Control and Cybernetics

vol. 40 (2011) No. 3

Singular fractional discrete-time linear systems*

by
Tadeusz Kaczorek
Faculty of Electrical Engineering
Białystok University of Technology
Wiejska 45D, 15-351 Białystok, Poland
e-mail: kaczorek@isep.pw.edu.pl

Abstract

A new class of singular fractional linear discretetime systems is introduced. Using the Weierstrass regular pencil decomposition the solution to the state equation of singular fractional linear systems is derived. The considerations are illustrated by numerical examples.

Keywords: decomposition, singular, fractional, linear system, solution.

1. Introduction

Singular (descriptor) linear systems have been addressed in many papers and books (Dodig and Stosic, 2009; Dai, 1989; Fahmy and O'Reill, 1989; Kaczorek, 1992, 2004, 2007a, 2011; Kucera and Zagalak, 1988; Van Dooren, 1979. The eigenvalue and invariant assignment by state and output feedbacks have been investigated in Dodig and Stosic (2009), Dai (1989), Fahmy and O'Reill (1989) and Kaczorek $(1992,2004)$, while the realization problem for singular positive continuous-time systems with delays in Kaczorek (2007b). The computation of Kronecker's canonical form of a singular pencil has been analyzed in Van Dooren (1979).

Fractional positive continuous-time linear systems have been addressed in Kaczorek (2008) and Podlubny (1999), and positive linear systems with different fractional orders in Kaczorek (2010b). An analysis of fractional linear electrical circuits has been presented in Kaczorek (2010a), and some selected problems in theory of fractional linear systems were treated in the monograph Kaczorek (2011a). A new class of singular fractional linear continuous-time systems and singular electrical circuits has been addressed in Kaczorek (2011b).

In this paper a new class of singular fractional linear discrete-time systems will be introduced and their state equations solution will be derived.

[^0]The paper is organized as follows. In Section 2 the fractional singular discrete-time linear systems are introduced and Weierstrass regular pencil decomposition is recalled. The solution of the state equation of singular fractional linear discrete-time system is derived using the Weierstrass pencil decomposition in Section 3. Illustrating numerical examples are given in Section 4 and concluding remarks in Section 5.

To the best of the author's knowledge the singular fractional linear discretetime systems have not been considered yet.

Following notation will be throughout in the paper: the set of $n \times m$ real matrices will be denoted $\Re^{n \times m}$ and $\Re^{n}:=\Re^{n \times 1}$. The set of nonnegative integers will be denoted by Z_{+}and the $n \times n$ identity matrix by I_{n}.

2. Preliminaries

Consider the singular fractional discrete-time linear system described by the state equation

$$
\begin{equation*}
E \Delta^{\alpha} x_{i+1}=A x_{i}+B u_{i}, \quad i \in Z_{+}=\{0,1, \ldots\} \tag{2.1}
\end{equation*}
$$

where $x_{i} \in \Re^{n}, u_{i} \in \Re^{m}$ are the state and input vectors, $A \in \Re^{n \times n}, E \in \Re^{n \times n}$, $B \in \Re^{n \times m}$, and the fractional difference of the order α is defined by

$$
\begin{align*}
& \Delta^{\alpha} x_{i}=\sum_{k=0}^{i}(-1)^{k}\binom{\alpha}{k} x_{i-k}, \quad 0<\alpha<1 \tag{2.2}\\
& \binom{\alpha}{k}=\left\{\begin{array}{cl}
1 & \text { for } k=0 \\
\frac{\alpha(\alpha-1) \ldots(\alpha-k+1)}{k!} & \text { for } k=1,2, \ldots
\end{array}\right. \tag{2.3}
\end{align*}
$$

It is assumed that

$$
\begin{equation*}
\operatorname{det} E=0 \tag{2.4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}[E z-A] \neq 0 \tag{2.4b}
\end{equation*}
$$

for some $z \in C$ (the field of complex numbers).
Lemma 1 (Gantmacher, 1960, p.92) If (2.4) holds then there exist nonsingular matrices $P, Q \in \Re^{n \times n}$ such that

$$
P E Q=\left[\begin{array}{cc}
I_{n_{1}} & 0 \tag{2.5}\\
0 & N
\end{array}\right], P A Q=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & I_{n_{2}}
\end{array}\right]
$$

where $N \in \Re^{n_{2} \times n_{2}}$ is a nilpotent matrix with the index μ (i.e. $N^{\mu}=0$ and $\left.N^{\mu-1} \neq 0\right), A_{1} \in \Re^{n_{1} \times n_{1}}, n_{1}$ is equal to degree of the polynomial

$$
\begin{equation*}
\operatorname{det}[E s-A]=a_{n_{1}} z^{n_{1}}+\ldots+a_{1} z+a_{0} \tag{2.6}
\end{equation*}
$$

and $n_{1}+n_{2}=n$.

A method for computation of matrices P and Q was given in Van Dooren (1979).

Using Lemma 2.1 we shall derive the solution x_{i} to the equation (2.1) for given initial conditions x_{0} and input vector $u_{i}, i \in Z_{+}$.

3. Solution of the singular fractional linear systems

Premultiplying the equation (2.1) by the matrix $P \in \Re^{n \times n}$ and introducing the new state vector

$$
\bar{x}_{i}=\left[\begin{array}{c}
\bar{x}_{i}^{(1)} \tag{3.1}\\
\bar{x}_{i}^{(2)}
\end{array}\right]=Q^{-1} x_{i}, \quad \bar{x}_{i}^{(1)} \in \Re^{n_{1}}, \quad \bar{x}_{i}^{(2)} \in \Re^{n_{2}}, \quad i \in Z_{+}
$$

we obtain

$$
\begin{equation*}
P E Q Q^{-1} \Delta^{\alpha} x_{i+1}=P E Q \Delta^{\alpha} Q^{-1} x_{i+1}=P A Q Q^{-1} x_{i}+P B u_{i} \tag{3.2}
\end{equation*}
$$

and after using (2.5) and (3.1)

$$
\left[\begin{array}{cc}
I_{n_{1}} & 0 \tag{3.3}\\
0 & N
\end{array}\right] \Delta^{\alpha}\left[\begin{array}{l}
\bar{x}_{i+1}^{(1)} \\
\bar{x}_{i+1}^{(2)}
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & I_{n_{2}}
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{i}^{(1)} \\
\bar{x}_{i}^{(2)}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u_{i}, i \in Z_{+}
$$

where

$$
\left[\begin{array}{l}
B_{1} \tag{3.4}\\
B_{2}
\end{array}\right]=P B, \quad B_{1} \in \Re^{n_{1} \times m}, \quad B_{2} \in \Re^{n_{2} \times m}
$$

Taking into account (2.2), from (3.3) we obtain

$$
\begin{align*}
\bar{x}_{i+1}^{(1)} & =-\sum_{k=1}^{i+1}(-1)^{k}\binom{\alpha}{k} \bar{x}_{i-k+1}^{(1)}+A_{1} \bar{x}_{i}^{(1)}+B_{1} u_{i} \\
& =A_{1 \alpha} \bar{x}_{i}^{(1)}+\sum_{k=2}^{i+1}(-1)^{k-1}\binom{\alpha}{k} \bar{x}_{i-k+1}^{(1)}+B_{1} u_{i} \tag{3.5}
\end{align*}
$$

and

$$
\begin{equation*}
N\left[\bar{x}_{i+1}^{(2)}+\sum_{k=1}^{i+1}(-1)^{k}\binom{\alpha}{k} \bar{x}_{i-k+1}^{(2)}\right]=\bar{x}_{i}^{(2)}+B_{2} u_{i} \tag{3.6}
\end{equation*}
$$

where $A_{1 \alpha}=A_{1}+I_{n_{1}} \alpha$.
The solution \bar{x}_{i}^{1} to equation (3.5) is well known, Kaczorek (2008, 2011a), and it is given by the following theorem.

Theorem 3.1 The solution \bar{x}_{i}^{1} of the equation (3.5) is given by the formula

$$
\begin{equation*}
\bar{x}_{i}^{(1)}=\Phi_{i} \bar{x}_{0}^{(1)}+\sum_{k=0}^{i-1} \Phi_{i-k-1} B_{1} u_{k}, \quad i \in Z_{+} \tag{3.7}
\end{equation*}
$$

where the matrices Φ_{i} are determined by the equation

$$
\begin{equation*}
\Phi_{i+1}=\Phi_{i} A_{1 \alpha}+\sum_{k=2}^{i+1}(-1)^{k-1}\binom{\alpha}{k} \Phi_{i-k+1}, \quad \Phi_{0}=I_{n_{1}} . \tag{3.8}
\end{equation*}
$$

To find the solution \bar{x}_{i}^{2} of the equation (3.6) for $N \neq 0$ it is assumed that

$$
N=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \tag{3.9}\\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right] \in \Re^{n_{2}} .
$$

For (3.9) the equation (3.6) can be written in the form

$$
\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \tag{3.10}\\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right]\left(\sum_{j=0}^{i+1}(-1)^{j}\binom{\alpha}{j}\left[\begin{array}{c}
\bar{x}_{i-j+1}^{(21)} \\
\bar{x}_{i-j+1}^{(22)} \\
\vdots \\
\bar{x}_{i-j+1}^{\left(2, n_{2}\right)}
\end{array}\right]\right)=\left[\begin{array}{c}
\bar{x}_{i}^{(21)} \\
\bar{x}_{i}^{(22)} \\
\vdots \\
\bar{x}_{i}^{\left(2, n_{2}\right)}
\end{array}\right]+\left[\begin{array}{c}
B_{21} \\
B_{22} \\
\vdots \\
B_{2, n_{2}}
\end{array}\right] u_{i}, i \in Z_{+}
$$

From (3.10) we have

$$
\begin{aligned}
\bar{x}_{i}^{(21)}= & -B_{21} u_{i} \\
\bar{x}_{i}^{(22)}= & \sum_{j=0}^{i+1}(-1)^{j}\binom{\alpha}{j} \bar{x}_{i-j+1}^{(21)}-B_{22} u_{i}=-\sum_{j=0}^{i+1}(-1)^{j}\binom{\alpha}{j} B_{21} u_{i-j+1}-B_{22} u_{i} \\
\bar{x}_{i}^{(23)}= & \sum_{j=0}^{i+1}(-1)^{j}\binom{\alpha}{j} \bar{x}_{i-j+1}^{(22)}-B_{23} u_{i} \\
= & -\sum_{j=0}^{i+1}(-1)^{j}\binom{\alpha}{j} \sum_{k=0}^{i-j+2}(-1)^{k}\binom{\alpha}{k} B_{21} u_{i-j-k+2} \\
& -\sum_{j=0}^{i+1}(-1)^{j}\binom{\alpha}{j} B_{22} u_{i-j+1}-B_{23} u_{i}
\end{aligned}
$$

$$
\begin{equation*}
\bar{x}_{i}^{\left(2, n_{2}\right)}=\sum_{j=0}^{i+1}(-1)^{j}\binom{\alpha}{j} \bar{x}_{i-j+1}^{\left(2, n_{2}-1\right)}-B_{2, n_{2}} u_{i} \tag{3.11}
\end{equation*}
$$

If $N=0$ then from (3.6) we have

$$
\begin{equation*}
\bar{x}_{i}^{(2)}=-B_{2} u_{i}, \quad i \in Z_{+} \tag{3.12}
\end{equation*}
$$

This approach can be easily extended for

$$
N=\text { blockdiag }\left[\begin{array}{llll}
N_{1} & N_{2} & \ldots & N_{h} \tag{3.13}
\end{array}\right]
$$

where $N_{k} \in \Re^{n_{k}}$ has the form (3.9) and $\sum_{k=1}^{h} n_{k}=n_{2}$.
If the matrix N has the form

$$
N=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right] \in \Re^{n_{2}}
$$

the considerations are similar (dual).
Note that the matrices (3.9) and (3.9') are related by $N=S \bar{N} S$ where

$$
S=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
1 & 0 & \ldots & 0 & 0
\end{array}\right] .
$$

Knowing \bar{x}_{i}^{1} and \bar{x}_{i}^{2} we can find the desired solution of the equation (2.1) from (3.1)

$$
x_{i}=Q\left[\begin{array}{c}
\bar{x}_{i}^{(1)} \tag{3.14}\\
\bar{x}_{i}^{(2)}
\end{array}\right], i \in Z_{+} .
$$

4. Examples

Example 4.1 Find the solution x_{i} of the singular fractional linear system (2.1) with the matrices

$$
E=\left[\begin{array}{ccc}
-1 & -1 & -1 \tag{4.1}\\
2 & 4 & 2 \\
1 & 4 & 1
\end{array}\right], A=\left[\begin{array}{lll}
0.8 & 1.7 & 2.8 \\
0.4 & 0.8 & 1.4 \\
2.2 & 4.6 & 2.2
\end{array}\right], B=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

for $\alpha=0.5, u_{i}=u, i \in Z_{+}$and $x_{0}=\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]^{T}$ (T denotes the transpose $)$.

It is easy to check that the matrices (4.1) satisfy the assumptions (2.4). In this case the matrices P and Q have the forms

$$
P=\frac{1}{11}\left[\begin{array}{ccc}
1 & -2 & 5 \tag{4.2}\\
-2 & 4 & 1 \\
4 & 3 & -2
\end{array}\right], Q=\left[\begin{array}{ccc}
-2 & 1 & -1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
\begin{align*}
& {\left[\begin{array}{cc}
I_{n_{1}} & 0 \\
0 & N
\end{array}\right]=P E Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{cc}
A_{1} & 0 \\
0 & I_{n_{2}}
\end{array}\right]=P A Q=\left[\begin{array}{ccc}
0.1 & 1 & 0 \\
0 & 0.2 & 0 \\
0 & 0 & 1
\end{array}\right],} \\
& P B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}
-4 \\
-3 \\
6
\end{array}\right], \quad A_{1 \alpha}=A_{1}+I_{n_{1}} \alpha=\left[\begin{array}{cc}
0.6 & 1 \\
0 & 0.7
\end{array}\right] \\
& \left(n_{1}=2, n_{2}=1\right) \tag{4.3}
\end{align*}
$$

Equations (3.5) and (3.6) have the forms

$$
\bar{x}_{i+1}^{(1)}=\left[\begin{array}{cc}
0.6 & 1 \tag{4.4}\\
0 & 0.7
\end{array}\right] \bar{x}_{i}^{(1)}+\sum_{k=2}^{i+1}(-1)^{k-1}\binom{0.5}{k} \bar{x}_{i-k+1}^{(1)}-\frac{1}{11}\left[\begin{array}{l}
4 \\
3
\end{array}\right] u_{i}, \quad i \in Z_{+}
$$

and

$$
\begin{equation*}
\bar{x}_{i}^{(2)}=-B_{2} u_{i}=-\frac{6}{11} u_{i}, i \in Z_{+} \tag{4.5}
\end{equation*}
$$

Solution \bar{x}_{i}^{1} of equation (4.4) has the form

$$
\begin{equation*}
\bar{x}_{i}^{(1)}=\Phi_{i} \bar{x}_{0}^{(1)}+\sum_{k=0}^{i-1} \Phi_{i-k-1} B_{1} u_{k}, i \in Z_{+} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{align*}
& \Phi_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \Phi_{1}=A_{1 \alpha}=\left[\begin{array}{cc}
0.6 & 1 \\
0 & 0.7
\end{array}\right] \\
& \Phi_{2}=A_{1 \alpha}^{2}-I_{n_{1}} \frac{\alpha(\alpha-1)}{2!}=\left[\begin{array}{cc}
0.485 & 1.300 \\
0 & 0.615
\end{array}\right], \ldots \tag{4.7}
\end{align*}
$$

and

$$
\bar{x}_{0}=Q^{-1} x_{0}=\left[\begin{array}{lll}
0 & 1 & 0 \tag{4.8}\\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \\
4 \\
-1
\end{array}\right], \quad \bar{x}_{0}^{(1)}=\left[\begin{array}{l}
2 \\
4
\end{array}\right], \quad \bar{x}_{0}^{(2)}=[-1] .
$$

The desired solution of the singular fractional system with (4.1) is given by

$$
x_{i}=Q \bar{x}_{i}=\left[\begin{array}{ccc}
-2 & 1 & -1 \tag{4.9}\\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\bar{x}_{i}^{(1)} \\
\bar{x}_{i}^{(2)}
\end{array}\right]
$$

where \bar{x}_{i}^{1} and \bar{x}_{i}^{2} are determined by (3.7) and (4.5), respectively.
Example 4.2 Find the solution x_{i} of the singular fractional linear system (2.1) with the matrices

$$
E=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{4.10}\\
0 & 1 & -1 \\
1 & -1 & 1
\end{array}\right], A=\left[\begin{array}{ccc}
0.2 & 2 & -2 \\
2 & 1 & 0 \\
-1.8 & 0 & -1
\end{array}\right], B=\left[\begin{array}{cc}
1 & 2 \\
-1 & 2 \\
2 & -1
\end{array}\right]
$$

for $\alpha=0.8$, arbitrary $u_{i}, i \in Z_{+}$and $x_{0}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$.
It is easy to check that the matrices (4.10) satisfy the assumptions (2.4). In this case the matrices P and Q have the forms

$$
P=\left[\begin{array}{ccc}
-1 & 2 & 2 \tag{4.11}\\
1 & -1 & -1 \\
-1 & 2 & 1
\end{array}\right], Q=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 1 \\
-2 & 0 & 1
\end{array}\right]
$$

and

$$
\begin{align*}
& {\left[\begin{array}{cc}
I_{n_{1}} & 0 \\
0 & N
\end{array}\right]=P E Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{cc}
A_{1} & 0 \\
0 & I_{n_{2}}
\end{array}\right]=P A Q=\left[\begin{array}{ccc}
0.2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],} \tag{4.12}\\
& P B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
-1 & 1
\end{array}\right], A_{1 \alpha}=A_{1}+I_{n_{1}} \alpha=[1], \quad\left(n_{1}=1, n_{2}=2\right)
\end{align*}
$$

In this case equations (3.5) and (3.6) have the forms

$$
\begin{align*}
& \bar{x}_{i+1}^{(1)}=\bar{x}_{i}^{(1)}+\sum_{k=2}^{i+1}(-1)^{k-1}\binom{0.8}{k} \bar{x}_{i-k+1}^{(1)}+\left[\begin{array}{ll}
1 & 0
\end{array}\right] u_{i}, \quad i \in Z_{+} \tag{4.13}\\
& {\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left(\sum_{j=0}^{i+1}(-1)^{j}\binom{0.8}{j}\left[\begin{array}{c}
\bar{x}_{i-j+1}^{(21)} \\
\bar{x}_{i-j+1}^{(22)}
\end{array}\right]\right)=\left[\begin{array}{c}
\bar{x}_{i}^{(21)} \\
\bar{x}_{i}^{(22)}
\end{array}\right]+\left[\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right] u_{i}, \quad i \in Z_{+}} \tag{4.14}
\end{align*}
$$

and

$$
\bar{x}_{0}=Q^{-1} x_{0}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{4.15}\\
0 & 1 & -1 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right], \quad \bar{x}_{0}^{(1)}=[1], \quad \bar{x}_{0}^{(2)}=\left[\begin{array}{l}
0 \\
3
\end{array}\right] .
$$

The solution \bar{x}_{i}^{1} of the equation (4.13) with $\bar{x}_{0}^{1}=1$ can be easily found using (3.7) and (3.8).

From (4.14) we have

$$
\begin{align*}
\bar{x}_{i}^{(21)} & =[0-1] u_{i}, \quad i \in Z_{+} \\
\bar{x}_{i}^{(22)} & =\sum_{j=0}^{i+1}(-1)^{j}\binom{0.8}{j}[0-1] u_{i-j+1}+[1-1] u_{i}, \quad i \in Z_{+} \tag{4.16}
\end{align*}
$$

The desired solution of the singular fractional system with (4.10) is given by

$$
x_{i}=Q \bar{x}_{i}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{4.17}\\
-2 & 1 & 1 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\bar{x}_{i}^{(1)} \\
\bar{x}_{i}^{(21)} \\
\bar{x}_{i}^{(22)}
\end{array}\right]
$$

where $\bar{x}_{i}^{1}, \bar{x}_{i}^{21}$ and \bar{x}_{i}^{22} are determined by (4.13) and (4.2), respectively.

5. Concluding remarks

The singular fractional linear discrete-time systems have been introduced. Using the Weierstrass regular pencil decomposition the solution to the state equation of singular fractional linear discrete-time system has been derived. The method of finding the solution to the singular fractional systems has been illustrated by two examples. These considerations can be extended to singular fractional linear discrete-time systems with singular pencils. Open problems are constituted by the extensions of these considerations to positive singular fractional linear systems and to singular positive linear systems with different fractional orders, Kaczorek (2010b, 2011b).

Acknowledgment

This work was supported by Ministry of Science and Higher Education in Poland under project No. NN514 193933.

References

Dodig, M. and Stosic, M. (2009) Singular systems state feedbacks problems. Linear Algebra and its Applications, 431 (8), 1267-1292.
Dai, L. (1989) Singular Control Systems. Lectures Notes in Control and Information Sciences. Springer-Verlag, Berlin.
Fahmy, M.H. and O'Reill, J. (1989) Matrix pencil of closed-loop descriptor systems: infinite-eigenvalues assignment. Int. J. Control, 49 (4), 14211431.

Gantmacher, F.R. (1960) The Theory of Matrices. Chelsea Publishing Co., New York.
Kaczorek, T. (1992) Linear Control Systems. Research Studies Press 1, J. Wiley, New York.

Kaczorek, T. (2004) Infinite eigenvalue assignment by output-feedbacks for singular systems. Int. J. Appl. Math. Comput. Sci., 14 (1), 19-23.
Kaczorek, T. (2007a) Polynomial and Rational Matrices. Applications in Dynamical Systems Theory. Springer-Verlag, London.
Kaczorek, T. (2007b) Realization problem for singular positive continuoustime systems with delays. Control and Cybernetics, 36 (1), 47-57.
Kaczorek, T. (2008) Fractional positive continuous-time linear systems and their reachability. Int. J. Appl. Math. Comput. Sci., 18 (2), 223-228.
Kaczorek, T. (2010a) Analysis of fractional linear electrical circuits in transient states. Electrical Review, 86 (6), 491-495 (in Polish).
Kaczorek, T. (2010b) Positive linear systems with different fractional orders. Bull. Pol. Ac. Sci. Techn., 58 (3), 453-458.
Kaczorek, T. (2011a) Selected Problems of Fractional Systems Theory. Sprin-ger-Verlag, Berlin.
Kaczorek, T. (2011b) Singular fractional linear systems and electrical circuits. Int. J. Appl. Math. and Comp. Sci., 21 (2), 379-384.
Kucera, V. and Zagalak, P. (1988) Fundamental theorem of state feedback for singular systems. Automatica, 24 (5), 653-658.
Podlubny, I. (1999) Fractional Differential Equations. Academic Press, New York.
Van Dooren, P. (1979) The computation of Kronecker's canonical form of a singular pencil. Linear Algebra and Its Applications, 27, 103-140.

[^0]: *Submitted: May 2010; Accepted: Juky 2011.

