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Abstract: Detection of concept changes in incremental learn-
ing from data streams and classifier adaptation is studied in this
paper. It is often assumed that all processed learning examples are
always labeled, i.e. the class label is available for each example. As
it may be difficult to satisfy this assumption in practice, in partic-
ular in case of data streams, we introduce an approach that detects
concept drift in unlabeled data and retrains the classifier using a lim-
ited number of additionally labeled examples. The usefulness of this
partly supervised approach is evaluated in the experimental study
with the Enron data. This real life data set concerns classification
of user’s emails to multiple folders. Firstly, we show that the En-
ron data are characterized by frequent sudden changes of concepts.
We also demonstrate that our approach can precisely detect these
changes. Results of the next comparative study demonstrate that
our approach leads to the classification accuracy comparable to two
fully supervised methods: the periodic retraining of the classifier
based on windowing and the trigger approach with the DDM super-
vised drift detection. However, our approach reduces the number
of examples to be labeled. Furthermore, it requires less updates of
retraining classifiers than windowing.

Keywords: concept drift, incremental learning of classifiers,
email foldering, Enron data.

1. Introduction

Development of computer technology enables automatic gathering and storing
huge volumes of data. Looking for novel, interesting and useful knowledge rep-
resentation in these data is the aim of data mining which has been intensively
developing since the 1990s (Klosgen and Zytkow, 2002). Most of previous and
current research on data mining is devoted to static environments, where data

∗Submitted: March 2011; Accepted: August 2011.



668 M.R. KMIECIAK, J. STEFANOWSKI

are stored in data warehouses or other special repositories and can be accessed
several times, if needed, by algorithms. Furthermore, knowledge patterns, hid-
den in data, are rather of fixed, static nature.

However, a new class of emerging applications recently becomes more visible
where data are continuously generated at a high rate in a form of data streams.
A data stream is an ordered (either by arrival time or by timestamp) sequence
of instances coming from dynamic and time changing environments (Gama and
Gaber, 2007). Data stream applications often described in the literature include:
performance measurements in networks, monitoring and traffic management, se-
curity, management of call records in telecommunications, analysis of log records
generated by web servers, sensor networks.

Data streams are characterized by huge volumes of records (possibly infi-
nite), arrival at a rapid rate, fast changes and frequent need for quick, real-time
response or analysis. This implies new requirements for data mining algorithms
such as constraints on the volume of memory used by algorithms, small pro-
cessing time per record, single scan of incoming data and ability to handle time
changing phenomena (for more details see, e.g., Domingos and Hulten, 2000;
Gama, 2010). Most of well known data mining and previous machine learn-
ing approaches ignore the data stream characteristic and these requirements.
Therefore, one can observe a growing research interest in new approaches to
learn from evolving data streams.

In this paper we focus our attention on supervised classification learning,
which is one of the most popular tasks in data mining, machine learning or
pattern recognition (Bishop, 2007; Han and Kamber, 2006; Mitchell, 1997). It is
typically defined as discovering from data (learning examples) knowledge about
assigning objects, described by a fixed set of attributes, to one of the pre-defined
classes. A large number of methods have already been proposed to construct
accurate classifiers from static data. However, they fail to efficiently learn from
evolving data. This is partly justified by the data characteristics mentioned
above, but also by yet another distinctive feature of classification from evolving
data – concept drift. Concept drift implies that class label of incoming examples
may change over time, novel classes may appear in the stream, and previous
class definitions may become no longer valid.

Typical literature examples of concept drifts are weather predictions (that
vary with seasons), financial analysis of frauds where the source of concept
drift is the evolving users’ behavior, or customers’ buying preferences depend-
ing on the so called hidden context not given explicitly in the available attribute
descriptions. Other real life examples coming from monitoring systems, trans-
portation systems, spam or text filtering, economics or biomedicine, analysing
behaviour of user’s visiting web services, managing company relations with cus-
tomers, monitoring social networks are discussed in Gama and Gaber (2007),
Gama (2010), Zliobaite (2009).

Let us repeat after Tsymbal (2004) that as the reason of changes is hid-
den, not known a priori and not predictable with confidence, the learning task
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becomes very difficult. We can also refer to typical assumptions of learning algo-
rithm where examples are described by a finite set of attributes. In evolving data
this assumption is violated as the context of the problem changes, which means
that some hidden variables (hidden for the learning algorithm) may change over
time (Widmer and Kubat, 1996). As a result, target classes learned at one time
moment can become inadequate in some new moments.

Another issue of changes is related to their rate. Usually two kinds of changes
are studied in literature (see Gama, 2010; Kuncheva, 2004; Tsymbal, 2004; and
Zliobaite, 2009) or sudden concept drifts. The former is associated with slower
changes in the target concepts (e.g. changes in prices of some food), while the
sudden concept drift refers to abrupt changes (i.e. novel classes may appear
rapidly in incoming stream of examples).

Let us clearly stress that in our study we are particularly interested in sud-
den concept drift, whereas computational requirements, typical for huge data
streams, are not the main aim of our study.

To illustrate the importance of detecting novel classes let us refer to the
problem of network intrusion detection discussed in Woolam et al. (2009). The
detection of unwanted computer access (attack or suspicious behavior) is of
crucial importance in any real monitoring system. In this problem the source of
the concept drift is mainly linked to the attackers, as the actions undertaken by
them usually evolve with time, so as to take the computer security software by
surprise. In particular, when a new kind of intrusion occurs, the system should
not only be able to identify that it is an intrusion, but also that it is a new
type of attack, to find a proper defense action against it or at least to alarm in
advance the human experts as they need to analyze logs more intensively.

Although there exists some earlier research on incremental learning (see, e.g.,
Hulten et al., 2001; Kubat, 1989; Schlimmer and Granger, 1986), the typical
methods are not efficient in handling concept drift and this decreases the overall
prediction abilities of traditionally constructed classifiers. In particular, this
refers to detecting new classes in the stream. Let us remind that traditional
classifiers can correctly process examples of only these classes, which they have
been trained on. When a new class appears in the stream, its examples will be
misclassified. Moreover, its presence may make recognition of other classes more
difficult. Therefore, research on new types of specific algorithms for handling
concept drift is still a challenging problem.

In the last decade, learning in the presence of concept drift has been receiving
a growing interest. Sliding window approaches model the process of forgetting
older concepts with consecutive classifier updates. Other proposals include new
online algorithms, special detection techniques or adaptive ensembles. For a
review please refer to Tsymbal (2004), Zliobaite (2009).

Most of the proposed methods make an assumption that incoming learning
examples are always labeled (i.e. true class label is known for each example)
and can be immediately used for learning classifiers. For instance a reader can
consult a newest comprehensive review in Gama (2010) where nearly all pre-



670 M.R. KMIECIAK, J. STEFANOWSKI

sented approaches adapting to concept drift evaluate their performance on the
most recent examples with available class labels. Using machine learning termi-
nology these are completely supervised approaches as in traditional approaches
examples are labeled either manually by human experts or by an outside o-
racle. However, for many data streams applications this assumption may be
unrealistic or impractical, as the class labels of newly coming examples in data
streams are not “immediately” available. Their acquisition is costly and needs
substantial efforts, usually of the human experts (Fan et al., 2004; Woolam et
al., 2009; Masud et al., 2008). In particular cases, it may be impossible to
access true class labels even with a small delay. For instance, in the financial
fraud detection, information on fraud transactions is usually known after a long
delay (e.g. when an account holder receives the monthly report, Fan et al.,
2004). To sum up, in changing environments, when data appear quite quickly,
it may not be possible to label (in particular by a human) all the examples,
as they sequentially arrive. We could rather expect that only a small portion
of data is eventually labeled and available to the learning algorithms, leaving
other parts of data unlabeled. Therefore, in our opinion, more reasonable solu-
tion is to consider semi-supervised approaches to learn classifiers from streams,
where algorithm processes only partially labeled examples in distinction from
the traditional algorithms.

Our proposal of such a semi-supervised learning of concept drift is to generate
an initial classifier, basing on a limited number of labeled training examples,
and to use this classifier to process the upcoming stream of unlabeled examples,
while simultaneously detecting possible concept drift. Whena change is detected,
a relatively limited number of class labels of the latest examples are acquired, to
train a new classifier, applied again to classify the subsequent unlabeled examples.

Although our proposal resembles somehow the already known trigger meth-
ods (Zliobaite, 2009), where the change detector starts adaptation of the learner
to data, we stress that these methods are completely supervised (as the most of
well the known methods, DDM, Gama et al., 2004, or EDDM, Baena-Garcia et
al., 2006); on-line detectors are also used in the following ensembles of classifiers,
Nishida, 2008; Deckert, 2011, while change detection in unlabeled examples is
definitely more difficult. It usually requires modeling and estimating specific
probability distribution – for discussion see Kuncheva (2004). However, one
could find a less complicated approach of active mining of data streams (Fan et
al., 2004). The main element of this proposal is to detect changes by estimating
special loss errors made by a tree classifier on the unlabeled examples. Inspired
by this paper, we adapt the idea and model probability distribution of upcom-
ing examples with statistics based on assignments between these examples and
the tree leaves. Our contribution is also a different technique for detecting the
concept drift as a result of discovering an increasing trend of differences between
probability distributions in leaves. Moreover, we use this adapted approach for
detecting the sudden concept drift, which has not been originally considered in
Fan et al. (2004).
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Furthermore, we would like to study experimentally the usefulness of this
approach on a real life problem. A problem, which could be itself a non-trivial
data mining task, with an intuitive meaning. Let us remind that several current
experiments with concept drift methods, also the most related one from Fan et
al. (2004), were carried out with artificial data. The reader could also refer
to experiments with MOA framework, where examples of the most popular
generators of such data sets are shown (Bifet et al., 2009; Bifet and Kirkby,
2009). We consider a case study of folder categorization basing on the Enron
corpora of real email messages (Bekkerman et al., 2004; Klimt and Yang, 2004).

Folder categorization is a problem of classifying a large number of emails into
user-specific mailbox folders. Previous research concerned the most accurate
methods of automatic learning of classifiers with class labels corresponding to
users folders. According to our best knowledge the Enron data sets have not
been explored yet with respect to concept drift. Therefore, preparing such data
sets for experiments is the other aim of our paper.

Besides showing the details of the proposed semi-supervised approach ap-
plied to Enron data, we compare it with two popular fully supervised methods.
First method is based on sliding windows and the other uses the most popular
DDM trigger method (Gama et al., 2004). Besides checking whether the new
approach could lead to comparable classification accuracy, we want to verify
whether it could reliably and precisely detect sudden changes of classes and
quickly enough adapt to them. Particular attention will be also paid to eval-
uating the new approach requirements for labeling examples. Let us remark
that the main motivation of our study is to give up the need for completely
labeled stream of examples (which is a critical assumption of many existing
approaches!). Thus, we will evaluate how much the new approach reduces the
number of examples for labeling comparing to sliding windows.

This paper is organized as follows. The next section presents related work
in concept drift detection, including previous semi-supervised approaches. In
Section 3 we present our framework and detection method details. Section 4
describes the Enron data set and details of preparing it for the experiments are
given in Section 5. The next section contains result of experiments and Section 7
concludes the paper.

2. Related work on concept drift

2.1. Taxonomy of concept drift

In the classification problems in non stationary environments the class distribu-
tion can change over time. In the literature, one can find at least two following
formulations of concept drift. Kuncheva (2004) presents a probabilistic point
of view, where concept drift may occur as a result of changes in one of the
following probabilities: prior probability of classes, class-conditional or poste-
rior probability. On the other hand, Zliobaite (2009) defines concept drift as
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an unforeseen substitution of data source S1 (with an underlying probability
distribution ΠS1

) with another source S1 (with probability distribution ΠS1
).

Two kinds of changes in classes, and hence two kinds of concept drift are
distinguished in the literature: sudden (abrupt) and gradual (Tsymbal, 2004).
The first type includes changes in class distribution – occurring when examples of
a new class appear or examples of the already known class are not longer present
in the stream. It directly influences the classification abilities as once generated
classifier have been trained on different class distribution. The other type of
drift is not so radical, hence the differences in classification of examples can be
noticed by looking over a longer period of time. Let c(x) be the class produced
by the classifier, gradual drift appears if for the same examples x appearing in
two different time moments t1, t2, the inequality ct1(x) 6= ct2(x) holds. Zliobaite
(2009) names it also the incremental (stepwise) drift. As in this paper we do
not discuss drift types completely, reader is referred to Tsymbal (2004), Widmer
and Kubat (1996), Zliobaite (2009) for more information on class label swaps,
changes in underlying data distributions and reoccurring concepts.

2.2. Basic methods

Several techniques for handling concept drift have been proposed. Following the
taxonomy from Tsymbal (2004) we can name three groups of approaches based
on: example selection, weighting of examples or adaptive ensembles. Slightly
different taxonomies are also presented in Kuncheva (2004). Moreover, one can
also distinguish methods according to two aspects: when to adapt the classifier
(spreading methods from triggers to evolving ensembles) and how to adapt
to concept drift (which distinguishes mainly between example selection and
parameterization of the base learning algorithm), Zliobaite (2009). Finally, a
key issue while handling concept drift is to identify minor fluctuations as noise.

Here, we focus mainly on example selection and triggers, as they will be used
in our experiments. The most common technique for selecting examples is based
on periodic forgetting of the older data and using the newest of incoming examples
to retrain the classifier. The simplest strategy is a sliding window that moves over
arriving examples – only arriving data is included in the current window (see the
family of FLORA algorithms from Widmer and Kubat, 1996). Some techniques
use windows of fixed size which involve a problem of choosing a proper size (larger
size is more useful for slower concept drift, failing whenever drift suddenly occurs).
Other adaptive solutions to non–fixed windowing, mostly based on heuristic ad-
justments of thewindow size,were also proposed. Similar technique, also common
in the adaptive ensembles, is to divide data into non overlapping blocks (so called
data chunks) and consider updating classifiers (re-calculating weights of classifies
in the ensemble, removing tooweak components or learningnew ones) when a new
block is available. Examples of such block based ensembles are AWE or AUE,
see Brzezinski and Stefanowski (2010) for their characteristics. For a review of
many approaches, see, e.g., Gama (2010), Tsymbal (2004), Zliobaite (2009).
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Let us notice that the above described approaches do not detect concept
drift directly, but rather adapt to it mainly as a result of the window based
example selection, or the consecutive classifier updates. Completely different
approaches, called triggers, are based on direct detection of changes in data
(Zliobaite, 2009). When drift is detected, then the classifier update should be
triggered. A well known example of such trigger is the drift detection method,
DDM, proposed by Gama et al. (2004), which controls the number of errors
made by the classifier while processing the incoming examples. A significant
increase of the error statistic, exceeding the predefined threshold, indicates that
the class distribution is changing and the current classifier is inappropriate.
Discussion of other proposals of direct detection methods, like EDDM (Baena-
Garcia et al., 2006), and their experimental evaluation is presented in Bifet et
al. (2009). However, let us stress that these methods also require access to the
labeled stream of examples.

2.3. Unlabeled data and semi-supervised approaches

Full access to labels for fast arriving examples in the stream is questioned in
the literature. This leads either to processing completely unlabeled data or to
semi-supervised paradigms, where only a small fraction of training examples is
labeled. Then, the learning algorithm benefits from generalizing only a limited
number of labeled examples, while processing the incoming stream of unlabeled
examples.

Generally speaking, tracking concept drift from unlabeled data could be
based on monitoring distributions over two different time-windows. A reference
window that should summarize some past information and a window over the
most recent examples. Kifer et al. (2004) proposed statistical techniques or
tests based on Chernoff bound to examine samples taken from these windows
and decide whether two probability distributions are different. More details on
comparing two distributions are given in Gama (2010).

Kuncheva (2004) discusses the methods for signaling concept drift from un-
labeled data, which are mainly based on monitoring probability distribution. It
is similar to the novelty detection in data mining. Assuming a certain model,
associated with probability distribution, probabilities for the current object x
are calculated and compared to the model. If the differences between distri-
butions are too high, the new object is not classified, but added to the set of
novel examples. When the number of novel examples reaches a certain level,
system should either stop classifying new objects or the classifier is retrained
basing on a new portion of labeled examples. These approaches require proper
estimation of probabilities. Again, other approaches to novelty detection are
briefly discussed in chapter 9 of Gama (2010).

Klinkenberg and Renz (2998) also draw attention to other indicators of
changes. For instance, when a classifier structure evolves in a new “direction”
(like new rules in rule–based classifier) it may mean concept drifts.
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Woolam et al. (2009) presented a kind of hybrid approach to process both
labeled and unlabeled examples from stream divided into chunks (blocks). First,
they introduced a semi-supervised clustering algorithm to find several clusters
from the partially labeled examples. A summary of the statistics of examples
belonging to each cluster (called a “micro-cluster”) is used as a basis for the
k-nearest neighbor classification algorithm, i.e. a new example is assigned to
the most frequent class on the basis of labeled examples in the nearest micro-
clusters. In order to follow the stream changes, authors propose a strategy of
keeping an ensemble of such k-nn models. Similar approaches to partly labeled
data blocks or detection of novel classes are also considered in Masud et al.
(2008, 2009).

2.4. Demand-driven active mining of data streams

The approach of active mining of data streams from Fan et al. (2004) is most
related to our proposal discussed in this paper due to sharing of motivations
similar to ours that the assumption of mining completely labeled data can be
hardly satisfied in practical situations. Even if it is possible to obtain the true
labeling, it will be available after a certain period of time. Further, in such
a case “it is a common practice to passively wait with refreshing the current
classification model until the labeled data is available”. However, delay between
arrival of real data elements in the stream and providing labels for them might
be quite long, causing the concept drift detection moment to overlook real drift
occurrence.

This issue is addressed by the demand-driven framework proposed in Fan
et al. (2004), as it might benefit from the early monitoring of changes in unla-
beled data with cost saving active selection of informative examples, achieving
the accuracy of well known drift detection methods. The framework can be
summarized in the following three steps:

1. Basing on the unlabeled data, the first guess on possible concept drift is
made. It is done by estimating the loss or error rate for the existing model
that classifies this incoming unlabeled data.

2. When the estimated value exceeds the predefined application-specific thre-
sholds, the algorithm selects the most informative unlabeled examples
forming the query subset for obtaining their true labels. With these labels,
the true error of the classifier is again estimated.

3. If the error estimated in step 2 is verified to be higher than the tolerable
threshold, the old classifier is updated using the trained set (with acquired
labels), constructed in the previous step.

Note that authors of the demand-driven framework proposal clearly state
that they analysed the gradual concept drift1. In our opinion the key point
of this approach is the idea of detecting concept drift by observing changes in

1“In our work we explicitly exclude new class labels (. . . )”, Fan et al. (2004), Section 2.1.
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decision tree, which was used to classify unlabeled examples. More precisely,
it is proposed to analyse how consecutive stream examples are assigned to leaf
nodes, as it allows to approximate the probability distribution of examples with
respect to combination of attributes used in the tree paths. The approximation
can be expressed by observable statistics in the decision tree, e.g. by leaf statistic
described in Section 3. However, Fan et al. (2004) eventually propose to detect
the drift effects on decision trees by means of special loss functions2.

First, the classification error err(l) of each leaf is approximated on the basis
of examples in the stream that are expected to be misclassified, and hence the
estimated overall classification error of the model is formulated as

∑
l err(l).

These values can be subsequently weighted by relative numbers of examples
covered by the particular node. This current weighted overall error is compared
against its reference value formerly calculated at the tree generation moment.
If the difference exceeds the predefined threshold, the concept drift is expected.
In the next step, conforming to the active mining demand-driven framework,
a query subset of limited number of the most informative examples is formed.
Taking this subset of examples, a true class label is queried and attached to
each element. This could be done either by the specific random selection (Fan
et al., 2004) or according to the paradigm of active learning selection of the
most informative examples from the data stream. Huang (2008) proposed to
use a variant of the uncertainty sampling in its heterogeneous form (originally
introduced in (Lewis, 1995)). The active learning system is composed of the
naive Bayes classifier that indicates the most uncertain examples included in the
query set and the additional classifier, labelling all the remaining ones (Lewis,
1995). The main challenge of the selective sampling of examples is to choose
the most informative ones — not only representing the current chunk of data,
but also the subsequent chunks.

3. Our framework for detecting concept drift

Following motivations of direct detection of concept drift from unlabeled data
and inspirations from the active demand driven method of (Fan et al. (2004)
we decided in our approach to adapt their idea of studying changes of data
distribution by the classifier. Thus, our framework consists of the following
steps:

1. Induce an initial classifier (in our case the decision tree) using the first
training set size labeled examples in the incoming data.

2. Apply the most recent classifier to classify succeeding unlabeled examples.
3. Simultaneously, use the detection method to check possible concept drift.

This step consists in modeling of data distribution in the leaves of the tree
and comparing the current situation to the reference distribution. When
concept drift is detected, then perform the following actions:

20-1 loss function refers to the error rate in the statistical learning terminology.
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(a) Construct a new training set containing the training set size number
of examples and get labels for them.

(b) Remove an existing classifier and induce a new one, using the training
set from the previous step.

Let us stress that we need to construct tree classifiers from labeled data –
though they should be learned from relatively small portion of examples com-
paring to the total size of the stream. The parameter training set size of the
latest examples has been evaluated in our experiments, and 100 or 200 examples
seems to be a sufficient number for effective training starting classifier. Then, up
to 100 examples has proved to be sufficient for retraining a tree classifier when
the possible concept drift is detected. Generally speaking, we promote the op-
tion when the training set includes only training set size of the latest examples,
thus limiting stream history and causing classifier to “forget” old concepts and
focus on the new ones only. This is similar to solutions considered in DDM like
methods (Gama, 2010).

Let us also notice that as concept drift detection may be too early identi-
fied, actions in steps 3a and 3b of our framework are delayed for a number of
delay period examples in the incoming stream, in order to reflect sufficiently
the new concept in the classification model.

To detect possible concept drift we decided to observe changes directly in
probability distribution of the unlabeled examples in the stream – which is also
slightly different to Fan et al. (2004). Following inspirations from Fan et al.
(2004) we use a decision tree3 to model probability distribution and we register
the assignments of the incoming examples to particular leaves. The key element
of our approach is just observing changes in the data distribution according to
leaf statistic. This shows how examples occurring in the stream are spread in
the attribute space, according to the current decision tree. The probability P (x)
of the example x can be approximated by the distribution of examples among
the decision tree leafs. Denoting the number of examples covered by the leaf l
by nl, the leaf statistic is given by the formula:

P (l) =
nl

N
, (1)

were N is the number of currently processed examples (i.e. starting from the
moment of training the last classifier) and obviously

∑
l P (l) = 1.

If the combination of attribute values in the current part of the stream
is different than this existing in the reference training set, it will be directly
reflected in P (l). Any significant change of the leaf statistic values may indicate
concept drift. Therefore, we compare the current distribution of P (l) with the
reference value computed on the latest training set. The distance between them
could be calculated in different ways. In the current implementation we used

3Our implementation bases on the J4.8 decision tree algorithm from WEKA framework



Semi – supervised approach to handle sudden concept drift in Enron data 677

the simple L1 norm

dP =

∑
l |P (l)− Pref (l)|

2
. (2)

Let us briefly discuss computational requirements of the presented approach.
One question is the tree size, as for the experiment we used a standard pruned
option of the C4.5 tree (Quinlan, 1993), a polynomial heuristic that has been
successfully applied in many data mining tasks (Han and Kamber, 2006; Klosgen
and Zytkow, 2002; Mitchell, 1997). For the exemplary mann-k-mod dataset and
a sliding window approach of training set size = 200 examples, the tree size
varies from 35 to 79 with leaf number accounting for roughly 50% of that value.
These values are rather small, especially in comparison to attributes space of
3400. Moreover, classification of a new incoming example is cheap, as it traverses
the tree only once from root to a single leaf, passing through a limited number of
attribute tests (see also discussions in Fan et al., 2004). The second interesting
matter is a requirement concerning the number of retraining phases. However,
as we show in further experimental evaluation, in case of the demand driven
detection, it is at least 10 times less than in a simple sliding window technique.

Moreover, our earlier empirical studies (Kmieciak, 2009) show that using a
simple threshold based method for monitoring distance statistic dP as originally
considered in Fan et al. (2004) may be insufficient. Sudden concept drifts (like
emerging new classes) influence statistic locally, causing rather trend changes
than exceeding predefined threshold. Moreover, real life data sets vary in the
sense of thresholds that properly indicate the concept drift moments. There-
fore, our drift detection method analyses the variability of the distance value
dP , monitoring whether this value grows. We propose two options of this ana-
lysis, both basing on the limited horizon of latest δ statistic values4. In the first
approach, we count the number α of values forming the monotonic increasing
sequence of values, i.e. the number of values greater than all previously seen in
the current horizon. In our opinion this step could be modified, relaxing the
monotonic constraint, by observing a number of values greater than maximum
observed in the current horizon. Furthermore, if α/δ ratio exceeds given thresh-
old β = ⌊0.7 ∗ δ⌋, an increasing trend is assumed, as the number of statistic
values that compose a strictly increasing sequence is satisfying. In other words,
distance value dP has been increasing for at least β ∗ δ observations. Another
solution we studied is based on the simple linear regression coefficient estima-
tion, using the least squares method. This approach allows to directly observe
trend slope of the distance statistic, causing drift alarm at a given threshold.
The main issue related to trend slope observation in the real life data, however,
is normalization. Our empirical study shows that alarm threshold may signif-
icantly differ between data sets, and hence needs to be preset experimentally.
We agree that this is a difficult requirement for analysing larger data streams.

4In experiments we tuned δ = 30.
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Let us note, that the described detection method is based on monitoring
incrementally appearing examples so it could improve its quality with growing
number of processed data points. Therefore, step 3 of the framework is enabled
after first γ = ⌊training set size ∗ 0.8⌋ examples appear. This may affect the
overall classification performance, as disabled detection step might miss concept
drift moment. Please refer to Section 6 for the experimental evaluation. Let us
also notice that provided parameter values have been set basing on experiments,
and this issue may be potentially addressed by further study.

4. Folder categorization: a case study of Enron data

As a case study of incremental learning from data stream with sudden concept
drift we chose an email foldering task. This is one of the email classification
problems and consists in assigning the incoming email messages into user de-
fined folders. The foldering task is often referred to in the literature as a folder
categorization. It is one of these text classification problems, which have been
receiving a research interest in the last decades as the machine learning appli-
cations (Bekkerman et al., 2004; Clark et al., 2003; Sebastiani, 2002). However,
it is a different task than definitely more popular identification of unsolicited
emails (spam detection). Here, one is interested in automatic learning to assign,
usually already filtered non-spam messages to user’s multiple folders based on
examples of the previous user’s strategy. Solving such a task could support
users in filtering too many incoming emails and organizing them in a structure
corresponding to different topics of interest (Clark et al., 2003).

The importance of email communication has increased dramatically and
many users are receiving too many emails everyday. Browsing them and an-
swering to the most crucial emails has become increasingly difficult and time
consuming. So, the need to organize emails has grown as well. Modern email
software often provides simple tools for filtering incoming messages, based on
keyword-containment rules specified by users. Manual definition of such rules
and their tuning is rather difficult. So, it is challenging to check whether one can
apply machine learning methods to assign messages into user folders based on
the examples of previous classification decisions (Clark et al., 2003). Of course,
in case of concept drift we do not mean completely automatic tools. We mean,
instead, a semi-automatic philosophy with an interaction between a tool and an
experienced user. In case of detection of some changes or appearance of a new
possible label, the system should inform a user by a kind of warning and asks
for reaction (e.g. checking whether it is necessary to create a new folder, etc.).
Such tools could be learning and working in the spirit of rather active learning
with sending some actions / questions to users.

This problem of folder categorization is still an under-explored research field
compared to spam filtering, press news categorization, etc., see, e.g., discus-
sions in Bekkerman et al. (2004). Note that the nature of email classification is
different from traditional text categorization, which mainly involves quite well
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structured text, as e.g. news or medical articles (Sebastiani, 2002). First of all,
an email message is rather very short compared to a typical text. Then, the
contents of messages (bodies) are poorly structured and are written in an infor-
mal way. There is no standard way of processing them to one format although
several authors showed that besides creating term representation of the body of
the text and also the email subject, it is useful to analyse some other fields from
the header of the message (see discussions in Klimt and Yang, 2004; Stefanowski
and Zienkowicz, 2006). Moreover, a single folder may represent many email dis-
cussion threads which regard the same general subject or they are connected
in some other way. It may be connected with time dependent characteristics
as some email messages (and user’s decision on its assignment to folders) only
make sense in the context of previous ones. However, the similarity between
threads remain not obvious for all threads, especially when one considers the
common terms (keywords in bag-of-words representation) they contain. Let us
also notice that email folders do not necessarily correspond to simple semantic
topics, sometimes they correspond to unfinished projects, groups of various in-
terests, certain recipients or loose agglomerations of topics (Bekkerman et al.,
2004). Email content and foldering habits usually differ from one user to an-
other, so automatic tools should be personalized, as they may perform well for
one user but they may fail for another at the same time.

To sum up, we claim that it is a challenging research problem. Up to, now
research concerned mainly problems of finding proper representations of emails
and studying the predictive abilities of various learning algorithms (see, e.g.,
discussion in Bekkerman et al., 2004). In Section 1 we also explained other
reasons for our choice, mainly coming from temporal nature of an email stream
with respect to time stamps of successive emails and continuous evolution in
assignment of emails to particular folders – users create new folders if a new
topic of messages appears and let other folders fall out of use.

Let us notice that most of empirical studies on folder categorization rely on
the self–gathered data sets very often taken from private mboxes of researchers
or their students (see e.g. Stefanowski and Zienkowicz, 2006). Due to privacy of
personal correspondence such data sets were not made available for public ac-
cess. Several benchmark data sets are publicly available, though, for the classical
text classification, like Reuters news collections. The situation changed when
during investigations on the Enron Corporation scandal the Federal Energy
Regulatory Commission made public the content of mboxes of some employees
from this corporation. This quite large collections of emails was noticed by re-
searchers and became the most known and popular benchmark for classifying
emails. This data was prepared by W. Cohen as a zip file repository containing
150 mailboxes of employees with more than 500,000 messages5. An overview of
the data set structure can be found in Klimt and Yang (2004). For a broader
discussion on related works, see, e.g., reviews in Bekkerman et al. (2004), Klimt

5See at http://www.cs.cmu.edu/˜enron/
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and Yang (2004). Shortly speaking, research focuses now on evaluating the
accuracy of various classifiers created by learning approaches with indication
to näıve Bayes, support vector machines, k-nearest neighbor or boosted deci-
sion trees. Some authors already considered the chronological order of email
messages, however, in the simplest way, splitting each box into two (or a few)
sets: training and testing (Klimt and Yang, 2004). Stefanowski and Szopka
noticed earlier that sliding windows significantly improved classification accu-
racy. However, as they focused on choosing the most accurate classifier and
feature selection they did not analyse more deeply concept drift (Szopka, 2007).
So, there has been no research on handling concept drift in the perspective we
consider in this paper.

5. Pre-processing of Enron data

Similarly as Bekkerman et al. (2004), Klimt and Yang (2004) we state that
the Enron data require preprocessing. This includes selecting the most inte-
resting mboxes according to learning task being studied, here: concept drift.
Moreover, folder content has to be “cleaned” and finally proper attribute-value
representation constructed.

This pre-processing phase is mainly needed to construct new ”benchmark”
data sets for testing various algorithms. Therefore, pre-processing is not a part
of our approach but just an independent task.

5.1. Choosing mailboxes and folders

The available Enron zip file is divided into directories, each corresponding to the
particular employee’s email box and containing messages put into categories-
related subfolders. However, since this structure is taken directly from the
personal email client applications, it contains redundancy, and needs to be pro-
cessed prior to any further analysis. Very often, email boxes from the Enron
dataset contain general folders including note messages or sent/received ones.
As they do not refer to main topic of user’s interests we decided to remove these
folders from consideration.

Another issue is selecting a reasonable number of the message boxes for our
experimental study. After the above mentioned redundant folders were removed,
32 message boxes remained empty, as their owners did not create any additional
folder. Then, we discovered that over 45% of other boxes still contained folders
with less than 6 messages or with the total number of remaining emails smaller
than 54. In some of other boxes, we identified a single folder which highly domi-
nated the rest with respect to the number of messages. As in our experiments we
plan to focus on concept drift, we want to reduce the influence of other difficult
aspects, like imbalance. This choice differs from the one already proposed in the
literature (Bekkerman et al., 2004; Szopka, 2007), where only the largest email
boxes were taken into account. We decided to finally choose seven boxes with
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Table 1. Basic statistics of the selected email boxes.

Name of Folders no. Messages no. Folder size (no. of messages)
data set Minimum Maximum Average

farmer-d 13 2339 23 609 178
germany-c 8 939 31 390 117
lokay-m 7 1291 51 407 184
mann-k 17 1584 20 227 93

mann-k-mod 16 1357 20 186 84
rogers-b 9 877 29 235 97

approximately balanced multiple folders containing the possible high number of
examples. The characteristics of chosen data sets are given in Table 5.1. As
our boxes selection approach differs from the ones found in the literature, we
cannot directly compare ours and the former results.

5.2. Constructing attribute representation

The next step consisted in transforming content of the email messages into an
attribute–value representation suitable for learning classifiers. Although in this
step we base on the whole dataset to select the most valuable attributes, the
stream based nature of the algorithm presented in this paper remains true.

Each email was a text file written in English language including two ma-
jor sections: header containing meta information and body text. Namely, the
following fields of the header were used to describe examples:

Subject the brief summary of the message topic;

From, Replay to
To, CC, Bcc

sender and recipient information parsed to get the
complete email addresses or nicknames and were fur-
ther treated as term-attributes;

Content-Type
and Encoding

parameters describing the format of the message;

Date time and date of email sending, transformed to its
UTC value.

The Date element was not directly used as an attribute, but to chronologically
order arriving data elements into the incremental sequence. No messages in
Enron file contain any attachment files. Moreover, some parts of headers, such
as server route, were not available. Generally speaking, the choice of the above
elements of messages to create the representation of email is consistent with
recommendations from earlier works, see e.g. Bekkerman et al. (2004), Klimt
and Yang (2004), Stefanowski and Zienkowicz (2006), Szopka (2007).
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In the case of header elements containing email addresses, we decided to ap-
ply the indexing technique known from the text document representation. Here,
each term denotes a single email address. This is motivated by the fact that
sender and recipient fields mostly contain a permutation sequence of distinct
email addresses. Hence we tried to obtain the largest benefit from the addi-
tional meta data stored in the header section, which would be lost if sender and
recipient fields were nominal attributes. The other content-type related fields
of the header are considered as nominal attributes.

Note, that including header information into example description complies
with results from Kmieciak (2009), where preliminary experiments were carried
out with attribute space limited only to the body section. Results showed body
section to be inefficient with respect to classification accuracy of J48 tree clas-
sifiers. Thus, information gain brought by the header, i.e. through subject and
recipients, was significant. This observation is consistent also with experimental
studies on other data sets (Stefanowski and Zienkowicz, 2006; Szopka, 2007).

Both subject field and the body of the message were processed as text doc-
uments. During lexical analysis (Baeza-Yates and Ribeiro-Neto, 1999) we chose
terms in the standard vector space model, basing on typical tokenization and
term elimination. The latest consisted in simple removal of terms which ap-
peared only in one document, but also in English stopword list. Finally, term
occurrences were transformed to attribute vectors.

As the number of obtained attributes was still very high, from 6007 to 11875,
we decided to reduce this number. Following some inspirations from literature
(e.g. Yang and Liu, 1999) and our earlier research on processing emails (Ste-
fanowski and Zienkowicz, 2006; Szopka, 2007) we used feature selection method
based on the Gain Ratio measure implemented in WEKA framework and re-
duced them to 3400 for each data set. This number resulted from technical
reasons, considering available memory resources allowing us to sufficiently fast
process data in the WEKA framework. Although this number was still high,
we did not decrease it as in the further experiment we planned to use the de-
cision tree algorithm J4.8, which can select the most important attributes to
the tree. Let us also refer to the earlier study with some of the Enron data
(Szopka, 2007), where other filtering methods, based on combination of Gain
Ratio and χ2 measures was used to get more compact (hundreds of features)
representations.

All the data sets used for this study are publicly available in the form of
arff files from WEKA framework and can be downloaded from http://www.

cs.put.poznan.pl/mkmieciak/enron web page.

6. Experimental evaluation

There are two aims of our experimental studies with Enron data sets:

1. Verification of the sudden concept drift characteristic of the data;
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Figure 1. The time–space diagram of class distribution of the mann-k-mod

dataset, with the message time stamp order increasing from left to right. Five
manually created partitions are marked by shades of the background

2. Comparing our sem-supervised approach against two other popular fully
supervised approaches.

Considering the first aim, we repeat our initial hypothesis that in the folder
categorization we could expect sudden changes in the class distribution in the
stream of incoming messages. It is reasonable to expect new class appearance
when the user creates new folders, as well as when old class’ members are no
longer in the incoming email stream. To verify this hypothesis, we create the
time–spatial diagram visualizing the distribution changes in time. Let us discuss
the diagram of the mann-k-mod dataset (see Fig. 1). All the 16 classes (exist-
ing folders) in this set are marked vertically (we do not provide their labels
for the sake of readability), whereas examples from the same class are plotted
horizontally, from left to right according to the increasing time stamp order.

One can notice that changes of classes does not occur in the gradual fashion
but suddenly. In the Fig. 1 we can identify time periods when the data distri-
bution (and hence the target classes – folders) remain stable and the number of
classes in the current stream is unchanged. This kind of temporal locality recog-
nition seems to be important for the overall classification performance, as it
enables drift resistant mining techniques. For instance, when data distribution
is unchanged, a larger time horizon can be considered, providing more confi-
dent stream processing. In Fig. 1 we marked five partitions of the data stream,
which may comply with the temporal locality of the data. In our opinion this
clearly shows the presence of concept drift in the data, with sudden changes in
the class distributions between the partitions. Time plots of the remaining data
sets show similar characteristic, with at least four local partitions each. A more
detailed presentation thereof is given in Kmieciak (2009).

The moments of the sudden concept drift found in Enron data directly in-
fluence classification of the new examples, as classifiers induced from the passed
data may not able to correctly classify new data. Coming back to Fig. 1,
where we see five local partitions representing five rather different sets of target
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Figure 2. The cumulative classification accuracy plot for the hold out evaluation
scheme applied to the mann-k-mod data set. The training set contains the
k = 200 first examples. Each value of classification accuracy corresponds to the
particular time stamp number of the test example

concepts, let us consider the case when the tree classifier is induced from the
training set size = 200 first examples composing approximately the first par-
tition. Fig. 2 shows classification accuracy of this classifier applied to the next
examples in the stream. The value of this accuracy is updated after classifying
each subsequent example of the stream, and hence it is referred to as a cumu-
lative accuracy measure. We can notice that this value stabilizes after first 50
test examples at time stamp around 250 and remains in the range of 30–35% for
next 150 data points. Then, the accuracy value decreases asymptotically since
time stamp 400. Comparing this result with the time–spatial diagram from
Fig. 1 we can say that the accuracy drop directly maps the crucial moment
of the sudden concept drift and the new temporal locality period. New email
classes obviously cannot be predicted by the current classifier, thus decreasing
the accuracy score. Similar observations have been made for other data; for
more details see Kmieciak (2009).

Our next step is to check whether this sudden concept drift can be efficiently
detected by the drift indicator basing on the leaf statistic distance measure used
in our approach. We compare plot shapes of the leaf statistic values and the
cumulative accuracy measure. Fig. 3 shows relation between these values for
mann-k-mod data set. Again, similar plots are observed for different moments
of the data stream flow as well as for the remaining data sets.



Semi – supervised approach to handle sudden concept drift in Enron data 685

Figure 3. The relation between the cumulative accuracy measure (dashed line),
leaf statistic value (solid line) and the expected error rate (dotted line) in the
context of passing stream examples. The timestamps increase from left to right.
Notice that the values of both indicators belong to [0, 1]

In Fig. 3, at the beginning, a certain number of examples from the processed
stream is needed to stabilize the indicator values. However, later on, it can be
noticed that the leaf statistics indicator does react to the sudden concept drift
observed in the data (the increasing trend of indicator), as it occurs around time
stamp 400. The hyperbolic shape of this indicator seems to be complementary to
the asymptotic cumulative accuracy decrease. For comparison, we also plot the
behavior of the expected error (loss) indicator – originally considered in Huang
(2008). In our opinion the leaf statistic more strongly shows the increasing
trend than the expected error and at least for the considered data sets is a
better indicator of the sudden concept drift.

The second aim of our experiment is to compare our semi-supervised ap-
proach against two different approaches to concept drift handling in the consid-
ered Enron data sets. We use our approach as described in Section 3, with two
options for constructing the training sets. Both compared approaches required
complete labeling of processed examples.

As the first approach, we chose a popular method based on fixed periodic
updates of the classifier without direct detection of concept drift. Let us remark
thatdue to frequent retraining and forgetting of older concepts this method could
effectively adapt to possible changes. We chose it also due to its simplicity and
popularity in the literature. Also here, two options of creating a training set with
labeled examples are considered. We call them landmark window and sliding
window following inspirations from the literature (Gama and Gaber, 2007).
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Figure 4. Comparison of drift detection in DDM (upper part of the figure)
and our approach (lower part). For DDM the relation between the cumulative
accuracy measure (dashed line) and DDM probability indicator (solid line) in
the context of passing stream examples is shown. Similar relation is presented
for our approach, with the solid line representing the change of leaf statistics.
The timestamps increase from left to right. Again, the values of both indicators
belong to [0, 1]
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In the first option the training set is composed of all data between a specific
time stamp called landmark and the present moment (Gama and Gaber, 2007).
As we set landmark at the very beginning of the stream, the induced model
incorporates both the very old and the latest data (it is definitely the most
demanding from computational point of view and may not be realistic in case of
much larger data than Enron). In the second option, the training set includes
only training set size of the latest examples, thus limiting stream history and
causing classifier to “forget” old concepts and focus on the new ones only.

However, unlike the incremental learning approaches to windowing where
the classifier could be updated after reading a single example (see e.g. Widmer
and Kubat, 1996), here we decided to split the stream into equal width blocks
(similar to data chunks) and to learn a new classifier when the examples from
the new block arrive. Thus, in the first landmark option a block of examples
needs to be labeled and then is added to earlier blocks while in the second
option only the latest block of examples is used to retrain the classifier. In our
experiments we decided to fix both the period length and the training set size.

The other chosen approach is the trigger based on DDM drift detection
(Gama et al., 2004). We chose it as the best example of the trigger approaches.
Since DDM requires complete labeling of examples, it potentially approximates
errors more precisely than our detection method, processing unlabeled examples.
In this context we could ask if our approach is able to detect concept drifts as
well as the most popular equivalent supervised trigger approach

Sliding windows and our approach were implemented in Java basing mostly
on the WEKA environment. Leaf statistics were observed using Quinlan’s tree
induction algorithm, J4.8 classifier. DDM was taken from the newest MOA
project (Bifet and Kirkby, 2009)6.

The evaluation scheme for all studied approaches is as follows. Once the tree
classifier is induced from the chosen training set, it classifies the sequentially ar-
riving data points. The cumulative classification accuracy measure is updated
on each single data point, reaching the final value representing the whole evalu-
ation process score. In our opinion, this cumulative evaluation is an appropriate
method for the stream algorithms, enabling both on–line verification and final
summary. Moreover, the method remains consistent with opinions expressed
in Bifet et al. (2009) saying that evaluation methods where the accuracy is in-
crementally updated and some examples are first used to test then to train are
more appropriate for data streams than simple hold-out splits or cross-validation
techniques, which do not take into account sequential appearance of examples,
but are traditionally used in data mining. Besides the cumulative accuracy we
analyze the number of retraining phases, as it directly refers to the expert’s
supervision for labeling examples.

6Available at http://moa.cs.waikato.ac.nz
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The results of comparative experiments are given Tables 2, 3 and 4. The
best classification accuracy is always marked in bold. For windowing approach,
both versions achieve quite similar classification performance. However, better
classification accuracies are obtained for sliding windows with the short period.
We can say that the evolving nature of the stream in the considered Enron
data sets favors more frequent model update, determined by the period length
(block, window size) parameter. Here, the value training set size = 100 exam-
ples seems to be the most adequate. It is somehow consistent with previously
discovered frequent changes of classes in all data sets. On the other hand,
frequent updates result in higher computational cost, as well as require more
explicitly labeled examples. We will discuss this more precisely in the context
of Table 5.

Table 2. Evaluation results of the windowing methods with different lengths of
blocks. The total accuracy values for each data set (email box) are shown (the
first number in range 0–100%), along with the number of retraining phases (the
other number).

Landmark window Sliding window

Training set length: 100 200 300 100 200 300

farmer-d 74.5 23 73.9 11 67.1 7 60.8 23 65.1 11 62.0 7

germany-c 54.2 9 46.9 4 39.0 3 55.3 9 47.0 4 39.4 3

lokay-m 65.2 12 61.8 6 55.9 4 67.6 12 61.7 6 60.5 4

mann-k 45.7 15 39.3 7 35.1 5 45.6 15 40.0 7 36.5 5

mann-k-mod 46.0 13 36.8 6 33.5 4 50.3 13 34.0 6 36.2 4

rogers-b 65.1 8 56.3 4 54.2 2 67.3 8 63.9 4 55.3 2

Table 3. Evaluation results of DDM, for different sizes of the retraining set.
The total accuracy values for each data set are shown, along with the number
of retraining phases.

Extending previous set Limited horizon set

Training set length: 100 200 300 100 200 300

farmer-d 65.3 12 70.3 7 66.5 5 60.6 11 58.2 7 62.6 10

germany-c 51.2 8 47.1 8 47.4 6 47.7 5 43.1 4 42.6 5

lokay-m 61.7 4 56.9 3 64.9 6 62.6 4 59.9 4 63.8 6

mann-k 38.6 8 18.0 3 45.5 7 34.3 8 20.9 6 23.3 4

mann-k-mod 23.1 5 31.0 6 31.6 5 36.3 7 12.7 3 43.7 6

rogers-b 64.3 5 59.4 5 56.9 5 66.6 5 54.7 5 65.2 5
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Table 4. Evaluation results of our semi-supervised approach based on drift
detection from unlabeled data, for different sizes of the retraining set. The total
accuracy values for each data set are shown, along with the number of retraining
phases.

Extending previous set Limited horizon set

Training set length: 100 200 300 100 200 300

farmer-d 59.1 4 64.5 4 60.6 3 55.1 9 60.8 3 55.3 3

germany-c 34.5 1 37.7 2 35.4 2 54.2 6 44.2 4 38.1 2

lokay-m 53.6 1 56.0 2 52.6 1 53.6 1 63.0 5 52.6 1

mann-k 20.8 3 21.7 3 12.8 1 43.3 13 34.2 6 12.8 1

mann-k-mod 30.0 4 33.2 3 25.5 3 51.4 11 32.9 6 38.7 4

rogers-b 61.1 2 37.7 1 34.2 2 66.2 3 37.7 1 32.8 2

Table 5. Evaluation results of Landmark/Sliding Windows, DDM and our semi-
supervised detection-based methods. Best results are gathered.

Accuracy (%) Retrains number

L/S W DDM OurM L/S W DDM OurM

farmer-d 74.5 70.3 64.5 23 7 4

germany-c 55.3 51.2 54.2 9 8 6

lokay-m 67.6 64.9 63.0 12 6 5

mann-k 45.7 45.5 43.3 15 7 13

mann-k-mod 50.3 43.7 51.4 13 6 11

rogers-b 67.3 66.6 66.2 8 5 3

The DDM trigger achieved slightly worse classification accuracy of 43.7% for
mann-k-mod data, while L/SW and OurM methods reached 50.3% and 51.4%,
respectively. However, it retrains the classifier significantly less times than slid-
ing windowing and our method.

Considering results of our semi-supervised approach for the drift detection,
we can say that also constructing the training set with the most recent data
is the best choice. We can suspect that for such latest examples it is easier to
model the distribution changes in the stream, and hence to detect the concept
drift. This also shows that it is easier to track drift between the two subsequent
blocks of data, rather than in the context of all passed examples (here accuracy
is definitely too low). Comparing results to those for windowing, we can say
that depending on the data they are slightly worse only or comparable. Except
for data sets farmer-d or lokay-m the differences are really small (up to 2%).
Moreover, its classification performance is comparable to DDM.
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However, we could stress that the number of retraining phases in our ap-
proach is much lower than for windowing and comparable to DDM (sometimes
even smaller), what was the main motivation for our approach. For more infor-
mation see Table 5. Looking mainly for comparison with DDM we can say that
our approach can sufficiently well identify concept drift although it uses poorer
information. Relations between change indicators in both approaches are shown
in Fig. 4.

We calculated the number of labeled examples used by our detection method
with the limited horizon classifier in comparison to all available examples in the
given data set. For farmer-d or rogers-b data sets we need to label 27% and 34%
of all examples. For the rest of data it varies from 64% to 82%. The periodic
updates based method of sliding window, uses approximately 95% of available
examples, while remaining 5% is a result of the evaluation method.

Finally let us remark on the number of detected concept drift instants and
factors influencing it. First of all, the temporal locality time periods may contain
imbalanced data distribution, which affects the accuracy score, as well as the
leaf statistic measure indicator. So, it is harder to observe trend slope changes
of the distance measure as it is not clear enough and may be caused by data
noise. The second factor is that Enron data sets may also contain other types of
concept drift, like gradual changes, hence harder to observe in the time–space
diagrams we used. Moreover, the drift dynamics may be high, favoring smaller
training sets and more frequent updates of the model. However, smaller training
sets make the classifier suited for the temporal locality period only, once again
affecting the accuracy score and leaf statistic. The above mentioned reasons
made us to carefully tune the detection parameters for two data sets: germany-c

and mann-k-mod, as the predefined parameter values for all data sets (described
in Section 3) were not adequate for this data.

7. Conclusions

Our paper concerns constructing accurate classifiers that can adapt to concept
drift in incrementally coming learning examples. Themotivation for our research
is that one cannot expect complete labeling for all incoming examples. Process-
ing and evaluating classifiers on completely labeled examples is often assumed
in the most well known approaches to handle concept drift; see e.g. the newest
book by Gama (2010). We claim that it is more realistic to reduce demands for
labeling to a relatively smaller part of examples in the stream, while the majority
of processed examples are unlabeled. It also means that potential concept drift
should be detected by analysing unlabeled data. Following such requirements we
have presented a semi-supervised approach for handling sudden concept drift.
It uses a decision tree classifier to monitor unlabeled data streams and to detect
the concept drift basing on observing a trend of changes in probability distri-
bution in the leaf statistics. Once it is identified, the classifier is retrained using
a relatively small portion of the latest examples which need to be labeled.
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Although we are inspired by some of existing methods, in particular active
mining of data streams (Fan et al., 2004; Huang, 2008) we have considered dif-
ferent methods for analysing changes in probability distributions approximated
by leaf statistics. Our contribution is also a different technique for detecting the
concept drift as a result of discovering an increasing trend of differences between
probability distributions in leaves (see more precise discussions in Section 3).
Moreover, we focus our interest on detecting sudden concept drift, which has
not been originally considered in Fan et al. (2004).

We have evaluated this approach in the experimental study with the folder
categorization of Enron messages. Our next contribution is to clearly demon-
strate that these Enron data sets can be considered as characterized by sudden
concept drifts. Our analysis has also shown that changes of class definitions
(appearance of new folders in the stream of emails) are quite frequent. As the
number of real data sets for studying concept drifts is still limited (see Tsym-
bal, 2004), we present more details about pre-processing of the Enron data used
and constructing their final representations, useful for applying typical learning
algorithms (available in WEKA, MOA and other implementation platforms).
We have to stress that our additional aim is to prepare such new ”benchmarks”
and make them available to research community7.

In the next phase of the experiments with the Enron data sets we proved
that sudden concept drift can be well identified by our approach. Looking at
exemplary Figs. 2 and 3 one can notice that changes in our indicator have
occurred at the expected moments in data streams. Moreover, our technique
of identification of changes in leaf statistics has reacted better than the most
related method based on loss functions (Fan et al., 2004). Other results clearly
show that our method is comparable to the most popular trigger method for drift
detection, DDM (Gama et al., 2004) – which assumes labeling of all processed
examples (thus DDM uses much richer information than our method).

The final comparative experiment showed that our approach led to classifica-
tion accuracy comparable to or only slightly worse than the popular windowing
and DDM methods. The slightly better classification performance of the periodic
learning of the classifiers with the shortest size of the data window may be bet-
ter suited to quite frequent changes of classes in Enron data and other dynamic
characteristics. However, windowing is definitely the most demanding from the
computational cost point of view – see the number of retraining phases which is
much higher than in DDM and our method (e.g. for farmer-d data windowing
needs constructing new trees 23 times, while DDM needs 7 retrainings and our
method slightly less). The most important experimental observation is that our
approach significantly limits demand for labeling examples needed by thewindow-
ing method. In our opinion the cost of labeling is not negligible in most real life
applications, so its reduction is worth a bit smaller classification performance.

7Data sets in format of arff are publicly available at the http://www.cs.put.poznan.pl/

mkmieciak/enron web page
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Concerning the computational aspect of the proposed approach, first of all,
due to the smallest number of retraining / detecting possible concept drift and
use of quite fast C4.5 algorithm this is a relatively fast approach. Let us also
remind that we induce pruned trees which are quite small in our experiments.
Using such small trees to classify new examples is also very fast. More difficult
aspect concerns tuning parameters, in particular for detecting trend of our in-
dicator (see Section 3). Our experiments have been carried out in controlled
frameworks (as many similar studies in literature), so we could spend more time
and efforts for repeating some experiments and checking several possibilities. In
case of real huge data streams it is much more difficult. One should expect
that some portion of examples (in particular in the starting phase) should be
completely labeled and available for possible changes of default values of these
parameters. It is the crucial requirement for our approach. The next parameter
referring to the size of training examples or the size of retraining block is not so
important, as we can generalize our approach to using on-line leaning of trees
by specialized fast algorithms like VFDT (Very Fast Decision Trees, also known
as Hoeffding Trees; Domingos and Hulten, 2000).

Besides giving up fixed size of the set of retraining examples, future research
could concern a more active method of selecting the most informative examples
for updating the classifier. Moreover, we could evaluate this approach on larger
collection of data sets also characterized by different types of gradual drifts.
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