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Abstract: A new class of singular fractional linear discrete-
time systems is introduced. Using the Weierstrass regular pencil
decomposition the solution to the state equation of singular frac-
tional linear systems is derived. The considerations are illustrated
by numerical examples.
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1. Introduction

Singular (descriptor) linear systems have been addressed in many papers and
books (Dodig and Stosic, 2009; Dai, 1989; Fahmy and O’Reill, 1989; Kaczorek,
1992, 2004, 2007a, 2011; Kucera and Zagalak, 1988; Van Dooren, 1979. The
eigenvalue and invariant assignment by state and output feedbacks have been
investigated in Dodig and Stosic (2009), Dai (1989), Fahmy and O’Reill (1989)
and Kaczorek (1992, 2004), while the realization problem for singular positive
continuous-time systems with delays in Kaczorek (2007b). The computation
of Kronecker’s canonical form of a singular pencil has been analyzed in Van
Dooren (1979).

Fractional positive continuous-time linear systems have been addressed in
Kaczorek (2008) and Podlubny (1999), and positive linear systems with different
fractional orders in Kaczorek (2010b). An analysis of fractional linear electrical
circuits has been presented in Kaczorek (2010a), and some selected problems
in theory of fractional linear systems were treated in the monograph Kaczorek
(2011a). A new class of singular fractional linear continuous-time systems and
singular electrical circuits has been addressed in Kaczorek (2011b).

In this paper a new class of singular fractional linear discrete-time systems
will be introduced and their state equations solution will be derived.

∗Submitted: May 2010; Accepted: Juky 2011.
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The paper is organized as follows. In Section 2 the fractional singular
discrete-time linear systems are introduced and Weierstrass regular pencil de-
composition is recalled. The solution of the state equation of singular fractional
linear discrete-time system is derived using the Weierstrass pencil decomposi-
tion in Section 3. Illustrating numerical examples are given in Section 4 and
concluding remarks in Section 5.

To the best of the author’s knowledge the singular fractional linear discrete-
time systems have not been considered yet.

Following notation will be throughout in the paper: the set of n × m real
matrices will be denoted ℜn×m and ℜn := ℜn×1. The set of nonnegative integers
will be denoted by Z+ and the n× n identity matrix by In.

2. Preliminaries

Consider the singular fractional discrete-time linear system described by the
state equation

E∆αxi+1 = Axi +Bui, i ∈ Z+ = {0, 1, ...} (2.1)

where xi ∈ ℜn, ui ∈ ℜm are the state and input vectors, A ∈ ℜn×n, E ∈ ℜn×n,
B ∈ ℜn×m, and the fractional difference of the order α is defined by

∆αxi =
i

∑

k=0

(−1)k
(

α

k

)

xi−k, 0 < α < 1 (2.2)

(

α

k

)

=

{

1 for k = 0
α(α − 1)...(α− k + 1)

k!
for k = 1, 2, ...

(2.3)

It is assumed that

detE = 0 (2.4a)

and

det[Ez −A] 6= 0 (2.4b)

for some z ∈ C (the field of complex numbers).

Lemma 1 (Gantmacher, 1960, p.92) If (2.4) holds then there exist nonsingular
matrices P,Q ∈ ℜn×n such that

PEQ =

[

In1
0

0 N

]

, PAQ =

[

A1 0
0 In2

]

(2.5)

where N ∈ ℜn2×n2 is a nilpotent matrix with the index µ (i.e. Nµ = 0 and
Nµ−1 6= 0), A1 ∈ ℜn1×n1 , n1 is equal to degree of the polynomial

det[Es−A] = an1
zn1 + ...+ a1z + a0 (2.6)

and n1 + n2 = n.
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A method for computation of matrices P and Q was given in Van Dooren
(1979).

Using Lemma 2.1 we shall derive the solution xi to the equation (2.1) for
given initial conditions x0 and input vector ui, i ∈ Z+.

3. Solution of the singular fractional linear systems

Premultiplying the equation (2.1) by the matrix P ∈ ℜn×n and introducing the
new state vector

x̄i =

[

x̄
(1)
i

x̄
(2)
i

]

= Q−1xi, x̄
(1)
i ∈ ℜn1 , x̄

(2)
i ∈ ℜn2 , i ∈ Z+ (3.1)

we obtain

PEQQ−1∆αxi+1 = PEQ∆αQ−1xi+1 = PAQQ−1xi + PBui (3.2)

and after using (2.5) and (3.1)

[

In1
0

0 N

]

∆α

[

x̄
(1)
i+1

x̄
(2)
i+1

]

=

[

A1 0
0 In2

]

[

x̄
(1)
i

x̄
(2)
i

]

+

[

B1

B2

]

ui, i ∈ Z+ (3.3)

where

[

B1

B2

]

= PB, B1 ∈ ℜn1×m, B2 ∈ ℜn2×m (3.4)

Taking into account (2.2), from (3.3) we obtain

x̄
(1)
i+1 = −

i+1
∑

k=1

(−1)k
(

α

k

)

x̄
(1)
i−k+1 +A1x̄

(1)
i +B1ui

= A1αx̄
(1)
i +

i+1
∑

k=2

(−1)k−1

(

α

k

)

x̄
(1)
i−k+1 +B1ui (3.5)

and

N

[

x̄
(2)
i+1 +

i+1
∑

k=1

(−1)k
(

α

k

)

x̄
(2)
i−k+1

]

= x̄
(2)
i +B2ui (3.6)

where A1α = A1 + In1
α.

The solution x̄1
i to equation (3.5) is well known, Kaczorek (2008, 2011a),

and it is given by the following theorem.
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Theorem 3.1 The solution x̄1
i of the equation (3.5) is given by the formula

x̄
(1)
i = Φix̄

(1)
0 +

i−1
∑

k=0

Φi−k−1B1uk, i ∈ Z+ (3.7)

where the matrices Φi are determined by the equation

Φi+1 = ΦiA1α +
i+1
∑

k=2

(−1)k−1

(

α

k

)

Φi−k+1, Φ0 = In1
. (3.8)

To find the solution x̄2
i of the equation (3.6) for N 6= 0 it is assumed that

N =















0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0















∈ ℜn2 . (3.9)

For (3.9) the equation (3.6) can be written in the form















0 0 ... 0 0
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0





























i+1
∑

j=0

(−1)j
(

α

j

)















x̄
(21)
i−j+1

x̄
(22)
i−j+1

...

x̄
(2,n2)
i−j+1





























=















x̄
(21)
i

x̄
(22)
i

...

x̄
(2,n2)
i















+











B21

B22

...
B2,n2











ui, i∈Z+

(3.10)

From (3.10) we have

x̄
(21)
i = −B21ui

x̄
(22)
i =

i+1
∑

j=0

(−1)j
(

α

j

)

x̄
(21)
i−j+1 −B22ui = −

i+1
∑

j=0

(−1)j
(

α

j

)

B21ui−j+1 −B22ui

x̄
(23)
i =

i+1
∑

j=0

(−1)j
(

α

j

)

x̄
(22)
i−j+1 −B23ui

= −
i+1
∑

j=0

(−1)j
(

α

j

) i−j+2
∑

k=0

(−1)k
(

α

k

)

B21ui−j−k+2

−

i+1
∑

j=0

(−1)j
(

α

j

)

B22ui−j+1 −B23ui
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...

x̄
(2,n2)
i =

i+1
∑

j=0

(−1)j
(

α

j

)

x̄
(2,n2−1)
i−j+1 −B2,n2

ui (3.11)

If N = 0 then from (3.6) we have

x̄
(2)
i = −B2ui, i ∈ Z+ (3.12)

This approach can be easily extended for

N = blockdiag [N1 N2 ... Nh ] (3.13)

where Nk ∈ ℜnk has the form (3.9) and
∑h

k=1 nk = n2.
If the matrix N has the form

N =















0 1 0 ... 0
0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 1
0 0 0 ... 0















∈ ℜn2 (3.9′)

the considerations are similar (dual).
Note that the matrices (3.9) and (3.9’) are related by N = SN̄S where

S =











0 0 ... 0 1
0 0 ... 1 0
...

... ...
...

...
1 0 ... 0 0











.

Knowing x̄1
i and x̄2

i we can find the desired solution of the equation (2.1)
from (3.1)

xi = Q

[

x̄
(1)
i

x̄
(2)
i

]

, i ∈ Z+. (3.14)

4. Examples

Example 4.1 Find the solution xi of the singular fractional linear system (2.1)
with the matrices

E =





−1 −1 −1
2 4 2
1 4 1



 , A =





0.8 1.7 2.8
0.4 0.8 1.4
2.2 4.6 2.2



 , B =





1
0
−1



 (4.1)

for α = 0.5, ui = u, i ∈ Z+ and x0 = [ 1 2 −1 ]T (T denotes the transpose).



758 T. KACZOREK

It is easy to check that the matrices (4.1) satisfy the assumptions (2.4). In
this case the matrices P and Q have the forms

P =
1

11





1 −2 5
−2 4 1
4 3 −2



 , Q =





−2 1 −1
1 0 0
0 0 1



 (4.2)

and

[

In1
0

0 N

]

= PEQ =





1 0 0
0 1 0
0 0 0



 ,

[

A1 0
0 In2

]

= PAQ =





0.1 1 0
0 0.2 0
0 0 1



 ,

PB =

[

B1

B2

]

=
1

11





−4
−3
6



 , A1α = A1 + In1
α =

[

0.6 1
0 0.7

]

,

(n1 = 2, n2 = 1) (4.3)

Equations (3.5) and (3.6) have the forms

x̄
(1)
i+1 =

[

0.6 1
0 0.7

]

x̄
(1)
i +

i+1
∑

k=2

(−1)k−1

(

0.5
k

)

x̄
(1)
i−k+1−

1

11

[

4
3

]

ui, i ∈ Z+ (4.4)

and

x̄
(2)
i = −B2ui = −

6

11
ui, i ∈ Z+ (4.5)

Solution x̄1
i of equation (4.4) has the form

x̄
(1)
i = Φix̄

(1)
0 +

i−1
∑

k=0

Φi−k−1B1uk, i ∈ Z+ (4.6)

where

Φ0 =

[

1 0
0 1

]

, Φ1 = A1α =

[

0.6 1
0 0.7

]

,

Φ2 = A2
1α − In1

α(α− 1)

2!
=

[

0.485 1.300
0 0.615

]

, ... (4.7)

and

x̄0 = Q−1x0 =





0 1 0
1 2 1
0 0 1









1
2
−1



 =





2
4
−1



 , x̄
(1)
0 =

[

2
4

]

, x̄
(2)
0 = [−1]. (4.8)
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The desired solution of the singular fractional system with (4.1) is given by

xi = Qx̄i =





−2 1 −1
1 0 0
0 0 1





[

x̄
(1)
i

x̄
(2)
i

]

(4.9)

where x̄1
i and x̄2

i are determined by (3.7) and (4.5), respectively.

Example 4.2 Find the solution xi of the singular fractional linear system (2.1)
with the matrices

E =





1 0 0
0 1 −1
1 −1 1



 , A =





0.2 2 −2
2 1 0

−1.8 0 −1



 , B =





1 2
−1 2
2 −1



 (4.10)

for α = 0.8, arbitrary ui, i ∈ Z+ and x0 = [ 1 1 1 ]T .
It is easy to check that the matrices (4.10) satisfy the assumptions (2.4). In

this case the matrices P and Q have the forms

P =





−1 2 2
1 −1 −1
−1 2 1



 , Q =





1 0 0
−2 1 1
−2 0 1



 (4.11)

and

[

In1
0

0 N

]

= PEQ =





1 0 0
0 0 0
0 1 0



 ,

[

A1 0
0 In2

]

= PAQ =





0.2 0 0
0 1 0
0 0 1



 ,

PB =

[

B1

B2

]

=





1 0
0 1
−1 1



 , A1α = A1 + In1
α = [1], (n1 = 1, n2 = 2)

(4.12)

In this case equations (3.5) and (3.6) have the forms

x̄
(1)
i+1 = x̄

(1)
i +

i+1
∑

k=2

(−1)k−1

(

0.8
k

)

x̄
(1)
i−k+1 + [ 1 0 ]ui, i ∈ Z+ (4.13)

[

0 0
1 0

]





i+1
∑

j=0

(−1)j
(

0.8
j

)

[

x̄
(21)
i−j+1

x̄
(22)
i−j+1

]



 =

[

x̄
(21)
i

x̄
(22)
i

]

+

[

0 1
−1 1

]

ui, i ∈ Z+

(4.14)

and

x̄0 = Q−1x0 =





1 0 0
0 1 −1
2 0 1









1
1
1



 =





1
0
3



 , x̄
(1)
0 = [1], x̄

(2)
0 =

[

0
3

]

. (4.15)
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The solution x̄1
i of the equation (4.13) with x̄1

0 = 1 can be easily found using
(3.7) and (3.8).

From (4.14) we have

x̄
(21)
i = [ 0 −1 ]ui, i ∈ Z+

x̄
(22)
i =

i+1
∑

j=0

(−1)j
(

0.8
j

)

[ 0 −1 ]ui−j+1 + [ 1 −1 ]ui, i ∈ Z+ (4.16)

The desired solution of the singular fractional system with (4.10) is given by

xi = Qx̄i =







1 0 0

−2 1 1

−2 0 1













x̄
(1)
i

x̄
(21)
i

x̄
(22)
i






(4.17)

where x̄1
i , x̄

21
i and x̄22

i are determined by (4.13) and (4.2), respectively.

5. Concluding remarks

The singular fractional linear discrete-time systems have been introduced. Using
the Weierstrass regular pencil decomposition the solution to the state equation
of singular fractional linear discrete-time system has been derived. The method
of finding the solution to the singular fractional systems has been illustrated by
two examples. These considerations can be extended to singular fractional linear
discrete-time systems with singular pencils. Open problems are constituted
by the extensions of these considerations to positive singular fractional linear
systems and to singular positive linear systems with different fractional orders,
Kaczorek (2010b, 2011b).
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