
Control and Cybernetics

vol. 40 (2011) No. 3

Transaction mechanisms in complex business processes∗†

by

Krzysztof Jankiewicz, Kamil Kujawiński, Mateusz Mor
and Tadeusz Morzy

Poznań University of Technology, Institute of Computing Science
Pl. Marii Skłodowskiej-Curie 5, Poznań, Poland

e-mail: {Krzysztof.Jankiewicz, Tadeusz.Morzy}@cs.put.poznan.pl

Abstract: The importance of systems based on the SOA ar-
chitecture continues to grow. At the same time, in spite of the
existence of many specifications which allow for the coordination of
business processes functioning in the SOA environment, there is still
lack of solutions that allow the use of system mechanisms of trans-
action processing. Such solutions should entail the simplification of
construction of business processes without affecting their capabilit-
ies. This article presents a Transaction Coordinator environment,
designed and implemented as a response to these needs.

Keywords: SOA, transactions, business processes, concurrency
control, atomicity, compensation.

1. Introduction

The introduction of transaction mechanisms to the specification and the execu-
tion of complex business processes in the SOA environment would allow users,
similarly as in the case of database systems and distributed information sys-
tems, to define computations with the use of semantic commands that control
transactions. In systems based on SOA, we deal with asynchronous, complex
and lengthy business processes, where participants (services) are loosely related.
Therefore, in these systems the classic model of flat transactions and nested
transactions, for which the entire transaction is a unit of atomicity, consistency,
isolation, and durability is inadequate and inappropriate. An important prob-
lem is the irreversibility of the execution of certain operations, which is similar
to the irreversibility of the real actions in the databases. For this reason, com-
pensation mechanisms are needed for the irreversible effects of the transaction
or its fragments. Another problem, in the case of business processes in the

∗Submitted: March 2011; Accepted: August 2011.
†The research presented in this article was partially supported by the European Union in

the scope of the European Regional Development Fund (ERDF) program no. POIG.01.03.01-
00-008/08.

606 K. JANKIEWICZ, K. KUJAWIŃSKI, M. MOR, T. MORZY

SOA environment, is the need to define complex, nested structures built out
of many dependent or independent parts, which have various characteristics,
for example concerning the impact of their execution on the final effect of the
whole business process. The lack of mechanisms allowing for the specification
and system support of the above mentioned structures, makes the definition of
complex business processes complicated, and the mistakes made in this phase
expose business processes to faulty execution.

This article comprises a description of the implemented software environ-
ment, named Transaction Coordinator, which allows for the specification and
execution of complex business processes, in which particular fragments can be
executed considering declared properties of transaction processing.

The structure of the article is as follows: Section 2 includes the characteristics
of business processes, in Section 3 existing specifications, which are related to
transaction processing in the SOA environment, and results of their analyses
are shown, Section 4 discusses the architecture and modules of the Transaction
Coordinator, results of conducted tests are presented in Section 5, summary and
directions of future works are given in Section 6.

2. Characteristics of business processes

2.1. The characteristics of business processes in the SOA environ-
ments

While in database management systems the processing model dominates based
on transactions with ACID properties (see Bernstein, 1986), in the SOA en-
vironments the execution of business processes requires more flexible solutions
(see McGovern, 2003). This results from the fact that SOA environments are
based on Web services, which in their nature are loosely related, the duration
of processes can be measured in days or months, and they have a complex de-
finition built on many nested structures with various characteristics. The next
significant difference is the handling of failures. In the case of database man-
agement systems handling of failures, which takes place within the transaction,
usually consists of a series of system operations aimed to return to the state
before the transaction. In business processes actions taken because of a failure
may have a different character. In many cases it is not possible to undertake
system operations – this is because the form of these actions is strongly related
to the place of the failure in the business process. Let us consider the example of
buying goods in an Internet shop; this type of process consists of many stages:
making the order, paying for the order, producing the goods, transporting the
goods to the warehouse, delivering the goods to the customer. From a busi-
ness point of view totally different actions should be taken when the process
fails due to the destruction of goods during the transport to the warehouse (the
goods should be reproduced and transported to the warehouse once again and
the process can be continued) and when the “failure” is caused by the resigna-

Transaction mechanisms in complex business processes 607

tion of the customer when receiving the goods (goods may be placed back in
warehouse). This example shows that on some level of abstraction the system
approach based on transactional mechanisms is inappropriate. This does not
change the fact that mechanisms known for transactions are needed. Let us
imagine a complexity of business process, in which after each step, every in-
voked service, there is a procedure of exception handling, which can appear at
this point. This type of process, from the definition point of view, would be
very complicated. However, most business processes are made up of numerous
complex tasks (sub-processes), based, for example, on invoking a series of Web
services. The extraction of these tasks in the form of transactions, which have
particular properties and in a system manner react to failures, which take place
within them, would allow to simplify the definition of business processes and
allow their creators to concentrate on business issues.

2.2. The transaction model in the SOA environments

Transactions occurring in business processes executed in the SOA environment
have to meet requirements related to the characteristics of business processes.

2.2.1. The complexity of the business process

We assume that the business process may be constructed with many transac-
tions. The effects of each transaction are instantly accessible for other business
processes and in this context the model of the business process corresponds with
sagas model (see Garcia-Molina, 1987). A failure of the business process requires
from the creator of the process to define appropriate actions, which will take
into account the fact that until the failure some of the transactions have been
done and committed. These actions are defined by the creator of the process
(in contrast to system actions), because usually they have a business character.
On the other hand, the creator of the business process does not have to worry
about the actions executed within transactions, which have not been finished
until the failure. Their roll back or compensation is done by the transactional
system mechanisms.

2.2.2. Optional and mandatory components

Every transaction, similarly as a business process, can be constructed with child
transactions. Each child transaction has a property which informs whether its
correct completion is a requirement for the success of the parent transaction.
This allows for a simple definition of mandatory and optional components of the
transaction. Let us consider the parent transaction which has three, sequentially
executed, child transactions responsible for: booking a hotel room, purchasing
a plane ticket and organising taxi to the airport. Because we do not want the
failure of the child transaction connected with organising a taxi to be the reason
for the failure of the whole parent transaction, we can define it as optional.

608 K. JANKIEWICZ, K. KUJAWIŃSKI, M. MOR, T. MORZY

2.2.3. Dependence and independence of components

The next property of child transactions is their dependence or independence
of the final success of the parent transaction. In the case of independent child
transactions, the effects of their finalised actions, do not depend on the success
or failure of the parent transaction. In the case of dependent child transactions,
actions undertaken by them may be rolled back or compensated not only on the
basis of withdrawal of the child transaction, but also as a result of failure of the
parent transaction. Let us once again consider the parent transaction from the
previous paragraph. Let us assume that booking a hotel room and purchasing
of a plane tickets requires a non-returnable payment for the appropriate service.
Therefore, the child transaction, responsible for the fulfillment of the mentioned
payment, positioned before the other child transactions will be independent – it
will not be an object of withdrawal or compensation, even in the case of a failure
of the parent transaction. The remaining child transactions will be dependent.
For example a finished child transaction involving booking a hotel room will be
compensated in the case of a failure of the child transaction, responsible for the
purchase of a plane ticket, which, as mandatory, will cause the withdrawal of
the parent transaction.

2.2.4. Partial rolling back of a transaction

To increase throughput of the system which executes business processes, every
transaction can define savepoints. These allow, in the case of failure, for a
partial rollback (compensation) of completed actions, and then the resuming of
actions, through re-execution of the same actions or the alternative ones. For
example, failure to purchase a plane ticket within the discussed transactions,
can initiate the execution of alternative actions, purchasing a ticket through
other airlines and does not determine an automatic withdrawal of the whole
parent transaction.

3. Existing proposals and solutions

3.1. The current specifications and standards

The problem of transaction processing in systems based on SOA has already
been noticed a few years ago. As a result, a number of protocols and spe-
cifications have been developed, supporting the implementation of transac-
tion processing. Among them are those developed by the OASIS WS-TX
Technical Committee: WS-Coordination version 1.2 (WS-Coor) (see Feingold,
2009), WS-AtomicTransaction version 1.2 (WS-AT) (see Little, 2009) and WS-

BusinessActivity version 1.2 (WS-BA) (see Freund, 2009). In addition, the
issues related to the processing of long-term business processes, which take into
account the need for compensation, have been addressed in the Web Services

Business Process Execution Language (WS-BPEL) (see Alves, 2009).

Transaction mechanisms in complex business processes 609

3.2. Results of analysis

On the basis of analysis of current solutions and specifications we can notice
that each of them has some limitations and must meet a number of conditions.

WS-AtomicTransaction (WS-AT) is a specification that is intended only for
short-lived transactions and is not suitable to coordinate a long-running business
activity. This specification allows for the coordination of services, which must
comply with many features. For example, actions taken by these services prior to
commitment must be tentative, typically they are neither persistent nor made
visible outside the transaction. Only a commitment of a transaction directs
participants to make the tentative actions final; then, these actions may be made
persistent and visible outside the transaction. This specific way of functioning
of participants within a transaction is a serious limitation that cannot be met
in many cases, significantly limiting the possibility of using this specification.

WS-BusinessActivity (WS-BA) is a specification designed for long-running
distributed activities. Similarly to WS-AT, WS-BA is also based on WS-Coor,
therefore in both cases control of the processes is conducted by a coordinator,
and the communication between the particular participants of the activity and
the coordinator is done with defined protocols. Nevertheless, in contrast to the
WS-AT specification, which defines the protocols used in cooperation between
the coordinator and the process initiator, and also between the coordinator and
other participants (Web services), the WS-BA specification defines only the pro-
tocols used for communication between the coordinator and participants of an
activity other than their initiator. This is due to the fact that rules of aborting
or committing business transactions can be very complex and, in accordance
with the intention of the WS-BA specification, they belong to the sphere of
business. This makes implementation of WS-BA generally very complicated.
The creator of a business process must develop his own protocol of cooperation
between the initiator and the coordinator of an activity, as well as appropriate
protocol services for both sides. An alternative solution is total integration of
the coordinator and the initiator of the activity. This, however, leads to mixing
of elements from business (business process definition) and system mechanisms
(coordination of the transaction), which significantly affects the simplicity and
clarity of the process definition. Another difference between WS-AT and WS-

BA is that the latter does not impose restrictions on participant functioning
– actions performed by participants may be immediately persistent and visible
outside the transaction, regardless of how a business process ends. As a result,
a failure of a business process requires appropriate compensation. According
to the WS-BA, the participants of an activity are responsible for the compens-
ating operations. The initiation of a compensating operation is triggered by a
message sent to participants. The compensation rules of WS-BA only allow for
full compensation to be undertaken by all participants or selected ones. There
is no possibility to compensate specific actions.

610 K. JANKIEWICZ, K. KUJAWIŃSKI, M. MOR, T. MORZY

WS-BPEL is a specification of declarative markup language, used to de-
scribe, coordinate and implement complex business processes using Web ser-
vices. The WS-BPEL language allows to define a long-term activity, called
Long-Running Transaction (LRT). Unfortunately, the solutions of WS-BPEL

assume that elements, such as exception handling or invoking compensation ac-
tions, must be prepared by the creator of the business process. Thus, like in
WS-BA specifications, we face a situation in which business components are
mixed with system actions. Moreover, in contrast to the WS-BA specification,
for which compensation is triggered with one simple message, the creator of a
business process expressed in WS-BPEL must invoke appropriate compensation
services. As a result, the definition of properly constructed business processes
is a complex task.

Moreover, it should be noted that in no way does WS-BPEL, as well as
WS-BA, relate to the problems of concurrent execution of multiple business
processes.

The analysis of the specifications listed above leads to the conclusion that
it is appropriate to propose solutions that will significantly support creation of
business processes, separating the business layer from the system actions. This
solution should allow for a proper coordination of business processes at the stage
of acceptance (or rejection), it should provide an opportunity to make a partial
compensation and it should take into account the need for the coordination of
concurrently executed processes. To achieve these goals, we have designed and
implemented the Transaction Coordinator. It allows for:

• application of the control structures within the business process code as-
sociated with the concept of a transaction,

• definition of a transaction operating within SOA environment,

• management of transactions taking into account their declared properties,
• control of concurrent execution of transactions,

• management of a transaction completion.

It should be noted that the problem of transaction management in the SOA en-
vironment has become the subject of analysis of many studies. We can mention
the frequently quoted article by Lieberman (2006), chapters in books concern-
ing SOA architecture (see McGovern, 2003, 2006; Krafzig, 2004), or conference
presentations (see Alrifai, 2006; Choi, 2005; Younas 2006). In these studies the
specification of business processes in service-oriented environments is analysed,
coordination concepts and prototypes of services coordinating transaction pro-
cessing are proposed. Some ideas are very interesting. However, in most studies
only isolated problems of transaction properties are considered. For example,
issues related to the atomicity of transactions or the usage of compensation are
analysed, but omitted are issues related to the concurrent realisation of busi-
ness processes. Furthermore, some authors analyse relatively simple transaction
models, which in our opinion are inadequate for defining complex business pro-
cesses.

Transaction mechanisms in complex business processes 611

Figure 1. The Transaction Coordinator architecture

4. The Transaction Coordinator

The Transaction Coordinator has a modular design presented in Fig. 1. The
Transaction Definition Module helps the end-user to define a business process
using the control structures of transaction processing. The output from the
module is the Transaction Definition File, which is the definition of the BPEL
process, supplemented by transaction processing commands, and other state-
ments related to the business process definition. The task of the Transaction
Manager is the execution of the Transaction Definition File. In particular, the
role of the Transaction Manager can be played by any BPEL server allowing
for interpretation of transaction processing commands. The Transaction Builder
Module operates under the Transaction Manager and performs proper interpret-
ations of the transaction processing commands that are necessary extensions of
the WS-BPEL language. The aim of the Concurrency Control Module is to
manage the concurrent execution of business processes. The Transaction Com-
miter coordinates actions associated with the start of transaction, transaction
committing, compensation of transaction, creating savepoints and compensation
to savepoints. During coordination it takes into account declared properties of
transactions.

The most important system components are described below.

4.1. The Transaction Definition File

As mentioned above, the Transaction Definition File is a definition of the busi-
ness process expressed in BPEL language. This choice was made due to high
popularity of BPEL and the existence of many servers, which allow for the
execution of business processes expressed in that language.

Since the WS-BPEL language does not contain commands for the processing
of transactions, we have proposed some WS-BPEL language extensions. Each of

612 K. JANKIEWICZ, K. KUJAWIŃSKI, M. MOR, T. MORZY

these extensions is a language construction, which can have a different form, de-
pendent on the business process server, which is used. For example, in the case of
Apache ODE 2.0 one can use the available extensions which have the form of in-
sertions placed in the process definition in tags< bpel : extensionActivity>.

To enable the properties, described in Section 2, in the business processes
we have defined the following extensions to BPEL language:

• beginTransaction – the task of this extension is to initiate the transaction,
with declaration, whether the successful execution of the transaction as a
child transaction is necessary for the success of the parent transaction, and
whether the commitment of the transaction is dependent on the parent
transaction commitment.

• preInvoke - the task of this extension is to inform the Transaction Com-
miter about the Web service call, and declare whether the successful ex-
ecution of the Web service call, confirmed at the voting phase of 2PC is
required for the success of the transaction (this is the only extension which
has system and not business meaning).

• savepoint - the purpose of this extension is to create a savepoint, which is
an indicating point within a transaction and allows to make a partial (to
this point) compensation of a business transaction.

• rollback - initiates the compensation (rolling back) of the whole transac-
tion or only of actions taking place after the savepoint declaration.

• commit - its task is to perform commitment and final completion of the
transaction.

Of course, each extension requires implementation of appropriate system ac-
tions. In our solution they are executed by the Transaction Builder Module,
which extends the Transaction Manager.

4.2. The Transaction Definition Module

The task of the Transaction Definition Module is to enable the end-user to define
the business process with the usage of transaction processing commands. After
analysing different possibilities we decided to use the Eclipse platform. It is very
popular at the moment, allowing for the definition of the business process ex-
pressed in BPEL (Eclipse BPEL Designer) and, most importantly, it has good
extension capabilities. The plug-in, which we created, greatly simplifies the
definition of extensions of BPEL language (transaction processing commands)
transforming the editor of BPEL process, functioning within the Eclipse plat-
form, into a Transaction Definition Module. The definition of these extensions
can be performed visually.

4.3. The Transaction Manager

The Transaction Manager is the BPEL server, which performs processes defined
in the WS-BPEL language. In addition to performing actions coming directly

Transaction mechanisms in complex business processes 613

from the WS-BPEL language instructions, due to extensions of the WS-BPEL
language and their implementation, it also cooperates with other modules that
are parts of the Transaction Coordinator, like the Transaction Commiter, for
example. Each extension in the definition of BPEL process, according to their
semantics, triggers appropriate actions which are an implementation of the ex-
tension. Thanks to this it is possible to perform essential additional actions
within the business process, for example actions that control and coordinate
the execution of the process. From the point of view of architecture, extensions
are processed by the Transaction Builder Module. For a better readability of
this article the Transaction Builder Module has been discussed after the intro-
duction of the modules it cooperates with.

4.4. The Transaction Commiter

The Transaction Commiter has been implemented based on WS-Coor. Its task
is the coordination of transaction processing in: activation of the transaction,
registration of savepoints, approval of transaction, partial rolling back of trans-
action, full rolling back of transaction.

From the perspective of WS-Coor, the Transaction Commiter serves as a
coordinator and, therefore, provides the following services:

• Activation service – creates the so called context of coordination, which
serves as a transaction ID for all participants used within the particular in-
stance of transaction executed within the business process. The activation
service, which operates within the Transaction Commiter is requested by
the Transaction Manager, which receives the context of coordination as a
result. The context of coordination is used by the Transaction Commiter
at the registration as a participant of activity. Furthermore, the context
of coordination is passed on (in the headers of messages) to Web services
invoked within transaction, thus they can also register as participants of
the same coordinated activity.

• Register service – The task of this service is to register the participant of
the activity on the basis of his context of coordination. Participants of
the activity may play different roles in the process. For the Transaction
Commiter the active participants are the Transaction Manager, which
executes the Transaction Definition File, and services which are invoked
based on the Transaction Definition File.

In addition, the Transaction Commiter uses protocol services cooperating with
participants in the transaction based on the protocols, described below.

4.5. Protocols of the Transaction Commiter

Within the Transaction Coordinator individual modules work together using
specific protocols. These protocols depend on the type of coordination, which
is set when the context of the coordination is created by the activation service.

614 K. JANKIEWICZ, K. KUJAWIŃSKI, M. MOR, T. MORZY

Inv.Registering Sp.Registering

Aborting

Ended

Completing

Sp.Aborting

Active

SavepointResponse

Savepoint

RegisterInvocation

RegisterInvocationResponse

SavepointAborted

SavepointRollback

Commit

Rollback

Commited

Aborted

Aborted

Coordinator generated Initiator generated

Figure 2. The EnhancedCompletion protocol

In the case of the Transaction Commiter two protocols are used. The first one,
EnhancedCompletion, is used for cooperation between the Transaction Com-
miter and the Transaction Manager, which is the initiator of the activity. The
Enhanced2PC, the second protocol, is used for cooperation between the Trans-
action Commiter and the other participants of the activity – service components
and Transaction Commiters, which coordinate child transactions. Each of the
protocols, its messages, their meaning and a state-chart diagram resulting from
the sent messages, is introduced below.

4.5.1. The EnhancedCompletion protocol

The EnhancedCompletion protocol, whose state-chart diagram is shown in Fig. 2,
is used in communication between the Transaction Coordinator, which con-
trols the execution of transactions, as initiator of the activity, and the Trans-
action Commiter as the coordinator. The EnhancedCompletion protocol is an
extension of the Completion protocol (see Little, 2009) with the messages, that
provide additional functionality. Messages within the EnhancedCompletion pro-
tocol and their meaning are as follows:

• RegisterInvocation – sent by the initiator of the activity. Before every Web
service call the initiator sends an information about it to the Transaction
Commiter – RegisterInvocation message. Based on the information about
the invoked Web service, the coordinator sends a question to the Com-
pensation Repository (described in Section 4.6) about the character and
possible compensation actions for the Web service call. After receiving an
answer the coordinator writes this information in the rollback log and con-
firms to the initiator the receipt and registering of this information using
the RegisterInvocationResponse message. The Transaction Coordinator
can invoke the Web service only after receiving this message.

Transaction mechanisms in complex business processes 615

• RegisterInvocationResponse – sent by the Transaction Commiter as an
answer to the RegisterInvocation message. It confirms the registration of
the Web service call in the rollback log.

• Savepoint – sent by the initiator of the activity, using the Transaction
Commiter to register the appearance of a savepoint within the transaction
in the rollback log. Savepoints allow for making a partial (to this point)
compensation of a transaction.

• SavepointResponse – sent by the Transaction Commiter in reply to the
Savepoint message. Confirms the registration of the savepoint in the roll-
back log.

• SavepointRollback – sent by the initiator of the activity, using the Trans-
action Commiter to initiate the procedure of a partial compensation (roll-
back) of a transaction - to the selected savepoint. The Transaction Com-
miter executes, on the basis of entries in the rollback log, compensation for
those actions, which took place from the entry of the selected savepoint.

• SavepointAborted – sent by the Transaction Commiter to the initiator of
the activity as a confirmation of a partial compensation to the selected
savepoint.

The meaning of the messages: Commit, Commited, Rollback, Aborted is similar
as in the case of the Completion protocol.

4.5.2. Enhanced2PC protocol

The Enhanced2PC protocol, whose state-chart diagram is shown in Fig. 3,
has been based on the 2PC protocol (see Freund, 2009) and is used in com-
munication between the Transaction Commiter, as the coordinator, and the
participants of an activity other than their initiator (Web services and Trans-
action Commiters which coordinate child transactions). Messages within the
Enhanced2PC protocol and their meanings are as follows:

• RegisterCompensation – sent by the participants of an activity, to provide
information to the Transaction Commiter on compensation service related
to a particular Web service call. The Transaction Commiter writes this
information in the rollback log (together with the information about the
Web service call, which was written earlier).

• RegisterCompensationResponse – sent by the Transaction Commiter to
the participant of an activity as a confirmation of the registration of in-
formation about compensation service.

• Commited – sent by the participant informs the Transaction Commiter,
that the participant has committed and forgotten the transaction. Such
a participant may be safely deleted from the memory of the coordinator.
It should be noted that in contrast to the 2PC protocol Commited message
can be sent to the Transaction Commiter, also before the voting phase
of 2PC. For example, this situation occurs in the case of participants
functioning as Transaction Commiters for independent child transactions.

616 K. JANKIEWICZ, K. KUJAWIŃSKI, M. MOR, T. MORZY

Figure 3. The Enhanced2PC protocol

• Aborted – sent by the participant, informs the coordinator that the parti-
cipant has aborted and forgotten the transaction.
Like in the case of the Commited message, Aborted can also be sent to the
Transaction Commiter before the start of the voting phase of 2PC.

The meaning of the messages: Prepare, Prepared, Commit, Rollback, ReadOnly,
Reply is similar as in the case of the 2PC protocol.

4.6. The Compensation Repository

The Compensation Repository, which is part of the Transaction Commiter, has
been implemented as support service. Its task is to extend the functionality of
the Transaction Coordinator with the possibility of using Web services, which
do not cooperate with the Transaction Commiter according to Enhanced2PC

protocol. Web service, together with their compensation generator, can be
registered in the Compensation Repository. Thanks to this the Compensation
Repository can replace the Web service in cooperation with the Transaction
Commiter and on their behalf provide information on compensation actions
corresponding to the particular Web service call.

The role of the Compensation Repository can be performed by other, ex-
ternal and independent from the Transaction Commiter, registries of Web ser-
vices, if they have the required functionality.

4.7. Concurrency control mechanism

Within the Transaction Coordinator a concurrency control mechanism has been
implemented. It is based on the Concurrency Control Module and Local Con-
sistency Managers, which have been designed and implemented in the framework

Transaction mechanisms in complex business processes 617

of our approach. It should be noted that the solution we have used was signi-
ficantly inspired by the idea presented in Alrifai (2006). The most important
features of this solution are: using an optimistic approach, in which the veri-
fication of the correctness of the transaction occurs during the commitment of
transaction, involvement of service providers, using WS-Coor specification, and
also preserving security of information about business processes. The optimistic
approach is preferred in cases of processing of long-term business processes, in
which, apart from tasks executed automatically, there are tasks that need the
reaction of the end-user. Furthermore, this approach works well in situations
when the resources used in the process can not be fully controlled by the pro-
cess, and that is the case in Web-services based environments (see Krafzig, 2004).
Service providers, in this solution, which is based on the WS-Coor specification,
play the role of participants in the coordinated activity. Their role is to main-
tain compatibility matrix of provided services, registration of their usage by
the particular transactions, updating of precedence graph and cooperation with
the coordinator (Concurrency Control Module) during committing of transac-
tion. The task of the service providers is not to allow to commit transaction
when active preceding transactions still exist, or they were rolled back. Using
service providers for the above purposes is reasonable, because they have the
best knowledge about provided Web services and the relations between them.
Another feature of our solution is preserving security of information about busi-
ness processes. Many Web services are usually used by business processes, often
belonging to more than one service provider. Information exchanged between
the process and the Web service can be important for the organisation, within
which the process is executed, therefore they can be confidential. Information
sent between the business process and the Web service can not be passed on
to others and this does not only concern the message content, but also, for ex-
ample, the use of a Web service by the process. As the main idea of our solution
is available in Alrifai (2006), only the modules used in our implementation of
concurrency control mechanism have been briefly characterised below.

The Concurrency Control Module – from the point of view of the WS-

Coor specification it plays the role of the coordinator, similarly as the
Transaction Commiter. The difference lies in the nature of this role. The
Concurrency Control Module is responsible for the coordination of busi-
ness processes within the concurrency control domain.

The Transaction Manager – the business process server, together with the
Transaction Builder Module (which supports BPEL extensions). It is
responsible for the creation of the context of coordination for the transac-
tion which requires it, registering as one of the participants of an activity,
passing on the context of coordination to invoked Web services and com-
municating with the coordinator according to the established protocol.
The mentioned actions result from the concurrency control mechanism of
concurrent realisations of business processes.

618 K. JANKIEWICZ, K. KUJAWIŃSKI, M. MOR, T. MORZY

The Local Consistency Manager – from the point of view of the WS-Coor

specification it is a participant of an activity. On the side of each service
provider, which provides Web services that are in conflict with each other,
a single instance of the Local Consistency Manager is installed. There
is also the compatibility matrix, which is used by the Local Consistency
Manager during detection of conflict of service calls. When the Web ser-
vice is requested, for the particular transactions, the Local Consistency
Manager updates the local precedence graph, on the basis of the com-
patibility matrix. When a commitment of transaction is performed, the
Local Consistency Manager cooperates with the coordinator to ensure the
correct execution of business processes.

4.8. Transaction Builder Module

The Transaction Coordinator, which has a modular design, uses two modules,
which act as the coordinators, from the perspective of the WS-Coor specifica-
tion – Transaction Commiter and Concurrency Control Module. Both modules
coordinate the same transactions. Each of them has a clearly defined goal.
The Transaction Commiter ensures the fulfilling of declared properties of the
transactions (optionality, dependency), compensates transactions, and also co-
operates with the participants of an activity during commitment of transaction.
The Concurrency Control Module ensures consistent realisation of concurrent
transactions. Each of these modules can work separately, ensuring the appro-
priate properties of transactions. However, if both modules operate within one
environment of the Transaction Coordinator, cooperation is needed. All the
messages that initiate the next phases of transaction processing are sent by the
Transaction Builder Module (which operates under the Transaction Manager),
conform to the EnhancedCompletion and TransactionFinalizationProtocol pro-
tocols, which interprets the extensions of BPEL language found in the Transac-
tion Definition File, and according to their semantics takes appropriate actions.
The Transaction Builder Module is a participant of an activity (on behalf of the
Transaction Manager) both for the Transaction Commiter and the Concurrency
Control Module. Therefore, in a natural way, cooperation between the coordin-
ator modules occurs with its mediation. The solution is reasonable, because the
Transaction Builder Module, basing on the definition of transaction knows what
coordination mechanisms in the specific cases are needed.

The Transaction Builder Module is responsible for the execution of five trans-
action processing commands (extensions of BPEL): beginTransaction, preInvoke,
commit, rollback and savepoint, which can be placed in the definition of the busi-
ness process (the Transaction Definition File). A detailed description of the use
of these commands, in a situation when both coordination modules are being
used, is presented in Jankiewicz (2010).

Transaction mechanisms in complex business processes 619

5. Research scenarios

After the implementation of the Transaction Coordinator, functional and per-
formance tests were conducted. Their goal was to confirm the accuracy of
assumptions, correctness of the project and finally the stability and correctness
of implementation. They were related to two basic issues: complexity of busi-
ness processes, and concurrent control of business processes. They included,
among others, the following functional scenarios: verification of the correctness
of execution of complex business processes (F.1 scenario), verification of the
correctness of concurrent execution of business processes (F.2), verification of
the correctness of cooperation between the coordinator modules (F.3). Further-
more, they included one of the following performance scenarios: the impact of
coordination mechanisms on the system throughput, particularly with the use
of nested transactions (W.1), the impact of the use of complex business process
model on system throughput (W.2), the impact of the use of concurrent control
mechanisms of execution of business processes on system throughput (W.3).

These test scenarios were performed, a and their results confirmed the cor-
rectness of the Transaction Coordinator. Due to limited space, the results of
two performance scenarios, W.1 and W.2, are described in detail.

5.1. The impact of coordination on the system throughput (W.1)

The processing of any business process, which uses the control commands, asso-
ciated with transaction processing, leads to the need of execution of appropriate
actions. These actions include cooperation of the Transaction Manager with
modules acting as coordinators. Each coordination introduces an additional
overhead. In our case this is mainly related to the messages exchanged during
coordination.

Within the scenario analysing the impact of coordination mechanisms on
system throughput the time of realisation of business processes was examined.
Business processes differed in the way of using and the number of transactions.
Each business process consisted of 10 Web service calls. The following types of
business processes were examined:

• business processes that did not use transactions, they were not coordinated
at all and therefore they acted as a reference point,

• business processes that used only parent transactions (between 1 and 5
parent transactions),

• business processes that used multilevel transactions (2, 3 levels).

In the results presented the following types of business processes were taken
into account:

(0) – business process that does not use transactions and therefore does not
introduce any overhead of coordination, with 10 requests of two different
Web services,

620 K. JANKIEWICZ, K. KUJAWIŃSKI, M. MOR, T. MORZY

(1) – business process with one transaction, which has 10 requests of two dif-
ferent Web services,

(2) – business process with two transactions, each transaction including 5 re-
quests of two different Web services,

(3) – business process with three transactions, the two first transactions had
3 requests of two different Web services, the last had 4 requests of two
different Web services,

(5) – business process with five transactions, each of the transactions had 2
requests of two different Web services,

(2(1)) – business process with two parent transactions, each of the parent
transactions had 2 requests of two different Web services and one child
transaction, each of the child transactions had 3 requests of two different
Web services,

(1(2(1))) – business process with a one parent transaction, the parent trans-
action had 2 requests of two different Web services and two the first level
child transactions, each of the first level child transactions had 2 requests
of two different Web services and one the second level child transaction,
each second level child transaction had 2 requests of two different Web
services.

In the tests the response time of the Web services was changed, simulating delays
resulting from the nature of the business process. The coordination included
both the Transaction Commiter and the Concurrency Control Module.

As expected, the overhead, associated with the coordination, depends on
the way the transaction is used by the business process. Taking into account
that each of the examined processes had the same number of Web service calls,
the overhead did not depend on other factors. Tests showed that the overhead
associated with coordination is constant for particular types of processes and
does not depend on the response time of Web services. The average coordination
time for the particular types of processes is shown in Table 1.

Table 1. The average coordination time for the particular types of processes

Process type The average time of
coordination (sec.)

Number of sent
messages

(0) 0.0 22
(1) 2.8 110
(2) 4.1 134
(3) 5.5 160
(5) 8.6 212

(2(1)) 4.6 198
(1(2(1))) 3.6 236

Transaction mechanisms in complex business processes 621

0 %

20 %

40 %

60 %

80 %

100 %

 0 2 4 6 8 10

O
v
e
rh

e
a
d
 i
n
 %

Service response time (sec.)

0

(1)

(2)

(3)

(5)

(2(1))

(1(2(1)))

Figure 4. Percentage overhead of coordination

When we evaluate the average coordination times it should not be forgotten
that the Transaction Coordinator is intended for the execution of business pro-
cesses, which by their nature are long-running. The graph in Fig. 4 in a clear
way reflects the real business nature of the impact of coordination mechanisms
on system throughput. In the case of process (5) the overhead associated with
the coordination falls below 10% of the execution time, at the response time of
Web services around 7 seconds. This leads to the conclusion that from a business
point of view the impact of coordination mechanisms on the system throughput
does not really matter, if we consider the execution of process, whose duration
is measured in days or weeks.

5.2. The impact of the use of a complex business process model on
system throughput (W.2)

When business processes have optional components, their failure does not affect
the result of the process or the parent component. This gives increased chances
of success of the business process. Introduction of a complex business process
model to the Transaction Coordinator enabled in a declarative way to specify
optional components in the form of optional child transactions. We wanted to
check in what degree the use of optional child transactions will increase system
throughput, assuming that some of the child transactions may fail.

Within the scenario we examined a series of 10 business processes, each
business process having five parent transactions. Each parent transaction had
two independent Web service calls and five child transactions with two Web
service calls. To create this series of processes we used business process generator
specifically created for this purpose. It allowed for parameterisation of the
probability of success of the child transaction and the probability that the child

622 K. JANKIEWICZ, K. KUJAWIŃSKI, M. MOR, T. MORZY

0 %

20 %

40 %

60 %

80 %

100 %

120 %

 80 82 84 86 88 90 92 94 96 98

T
h

e
 i
n

c
re

a
s
e

 i
n

 t
h

e
 n

u
m

b
e

r
o

f
s
u

c
c
e

s
s
fu

l
p

a
re

n
t
tr

a
n

s
a

c
ti
o

n
s

The probability of success of child transaction

20% probab. of mand. trans.

40% probab. of mand. trans.

60% probab. of mand. trans.

80% probab. of mand. trans.

100% probab. of mand. trans.

Figure 5. The increase in the number of successful parent transactions

transaction will be optional. We have examined the following measures:

• the number of successful transactions,

• the number of failed transactions,

• the number of successful processes,

• the number of Web service calls,

• the number of compensations.

Some of the results are shown in Figs. 5 and 6.

Even partial use of optional child transactions increases the chances of suc-
cess of the parent transactions, and so of business processes. Fig. 5 shows the
percentage increase of successful transactions in relation to a series of business
processes no using optional child transactions. For example, for a series of
business processes that used 60% of optional child transactions and probability
of success of the child transaction reached 80%, the number of successful par-
ent transactions was greater by 51% compared to the series in which all child
transactions were mandatory.

Each failure of the parent transaction forces the compensation of Web ser-
vices requested within that transaction and also those Web services, which were
requested within all the dependent child transactions. Each compensation is
an additional system load, which compensates the effects of earlier actions, also
entailing some load. The effect of the compensation is therefore overall decrease
of system performance. Fig. 6 shows the number of compensations depending
on the probability of success of the child transaction for different probability
of the use of mandatory child transactions. For a series of business processes

Transaction mechanisms in complex business processes 623

 0

 50

 100

 150

 200

 250

 80 82 84 86 88 90 92 94 96 98

T
h

e
 n

u
m

b
e

r
o

f
c
o

m
p

e
n

s
a

ti
o

n
s

The probability of success of child transaction

20% probab. of mand. trans.

40% probab. of mand. trans.

60% probab. of mand. trans.

80% probab. of mand. trans.

100% probab. of mand. trans.

Figure 6. The number of compensations

using only mandatory child transactions with success probability of the child
transaction at 80%, the number of necessary compensations was on average 231.
Therefore, because each parent transaction had two Web service calls, and every
child transaction also had two, there were 600 Web service calls in a series of ten
business processes. This gives more than 38% of compensated calls. If the use
of mandatory child transactions was limited to 60%, then for 80% probability
of success of the child transaction the number of compensations will be limited
by 18%, to 197.

Hence, the use of optional child transaction increases in system throughput.
Of course, the optional parts of the business processes can be designed without
transactions, and without the Transaction Coordinator. However, this requires a
large programming effort and leads to a situation in which the system elements
of the business process interweaves with the business elements. Our solution
requires only appropriate declarations within the definition of business process
extensions.

6. The summary and directions for further work

The article introduces the Transaction Coordinator environment. The goal of
the Transaction Coordinator is to simplify the definition phase of even very
complex business processes and to enable the use of commands in control of
transaction processing. These commands separate system actions, taken by the
environment automatically on the basis of the declared properties of individual
transactions from business actions, defined by the creator of the process. During

624 K. JANKIEWICZ, K. KUJAWIŃSKI, M. MOR, T. MORZY

the work on the Transaction Coordinator its architecture was developed as well
as protocols for communication between different modules. In addition, all
the planned modules where implemented, and, to confirm the correctness of
assumptions, a series of experiments were conducted. It should be noted that the
objectives of the project have been achieved. This was confirmed by numerous
tests based both on functional and performance research scenarios.

Further research on the Transaction Coordinator will be conducted in two
directions. First, we will develop mechanisms to detect deadlock, involving
more than one service provider. Although in Alrifai (2006) a solution has been
proposed, but it works properly only for simple and special cases. In addition,
the operational version of the Transaction Coordinator will be prepared, to be
used in real applications.

References

Alrifai, M., Dolog, P. and Nejdl, W. (2006) Transactions Concurrency
Control in Web Service Environment. ECOWS ’06: Proceedings of the

European Conference on Web Services. IEEE Computer Society, 109–118.
Alves,A. et al. (2009) Web Services Business Process Execution Language. O-

ASIS Standard, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
Bernstein, P.A., Hadzilacos, V. and Goodman, N. (1986) Concurrency

Control and Recovery in Database Systems. Addison-Wesley Longman
Publishing Co., Inc. Boston.

Choi, S. et al. (2005) Maintaining Consistency Under Isolation Relaxation of
Web Services Transactions. WISE, LNCS 3806, Springer, 245–257.

Feingold, M. and Jeyaraman, R. (2009) OASIS Web Services Coordina-

tion Version 1.2. OASIS Standard, http://docs.oasis-open.org/ws-tx/
wscoor/2006/06

Freund, T. and Little, M. (2009) OASIS Web Services Business Activity

Version 1.2. OASIS Standard, http://docs.oasis-open.org/ws-tx/wsba/
2006/06

Garcia-Molina, H. and Salem, K. (1987) Sagas. ACM SIGMOD Record,
16 (3), 249–259.

Jankiewicz, K., Kujawiński, K., Mor, M. and Morzy, T. (2010) Mecha-

nizmy transakcyjności w kompozycji usług w złożone procesy biznesowe

(in Polish). Technical report. TR-ITSOA-OB2-5-PR-10-01. Institute of
Computing Science, Poznań University of Technology.

Krafzig, D., Banke, K. and Slama, D. (2004) Enterprise SOA: Service-

Oriented Architecture Best Practices. Prentice Hall, The Coad Series,
Upper Saddle River, NJ, USA.

Lieberman, B. (2006) SOA transaction management. IBM developerWorks.
Little, M. and Wilkinson, A. (2009) OASIS Web Services Atomic Trans-

action Version 1.2. OASIS Standard, http://docs.oasis-open.org/ws-tx/
wsat/2006/06

Transaction mechanisms in complex business processes 625

McGovern, J., Sims, O., Jain, A. and Little, M. (2006) Enterprise Ser-

vice Oriented Architectures: Concepts, Challenges, Recommendations.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

McGovern, J., Tyagi, S., Stevens, M. and Mathew, S. (2003) Java Web

Services Architecture. Morgan Kaufmann.
Younas, M., Li, Y., Lo, C.-C. and Li, Y. (2006) An Efficient Transaction

Commit Protocol for Composite Web Services. AINA 2006: Proc. of the

20th International Conference on Advanced Networking and Applications.
IEEE Computer Society, 591–596.

