperse clusters of context attribute values from
the database. Many fast discretization methods create folds that are not
optimal as they cannot distinguish clumps of values appropriately and de-
scribe them as different clusters, leading to cases where support is shared
between neighboring folds. Mining at lower values of the minimal support
threshold usually does not help in these cases. It might produce sets con-
taining some random “noisy” elements with low support in the database.
Patterns containing such “noise” can be eliminated only if the minimal
support threshold is set to a higher value. This case is illustrated in the
Fig. 4(A).

• A context with a low support may have its support increased after pre-
discretization if assigned to a fold with a higher support. As a result, an
infrequent element with such context might be mined. The case is shown
in Fig. 4(C).

• A context with a high support may have its support decreased after pre-
discretization if assigned to a fold with a lower support. Then, a frequent
element with such context might not be mined. The case is shown in
Fig. 4(B).

• A prediscretization algorithm has no knowledge if there are overlapping
sub-clusters supporting different elements located in different patterns (or
at different locations in the same pattern) until the mining finishes. Pre-
discretization recognizes such sub-clusters as a single entity forming a sin-
gle, wider fold, capturing all values regardless of their sequential position
in mined patterns. The case is presented in Fig. 5. This indiscernibility
leads to a lower discretization accuracy because discretization folds are
wider than they could theoretically be. This kind of error is unavoid-
able if discretization of the context attribute values is done before mining.
However, the context approach is immune on this error. It can correctly
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Figure 4. Some basic errors of prediscretization: A – inexact folds, B – omitted
frequent context and C – included infrequent context (contexts in question are
distinguished with thick lines)

Figure 5. Example of an error in prediscretization resulting from an unknown
order of contexts in patterns prior to the mining
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identify such sub-clusters with correct borders because it does not use
prediscretization.

• The context approach can use different similarity functions (even some
non-trivial ones, e.g. rich in knowledge about attribute domains) whereas
the basic approach has to rely on the item set inclusion operator. Inclu-
sion may not be sufficient if one wished use a more complex comparison
method. Thus, simple replacement of similarity functions by the inclusion
operator may lead to further errors.

The experiments described in Stefanowski and Ziembiński (2009) showed the
advantage of the context approach in terms of accuracy over the basic approach
with a simple prediscretization.

7. Experiments and obtained results

The goal of experiments presented here was to compare the accuracy of gen-
eralized context pattern sets with original context pattern sets and to sets of
patterns mined using the basic method with the prediscretization. Experiments
relied on generated databases created according to the following assumptions:

• Thedatabase has a predeterminednumber of sequenceswith known lengths.

• The sequence and element contexts have two attributes represented by
real numbers. Values from sequence and element contexts are generated
independently.

• The generated database contains a hidden set of known context patterns
(reference patterns). These patterns have specific item sets and context
values. Context values describing patterns stored in particular sequences
are generated by random distortion with Gaussian distribution. Actually,
context seed values assigned to the reference pattern templates are dis-
torted to retrieve context values stored in hidden patterns. The distortion
range is confined within a circle of radius 1.0.

• If a sequence should be longer than a hidden reference pattern then some
additional random elements are created to extend the sequence. These
elements do not have items similar to those from hidden reference pat-
terns. Their context values are generated outside distortion regions of
seed context values to avoid context values overlapping.

• For all attributes in both contexts the similarity functions are triangle
functions. They are defined as follows:

σC,D(vα, vβ) =

{

1.0− |vα − vβ | ⇒ |vα − vβ | < 1.0

0.0 ⇒ |vα − vβ | ≥ 1.0.

• Similarity aggregation functions are averages.

Experiments presented in this paper dealt with the mining of rather small
databases. It allowed for providing results on a wide range of mining settings in
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a reasonable time. Namely, the computational costs of the sequential patterns
mining and the context counterpart grow exponentially in the sequence size or
the average number of items in sequences.

Methods used in the mining are the context based sequential patterns mining
and the basic sequential pattern mining algorithm with prediscretization based
on folds of equal widths. The prediscretization produces folds of equal width
because Stefanowski and Ziembiński (2009) have shown that this method is more
accurate than creation of folds of equal frequencies. The mined sets of context
patterns are generalized with the algorithm described in the previous section.
The results are evaluated by accuracy with respect to reference patterns. The
presentation function for the generalization converts sets of context attribute
values to ranges. As ranges are defined by minimum and maximum values, the
evaluation method becomes identical to that used for folds in the basic method.

The context method is labeled in figures by CPT4, CPT6, CPT8 for minimal
similarity thresholds values equal to 0.4, 0.6, and 0.8. The produced sets of
generalized context patterns are labeled by GCPT4-A, GCPT6-A, GCPT8-A.
The basic approach is labeled by ESD3, ESD5, ESD7 for prediscretization at
3, 5 and 7 splits for each dimension what translates to 9, 25 and 49 folds for
the context size (dimension) of 2. Each experiment has been repeated on a
set of 8 different context databases generated with the same generator settings.
Then, each generated database has been mined by all tested mining methods.
The results presented are averages. The experiments shown here have following
default settings: number of sequences in the database = 256, sequence size = 8,
number of hidden patterns = 4, hidden pattern length = 4, support of hidden
patterns = 0.25, number of additional random items in element = 2, size of
random items pool = 2000, size of sequence context = 2, size of element context
= 2 and distance between context value seeds = 1.2.

The first experiment was conducted to verify the accuracy of mined context
patterns. The reconstruction measure values were calculated for the set of con-
text patterns, the set of generalized context patterns and set of patterns mined
with the basic non-context algorithm with prediscretization. The results of the
first experiment have shown that sets of mined context patterns reflect sets of
hidden reference patterns in the most accurate way (Fig. 6). However, these
sets are the most numerous ones, too. The context method detects a reason-
able number of accurate patterns as soon as the minimal support threshold falls
below 0.25. This support threshold value reflects support of reference patterns
hidden in the database. After generalization the accuracy is still reasonably
good. However, sets of generalized pattern sizes have been reduced by one third
(Fig. 7). The context method achieved the best results when relatively weak
restrictions were imposed on similarities between contexts. The plots represent-
ing sizes of mined pattern sets have a characteristic maximum. It is caused by
the maximization procedure implemented in the sequential pattern mining al-
gorithms. In the maximization procedure all shorter patterns are removed from
the resulting set if they are exact subsequences of a longer pattern. Hence, when
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Figure 6. Results from the reconstruction measure and sizes of mined context
pattern sets

Figure 7. Results from the reconstruction measure and sizes of generalized
context pattern sets

the minimal support threshold value decreases, the probability of the longer pat-
tern mining increases. The basic method with prediscretization fared the worst
(Fig. 8). Although sizes of mined sets were small but the loss of accuracy was
disproportional. The accuracy achieved by the basic method was tenfold lower
than for sets of generalized patterns. The sensitivity of the basic method was
very low and it detected patterns at the minimal support threshold value equal
0.04.

The subsequent experiments were conducted to verify if conclusions would
repeat at different values of the minimal similarity threshold and for different
numbers of discretization folds. The results from experiments with the context
method for different values of minimal similarity thresholds are presented in
Fig. 9. There are cases with and without the context pattern generalization.
The figure shows that accuracy of mined context pattern sets increases if the
minimal similarity thresholds decrease. This suggests that less restrictive min-
ing provides more accurate sets. The less restrictive mining causes that sets
of context attribute values in generalized context patterns have wider ranges
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Figure 8. Results from the reconstruction measure and sizes of mined pattern
sets for the basic method with the prediscretization

Figure 9. Results from the reconstruction measure and sizes of mined context
pattern sets for different values of minimal similarity thresholds

after generalization. However, retrieved sets of generalized context patterns
tend to become less accurate if minimal similarity thresholds are set too low
and a maximum appears on the plot. The maximum is absent in the case of
non-generalized context patterns sets. However, databases containing a lot of
“noise” elements mixed with reference patterns data may also cause a maximum
on the plot. It happens, because results with “noise” are less accurate. The
plots presenting sizes of mined sets have maximums, too. They occur because
for more restrictive mining settings each reference pattern from the database
may be represented by many shorter patterns in the mined set. However, if the
restrictions are eased then these shorter patterns have a greater chance to re-
combine and create a single longer pattern. Hence, the overall size of the mined
pattern set would be smaller after the output set maximization.

The last experiment was conducted for the basic method and variable num-
ber of discretization folds (Fig. 10). The results proved that tuning this algo-
rithm by increasing the number of discretization folds would not deliver more
accurate results. Apparently, accuracy was getting worse. It can be explained
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Figure 10. Results from the reconstruction measure and sizes of mined pattern
sets for different numbers of discretization folds in the basic approach

in a following way. If the number of discretization folds is growing then the
number of contexts embraced by a single fold is getting lower. Such folds have
a low support value, entailing computational difficulties, because mining with
lower values of minimal support threshold is required. As the experiment was
conducted with the constant value of the minimal support threshold, sizes of
mined pattern sets were gradually getting smaller with increasing number of
folds. The accuracy of mining was at the maximum when 5 splits for each di-
mension were used. However, even at this setting the accuracy of this method
was much worse than in the case of generalized context patterns.

8. Conclusions

This paper has introduced the concept of generalized context patterns together
with the algorithm for generalization. Then, the proposed solution was sup-
ported by experiments presenting reliability of the algorithm.

The generalization of context patterns is the process of providing smaller
sets of patterns accurately representing frequent information from the context
database. The generalized context patterns can be obtained by clustering per-
formed on the set of context patterns. In the proposed method clusters of mu-
tually similar context patterns are compacted to generalized context patterns.
After this process all associated context values are stored in sets accessible
through some presentation functions defined for particular application.

The experiments showed that the accuracy of generalized context patterns
was better than of the basic method with prediscretization. However, it was
worse than that of the unmodified context patterns (not generalized). The con-
text method may be particularly useful if an accurate method for some continu-
ous attribute values describing elements or sequences in the sequences database
is required. Mined patterns are usually used as source for subsequent process-
ing or for data explanation. Success of many real-life applications related, e.g.,
to medicine, chemistry or mechanics depends on the accuracy of the processed
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data. The context based sequential pattern mining is immune to prediscretiza-
tion errors, delivering more accurate context patterns than the basic approach
with prediscretization. Thus, it may be a better choice for some applications
than the basic approach.

References

Agrawal, R. and Srikant, R. (1995) Mining sequential patterns. Proceed-

ings of the 11th International Conference on Data Engineering. IEEE
Computer Society, 3–14.

Guha, S., Rastogi, R. and Shim, K. (2000) ROCK: A Robust Clustering
Algorithm for Categorical Attributes. Information Systems, 25, 345–366.

Han, J., Pei, J., Mortazavi-Asl,B., Chen,Q., Dayal,U. and Hsu,M.-C.
(2001) PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-
Projected Pattern Growth. Proceedings of the 17th International Con-

ference on Data Engineering, IEEE Computer Society, 215–224.
Morzy,T.,Wojciechowski,M. and Zakrzewicz,M. (1999)Pattern-Orien-

ted Hierarchical Clustering. Proceedings of the third East-European Sym-

posium on Advances in Databases and Information Systems – ADBIS’99,
Slovenia, LNCS 1691, 179–190.

Ng, R.T. and Han, J. (2002) CLARANS: A Method for Clustering Objects
for Spatial Data Mining. IEEE Transactions on Knowledge and Data

Engineering, 14, 1003–1016.
Pilevar, A.H. and Sukumar, M. (2005) GCHL: A grid-clustering algorithm

for high-dimensional very large spatial data bases. Pattern Recognition

Letters, 26, 999–1010.
Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q.

and Dayal, U. (2001) Multi-dimensional sequential pattern mining. Pro-

ceedings of the 10th International Conference on Information and Knowl-

edge Management, ACM, 81–88.
Plantevit, M., Choong, Y., Laurent, A., Laurent, D. and Teisseire,

M. (2005) M2SP: Mining Sequential Patterns Among Several Dimensions.
LNAI 3721, Springer, 205–216.

Plantevit,M., Laurent,A. and Teisseire, M. (2008) Up and Down: Min-
ing Multidimensional Sequential Patterns Using Hierarchies. Data Ware-

housing and Knowledge Discovery. LNCS 5182, Springer, 156–165.
Srikant, R. and Agrawal, R. (1996) Mining Sequential Patterns: Gener-

alizations and Performance Improvements. Proceedings of the 5th In-

ternational Conference on Extending Database Technology: Advances in

Database Technology, LNCS 1057, Springer-Verlag, 3–17.
Stefanowski, J. and Ziembiński, R. (2005) Mining Context Based Sequen-

tial Patterns. Proceedings of the 3rd International Atlantic Web Intelli-

gence Conference: Advances in Web Intelligence, LNCS 3528, Springer,
401–407.



Accuracy of generalized context patterns in the context based sequential pattern mining 603

Stefanowski, J. and Ziembiński, R. (2009) An Experimental Evaluation of
Two Approaches to Mining Context Based Sequential Patterns. Control

and Cybernetics, 31 (1), 27–45.
Yang, Y., Guan, X. and You, J. (2002) CLOPE: a fast and effective clus-

tering algorithm for transactional data. Proceedings of the 8th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, ACM, 682–687.
Yang, J. and Wang, W. (2003) CLUSEQ: Efficient and Effective Sequence

Clustering. Proceedings of the 19th International Conference on Data En-

gineering, IEEE Press, 101–112.
Ziembiński, R. (2007) Algorithms for Context Based Sequential Pattern Min-

ing. Fundamenta Informaticae, 76 (4), 495–510.




