Control and Cybernetics
vol. 40 (2011) No. 3

Similarity-based web clip matching*

by

Malgorzata Baczkiewicz, Danuta Yuczak and Maciej Zakrzewicz

Poznan University of Technology, Institute of Computing Science
Poznarni, Poland
e-mail: {Malgorzata.Baczkiewicz, Danuta.Luczak, Maciej.Zakrzewicz }
@cs.put.poznan.pl

Abstract: The research areas of extraction and integration of
web data aim at delivery of tools and methods to extract pieces of
information from third-party web sites and then to integrate them
into profiled, domain-specific, custom web pages. Existing solutions
rely on specialized APIs or XPath querying tools and are therefore
not easily accessible to non technical end users. In this paper we
describe our new comprehensive, non-XPath integration platform
which allows end users to extract web page fragments using a simple
query-by-example approach and then to combine these fragments
into custom, integrated web pages. We focus on our two novel
similarity-based web clip matching algorithms: Attribute Weights
Tree Matching and Edit Distance Tree Matching.

Keywords: information extraction, web, web content integra-
tion.

1. Introduction
1.1. The problem

Web news, business data, social content, blogs, discussions constitute amazing
sources of information and knowledge. They are published on the web in the
form of web pages built with HTML/XML (supported by CSS and JavaScript).
Users can easily browse millions of content-rich web pages to find domain-specific
messages, reports, articles, summaries, etc. However, the enormous amount of
information available on the web results in information overload and difficulties
in efficient information selection and integration. We observe that web users
commonly exhibit selective interest in web pages, ignoring most of their contents
and simply focusing on small fragments only — e.g. a news web portal user may
focus on financial stories, ignoring other portal sections like weather, sports,

*Submitted: March 2011; Accepted: August 2011.

716 M. BACZKIEWICZ, D. LUCZAK, M. ZAKRZEWICZ

politics. Many users often scroll such portal pages down quickly just to get to
the pieces they are especially interested in.

Information extraction from web pages is commonly referred to as web clip-
ping. It consists in selecting only a fragment of a web page, based on a user-
defined query. Many existing tools for web clipping require that a user provide
an XPath expression to control the clipping process. Such a requirement may
become a serious limitation as XPath is by no means intuitive to non-technical
users and it is also expected that a user is familiar with the web page internal
structure (HTML). We argue that users should be able to describe web clipping
using a query-by-example approach (QBE) (Baczkiewicz et al., 2010).

Most of web resources today are dynamic web pages, i.e. web pages generated
on-demand, using server-side applications. The content of a dynamic web page
changes frequently as it is typically based on an OLTP-like database. Dynamic
web pages may also get reorganized sometimes — their structure may change
by relocating web page regions, introducing ads and banners, etc. Because of
these, automatic web clipping is a non-trivial and inspiring research problem.

Pieces of information extracted from web pages can be presented to end users
in a uniform, integrated way. The idea of mashups is to utilize web pages or web
applications that combine data or functionalities from many external sources to
create new services (Kulathuramaiyer, 2007; ProgrammableWeb, 2007). Many
of existing mashup solutions require that developers use specialized APIs to ac-
cess data sources, however, fragments of third-party web pages can also become
elements of an integrated presentation layer. The general mashup idea is shown
in Fig. 1. Fragments of three web pages are extracted and integrated into a
custom web page.

Figure 1. Fragments of third-party web pages extracted and integrated into
a custom web page

Similarity-based web clip matching ave

In this paper we give an overview of our prototype system which provides
web users with intuitive tools to create their custom web pages that integrate
extracted fragments of third-party HTML web resources (static or dynamic).
Information extraction is based on a query-by-example approach, where users
define their selections using a live web page, and the system keeps track of the
selections even when the web page structure or content changes in the future.
The user-defined selections can then be used to compose custom integrated web
pages that provide fragments of multiple web pages in one place. Our main
contribution in this paper are two novel web fragment matching algorithms
which can match the original selection to an updated version of the web page:
Attribute Weights Tree Matching and Edit Distance Tree Matching.

The structure of this paper is the following. Section 2 provides the basic con-
cepts and system architecture overview, including our web clipping and mashup
composer tools. Section 3 describes our new web fragment matching algorithms
and their evaluation. Section 4 contains our conclusions. The structures of our
test clips are presented in the Appendix.

1.2. Related work

The traditional approach to extract data from web pages is to implement spe-
cialized applications called wrappers. Wrappers identify data of interest and
convert them to a suitable format. Many tools have been proposed to help gen-
erate wrappers automatically (Adelberg, 1998; Arocena and Mendelzon, 1998;
Califf and Mooney, 2003; Crescenzi, Mecca and Merialdo, 2001; Embley et al.,
1999; Freitag 2000; Hammer et al., 1997; Chun-Nan and Ming-Tzung, 1998;
Kushmerick, 2000; Liu, Pu and Han, 2000; Muslea, Minton and Knoblock,
2001; Ribeiro-Netto, Laender and Silva, 1999; Sahuguet and Azavant, 2001;
Chakrabarti and Mehta, 2010; Jindal and Liu, 2010). Recently, there have
been several tools developed to integrate web page contents (Jie et al., 2007;
Clipmarks). Homepage Live (Jie et al., 2007) allows users to extract DIV tag
content to be combined manually. MyPortal (Kowalkiewicz et al., 2006) pro-
vides a tool to select data blocks, such as paragraphs, tables, lists, and then
integrate them automatically using IFrames. Unfortunately, CSS formatting of
the original web data is lost, and so users receive differently formatted results.
ClipMark (Clipmarks) is a web browser plug-in to extract fragments of static
web pages. However, the fragments are not updated automatically when the
original web page changes.

2. System concepts and architecture
2.1. Non-XPath querying web pages by example

In order to extract a fragment of a dynamic web page, a query must be executed
over the page. In contrast to several existing solutions that force users to express

718 M. BACZKIEWICZ, D. LUCZAK, M. ZAKRZEWICZ

their queries using XPath, our system uses a query-by example approach. An
author simply points out a fragment of the web page that he or she wants to
extract and reuse. Based on the author-defined page fragment, content can
be extracted repeatedly from the web page that potentially undergoes content
and/or structure changes.

In order to execute a query defined as a selection example, we employ our
novel tree matching algorithms. The author-defined page fragment is repre-
sented by DOM subtrees (the fragment needs not be contiguous on HTML level).
Similarly, the potentially updated source web page is also represented by a DOM
tree. Next, we are searching the DOM tree of the source web page to find the
best match for the DOM subtree. If the source web page has not changed since
the fragment definition, then we are able to find an exact match. Otherwise,
the search is approximate and we find a piece that is just the most similar to
the author-defined fragment, but shows some differences resulting from updates
and modifications. The discovered piece becomes our query result.

2.2. System architecture

Our system consists of four main components: Web Fragment Repository, Web
Clipping Tool, Mashup Composer, Web Fragment Matching Engine (Fig. 2).
The Web Fragment Repository is a MySQL database storing: original web
pages, web fragment metadata, mashup metadata, user accounts, configuration
parameters for web fragment matching algorithms. The Web Clipping Tool is
an AJAX tool for defining fragments of third-party web pages. The Mashup
Composer is another AJAX tool for defining and rendering custom web pages
composed of pre-defined web fragments. The Web Fragment Matching Engine is
an Apache Tomcat web application responsible for extracting fresh web content
based on fragment definitions. All the system components have been developed
using Java EE, PHP and JavaScript technologies.

2.3. Web clipping tool

Our web clipping tool is used to define a rectangular fragment of a third-party
web page to be included in a user-defined mashup page. Users do not need to
use any formal languages to specify their content extraction queries. Instead,
they just draw a rectangular selection over a web page (the query-by-example
concept). The user-defined rectangular selection is then mapped to the original
HTML tags that are included in the selection. Notice that a single selection
is not always a contiguous HTML fragment (e.g. one column of an HTML
table). After the selection has been defined, the original web page is saved to
the repository together with the selection - the selected HTML tags are marked
with an application-specific attribute. Fig. 3 presents a sample rectangular
selection and its description in the repository. Each HTML tag, which is fully
covered by the user selection, receives an additional attribute called “token”. The

Similarity-based web clip matching 719

usa-gdefined seedions

Web Clipping Tool

mas hup ddfinition

original w &> content

integrated meshup
page

T em=mm—

current web content
Web FraEment
Watching Engine

Figure 2. System architecture overview

...<TABLE>
<TR>
<TD token="1">Nikkei 11,102</TD>
<TD token="1">-171.61</TD>
<TD>(-1.52%)</TD>

|— § W W L W G W A l
Hikkei 02 -171.61 ‘-1‘523‘\'1:

L]

</TR>

<TR>
<TD token="1"> Hang Seng 21,865</TD>
<TD token="1">-292.56</TD>

R - <TD>(-1.32%)</TD>
-292. -1.32%)
l Hang Seng l 1.32%) </TR>
1 Err N may <TR>
ASK 100 m L <TD token="1">ASX 100 5,007</TD>

TR) T — <TD token="1">-16.8</TD>

<TD>(-0.33%)</TD>
</TR>
</TABLE>...

Figure 3. Sample selection and its definition in the repository

reason to store complete web pages instead of storing selected HTML elements
only is to improve selection matching to updated/modified versions of the web
pages (we have assumed that the web pages are dynamic by nature).

2.4. Mashup composer

The mashup composer is used to combine user-defined selections into a custom
integrated web page and then to render the integrated web page. The custom
web page can be private to a user or can be shared by a group of users, becoming
a foundation of a Web 2.0 social web site. With the Mashup Composer tool,
authors can drag and drop predefined fragments and set their visual properties
including positioning, width and height. The mashup metadata are saved into

720 M. BACZKIEWICZ, D. LUCZAK, M. ZAKRZEWICZ

the repository to be accessed when rendering the page in the future. Fig. 4 shows
the GUI of the Mashup Composer. Three extracted web page fragments are
organized into a grid layout of an integrated web page. Original CSS formatting
and JavaScript functionalities are supported for each of the fragments (they
have identical look and feel like they had on their original web pages). After the
mashup metadata have been saved to the repository, the page can be repeatedly
rendered in the future, providing up-to-date information.

New slice

Panels Slice listing | vst | aria | getai ist

Panel1

Lehman
Channeled
Risks Through
“Alter Ego’ Firm

Sport

Figure 4. Mashup Composer graphical user interface

3. Web fragment matching algorithms

The task of the web fragment matching engine is to map a user-defined selection
from the repository against an updated web page. Due to dynamic nature of
many web pages, content and/or structure modification may happen after users
have defined their selections (e.g. new HTML tags added, HTML tags replaced
with similar ones, HTML regions relocated, HTML tag attributes modified).
To provide the users with “the same” fragments of the web pages that have
been modified, similarity based matching is performed. We have designed and
implemented two matching algorithms, called: Attribute Weights Tree Matching
and Edit Distance Tree Matching. Both algorithms operate on DOM tree models
of user-defined selections and web pages (Fig. 5).

Similarity-based web clip matching 721

TABLE user-defined selection
(yellow nodes)

selection mapping
against the updated
web page

| o
Ly 1]]
o) () (o

L\

Hang Seng H -150.11][-0.73%]

\
N

Figure 5. Mashup Composer graphical user interface

3.1. Attribute Weights Tree Matching (AWTM)

The Attribute Weights Tree Matching algorithm recursively matches nodes of
the selection tree against nodes of the updated web page (Listing 1). For each
pair of matched nodes, the similarity measure is evaluated based on weighted:
HTML tag name equivalence (tagName), HTML tag attribute name and value
equivalence (matchAttributes()), parent HTML tag name equivalence (match-
ParentTagName()), parent HTML tag attribute name and value equivalence
(matchParentAttributes()), siblings” HTML tag name equivalence (matchSib-
lingsTagNames()), siblings HTML tag attribute name and value equivalence
(matchSiblings Attributes()),identical and different descendant HTML tag names
(countMatchedDescendants(), countUnmatchedDescendants()). The result of
the algorithm is the best-matched fragment of the updated web page (best-
Match). If multiple "best matches" have been found, we prefer the one having
offset (number of bytes from the document beginning) most similar to the offset
of the original user selection.

Listing 1. Attribute Weights Tree Matching Algorithm

/%
* X: user selection tree
* Y: updated web page tree

*/
function clipMatch(Tree X, Tree Y)

{

Node z = X.root;

bestFit = 0;

9

17

18

19

20

21

22

23

24

25

26

27

28

3

5

7

8

722 M. BACZKIEWICZ, D. LUCZAK, M. ZAKRZEWICZ

for each (Node y : Y)
{

if (z.tagName == y.tagName)

fit = DAweight * matchAttributes(z,X,y,Y)
+DDweight * countMatchedDescendants(z,X,y,Y)
+NDweight * countUnmatchedDescendants (z,X,y,Y)
+DTRweight * matchParentTagName (z,X,y,Y)
+DARweight x matchParentAttributes (z,X,y,Y)
+DTSweight * matchSiblingsTagNames(z,X,y,Y)
+DASweight x matchSiblingsAttributes (z,X,y,Y);

if (fit > bestFit)

{

bestFit

= fit;
bestMatch =

Y
}
¥
¥

return bestMatch;

}

3.2. Edit Distance Tree Matching (EDTM)

The Edit Distance Tree Matching algorithm tries to match nodes of the selection
tree against all possible subtrees of the updated web page tree (Listing 2.). For
each test, edit distance is evaluated based on the number of insert and delete
operations required to transform one tree into another. The lower value of the
edit distance, the more similar the user selection is to the fragment of the web
page. The algorithm returns the fragment of the updated web page which is
the most similar to the user-defined selection (bestMatch). If multiple "best
matches" have been found, we prefer the one having offset (number of bytes
from the document beginning) most similar to the offset of the original user
selection.

Listing 2. Edit Distance Tree Matching algorithm
/%
* X: user selection tree
* Y: updated web page tree
*/
function clipMatch(Tree X, Tree Y)

{

Node z = X.root;
bestDistance = +00;

9

17

18

19

20

21

22

23

24

25

26

27

Similarity-based web clip matching 723

for each (Node y : Y)
{

if (z.tagName == y.tagName)

S

numChildrenX = countAllDescendants (z,X);
numChildrenY = countAllDescendants (y,Y);
numCommonChildren = countCommonChildren (z,X,y,Y) ;

numliInserts = numChildrenX — numCommonChildren;
numDeletes = numChildrenY — numCommonChildren;
distance = numlinserts + numDeletes;

if (distance < bestDistance)

bestDistance = distance;
bestMatch = y;

/
}
}
return bestMatch;

}

3.3. Experimental evaluation

Both matching algorithms have been experimentally evaluated using 5 different
clips selected from www.nytimes.com website (see Appendix A). We simulated
multiple original web page updates (structural and contextual) to observe the
accuracy of the proposed algorithms. Figs. 6-8 illustrate how the accuracy of the
algorithms changes when the original web page gets updated (horizontal axis is
the percentage of page segments updated). In Fig. 6 the updates influenced both
the original page and the user selection area. In Fig. 7 the updates influenced
the original page and not the user selection area. In Fig. 8 the updates influ-
enced the user selection area only. We have observed that Attribute Weights
Tree Matching Algorithm usually outperformed Edit Tree Matching Algorithm
although both proved to identify user selections in an updated web page with a
satisfactory precision for 20-30% page modifications.

4. Conclusions

We have presented a system for simple and intuitive extraction and integration
of dynamic web page contents using a query-by-example approach to query for-
mulation and DOM tree matching methods for extracting fragments of updated
web pages. By avoiding the necessity to formulate explicit XPath queries, the
system can be used by non technical end users who can author their custom,
integrated web pages (mashups) using a web browser interface, and then publish

724 M. BACZKIEWICZ, D. LUCZAK, M. ZAKRZEWICZ

100 -
90 -
80 -
70
60
50 1 —A— AWTM

%hit 40
30 - —E_EDTM

20 A

0 — . IN
0 10 20 30 40 50 60 70 80 S0 100
%updated

Figure 6. Precision of the matching algorithms: web page updates

100 - A
90 -
80 -
70 -
60 -

%hit >0 1

—4— AWTM

—B—EDTM
30 A
20 -~
10

0 10 20 30 40 50 60 70 &80 90 100
%updated

Figure 7. Precision of the matching algorithms: web page updates outside the
user selection only

90 -+
80 -~
70 -~
60 -
%hit 20 7
40 -~ —&=—EDTM
30 ~
20 ~
10 A

0 | oo (5
T T T T T T N e [2 o [) =]

—4— AWTM

0 10 20 30 40 50 60 70 80 90 100
%updated

Figure 8. Precision of the matching algorithms: web page updates inside the
user selection only

Similarity-based web clip matching 725

or share the pages with others. The implementation of the system inspired mul-
tiple research problems related to web page content processing, tree matching
algorithms, graphical user interface concepts, performance management.

We have introduced two new web clip matching algorithms, Attribute Weights
Tree Matching and Edit Distance Tree Matching Algorithms, and we have ex-
perimentally evaluated their accuracy. For Attribute Weights Tree Matching our
experiments showed over 80% accuracy of user selection matching even when
original web page structure faced 30-80% updates. Edit Distance Tree Match-
ing Algorithms showed interesting performance for original web page structure
updates up to 50% occurring outside user selection area.

References

ADELBERG, B. (1998) NoDoSE - A Tool for Semi-Automatically Extracting
Semi-Structured Data from Text Documents. SIGMOD Record 27,2, 283~
294.

AROCENA, G.O. and MENDELZON, A.O. (1998) WebOQL: Restructuring
Documents, Databases, and Webs. 14th IEEE International Conference
on Data Engineering. IEEE Computer Society, 24-33.

BaczkiEwicz, M., KALETA, P., Luczak, D. and ZAkrRzEWICZ, M. (2010)
Extraction and Integration of Dynamic Heterogeneous Web Resources.
Proc. of TPD 2010 Conference. Wydawnictwa Naukowo-Techniczne,
101-110.

CHAKRABARTI, D. and MEHTA, R.R. (2010) The paths more taken: match-
ing DOM trees to search logs for accurate webpage clustering. Proc. of
WWW 2010 Conference. ACM Press, 24-33.

CLIPMARKS http://clipmarks.com/

CALIFF, M.E. and MooNEY, R.J. (2003) Bottom-Up Relational Learning of
Pattern Matching Rules for Information Extraction. Journal of Machine
Learning Research, 4, 539-565.

CHUN-NAN, H. and MING-TzUNG, D. (1998) Generating Finite-State Trans-
ducers for Semi-Structured Data Extraction from the Web. Information
Systems, 23 (9), 521-538.

CRESCENZI, V. and MEcca, G. (1998) Grammars Have Exceptions. Infor-
mation Systems, 23 (8), 539-565.

CRESCENZI, V., MEcCA, G. and MERIALDO, P. (2001) RoadRunner: To-
wards Automatic Data Extraction from Large Web Sites. Proc. of the
26th International Conference on Very Large Database Systems. Morgan
Kaufmann, 109-118.

EMBLEY, D.W., CAMPBELL, D.M., JIANG, Y.S., LIDDLE, S.W., Y1U-KAI, N.,
Quass, D. and SmiTH, R.D. (1999) Conceptual-Model-Based Data
Extraction from Multiple-Record Web Pages. Data and Knowledge
Engineering, 31 (3), 227-251.

726 M. BACZKIEWICZ, D. LUCZAK, M. ZAKRZEWICZ

FREITAG, D. (2000) Machine Learning for Information Extraction in Informal
Domains. Machine Learning, 39 (2/3), 169-202.

HAMMER, J., GARCIA-MOLINA, H., NESTOROV, S., YERNENI, R., BREUNIG,
M.M. and Vassaros, V. (1997)] Template-Based Wrappers in the
TSIMMIS System. SIGMOD Record, 26 (2), 532—-535.

Jig, H., Dincyr, H., CHENxI, L., HuA-JUN, Z., ZHENG, C. and YONG, Y.
(2007) Homepage live: automatic block tracing for web personalization.
16th International World Wide Web Conference (WWW2007). ACM
Press, 1-10.

KowaLKIEWICZ, M., ORLOWSKA, M.E., KACZMAREK, T. and ABRAMOWICZ,
W. (2006) Towards More Personalized Web: Extraction and Integration
of Dynamic Content from the Web. Proc. of APWeb Conference.
Springer, 668-679.

KULATHURAMAIYER, N. (2007) Mashups: Emerging Application Development
Paradigm for a Digital Journal. Journal of Universal Science, 13 (4), 531—
542.

KusHMERICK, N. (2000) Wrapper induction: Efficiency and expressiveness.
Artificial Intelligence Journal, 118 (1-2), 15-68.

Liu, L., Pu, C. and Han, W. (2000) XWRAP: An XML-Enabled Wrapper
Construction System for Web Information Sources. Proc. of the 16th IEEE
International Conference on Data Engineering. IEEE Computer Society,
611-621.

JINDAL, N. and Liu, B. (2010) A Generalized Tree Matching Algorithm Con-
sidering Nested Lists for Web Data Extraction. Proc. of SDM 2010 Con-
ference. STAM, 930-941.

MUSLEA, 1., MINTON, S. and KNOBLOCK, C.A. (2001) Hierarchical Wrap-
per Induction for Semistructured Information Sources. Autonomous
Agents and Multi-Agent Systems, 4 (1/2), 93-114.

PROGRAMMABLEWEB (2007) ProgrammableWeb Homepage, http://www.pro-
grammableweb.com/

RIBEIRO-NETO, B.A., LAENDER, A.H.F. and Sitva, A.S. (1999) Extracting
Semi-Structured Data Through Examples. Proc. of the 8th ACM Inter-
national Conference on Information and Knowledge Management. ACM
Press, 94-101.

SAHUGUET, A. and AzAvANT, F. (2001) Building intelligent Web applications
using lightweight wrappers. Data and Knowledge Engineering, 36 (3),
283-316.

A. Appendix

The structures of our test clips selected from www.nytimes.com are presented
below.

Similarity-based web clip matching 727

<td class="...">
o bl g B e
<he claseg—"..q. ">
...<fa>
</h&>
Sdiv elage=" o "
<a href="..."»<fa>
</div>
<h& class="...">
...< a>
</h&>
</div>
<ftd4

Figure 9. A single table cell

<div id="...">
wdiv glags="... ">
<div-glags="..:">
<div glaga=—",..">
<h4 class="...">...</hd>
</dive>
<div- glags="..: ">
<divw glaga=",..">
£div glaaa="...">
<hé class="...">...</hé>
<h5»...</h5>
<p class="...">...</p>
<fdiv>
</div>
</fdive>
<diwv glaga=",..">
<div glaaa="...">
wul glagss="...">
<lix<hé>...< ax</he></1i>
<lir»<hé>...</he></1i>

</div>
</fdive>
<fdiv>
<div class="..."></div>
</divs
</divy

Figure 10. Nested <div> elements

728

M. BACZKIEWICZ, D. LUCZAK, M. ZAKRZEWICZ

<div class=",.."
Ldiv glass=" ...« ">

A= s

<«h& class="...">...</h6>
Sl clagg="... =
<1ix<hb>...<fa></he></1i>
<lir<h6>...<fa></hE></1i>
<lix»<h6>...<fa></he></1i>
<falx

</fdiv>

<div class=",..">
<h& class="...">...</h6>
ful elags="...">
<lid<he>...</fa></he></1i>
<1ix<h6>...<fa></hEe><f1li>
<lix<h6>...</hE6></1i>

</fdiv>

</div]

Figure 11. Nested <div> elements with similar contents

<div class="...">
<hé class="...">...</hé>
div elaga="...">
£ul class="...">
<1li>
<h5>
...
...
</h5>
<f1i>

</div>
</fdiv>

Figure 12. <div> element with nested element

Similarity-based web clip matching

729

<div elass="..." >

<hf class="..."»..

Ul elass="., .. ">
<1i>
<hf><a id="..."
<f1i>
<1i>
<h&><a id="..."
<f1i>

<liz<hé><a id="..."
<ful>
</div>

href="http: //...

href="http: //...

href="http: //...

<fax</he>
"¥...<fax< hEe>
"¥...<fax</hEr

"y, . <faxc/her i

Figure 13. <div> element with multiple nested elements

730 M. BACZKIEWICZ, D. LUCZAK, M. ZAKRZEWICZ

Figure 14. www.nytimes.com website: black boxes are test clips, grey boxes are
updated areas

