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Abstract: In this paper we investigate a mathematical model of
cancer invasion of tissue, which incorporates haptotaxis, chemotaxis,
proliferation and degradation rates for cancer cells and the extracel-
lular matrix, kinetics of urokinase receptor, and urokinase plasmino-
gen activator cycle. We solve the model using spectrally accurate
approximations and compare its numerical solutions with laboratory
data. The spectral accuracy allows to use low-dimensional matrices
and vectors, which speeds up the computations of the numerical
solutions and thus to estimate the parameter values for the model
equations. Our numerical results demonstrate correlations between
numerical data computed from the mathematical model and in vivo
tumour growth rates from prostate cell lines.
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1. Introduction

Animal models prove useful to researchers in the manipulation of specific as-
pects of cancerogenic systems and for the testing of experimental therapies (see
Holzer et al., 2003). On the other hand, mathematical models demonstrate po-
tential to provide alternatives to animal models and decrease the numbers of
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laboratory experiments and partially replace them by numerical experiments,
which describe the behaviour of simulated tumours.

The purpose of the paper is to use the laboratory data from Calvo et al.
(2002) and compute parameter values for the mathematical model of cancer
invasion of tissue, which includes differential equations for kinetics of urokinase
receptor and urokinase plasminogen activator cycle, and incorporates hapto-
taxis, chemotaxis, and proliferation and degradation rates for cancer cells and
the extracellular matrix (see Chaplain and Lolas, 2006). We estimate the pa-
rameter values for the model equations by minimizing the error between the
computed solutions and the available laboratory data.

In Jackiewicz et al. (2009), the laboratory data from Calvo et al. (2002) were
successfully applied to estimate parameter values for the kinetic model by Kolev
(2005), which is composed of partial integro-differential equations. The appli-
cation of models of this type to tumour growth has been initiated by Bellomo
and Forni (1994) and developed later in a series of papers (e.g. De Lillo et al.,
2007; Bellomo and Delitala, 2008; Bellomo, Li and Maini, 2008; De Angelis and
Lodz, 2008). Recently, Lachowicz (2005) has proved that, for certain parameter
ranges, a particular kinetic model considered on infinite domains is equivalent
to the macroscopic model by Chaplain and Anderson (2003). The result by
Lachowicz (2005) was a motivation for the parameter estimation in Kolev and
Zubik-Kowal (2010) for the model by Chaplain and Anderson (2003). Since
the latter model does not include differential equations describing kinetics of
urokinase receptor and urokinase plasminogen activator cycle, in this paper, we
apply the laboratory data from Calvo et al. (2002) to the macroscopic model by
Chaplain and Lolas (2006), which is different than the models in Chaplain and
Anderson (2003) and Kolev (2005). The parameter values for the macroscopic
model by Chaplain and Lolas (2006), with differential equations describing ki-
netics of urokinase receptor and urokinase plasminogen activator cycle, were not
yet estimated according to laboratory data.

For the estimation of the parameter values for the model by Chaplain and
Lolas (2006), we construct a numerical algorithm based on spectrally accurate
approximations. The approximations allow to use low-dimensional vectors of
data for solving the model and save computational time for each solution com-
puted for the selection of the parameter values. We use the approximations to
gain model parameters for five cell lines and compute the numerical data for the
corresponding growths of tumours. Results concerning errors of the spectrally
accurate approximations, which we apply in this paper, are provided in the
book by Canuto et al. (1988). The book by Fornberg (1996) also provides many
illustrations, examples, explanations, comparisons of approximations, and error
estimates for spectral methods. Additionally, it shows significant strengths of
spectral approximations in solving time-dependent PDEs. The book by Forn-
berg (1996) also presents applications of spectral approximations in turbulence
modelling, weather prediction, and wave motion. Our paper shows that spectral
approximations can also be applied in cancer research.
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The paper is organized as follows. A mathematical description of the model
equations is provided in Section 2. In Section 3, we introduce the numerical
algorithm and present numerical experiments that lead to parameter estimation
for the model equations and comparison of the resulting numerical solutions
with the laboratory data. Finally, Section 4 includes our concluding remarks
and future directions.

2. Oscillatory behaviour in cancer cells and extracellular

matrix proliferation terms

In this paper, we apply laboratory data and find parameter values for the math-
ematical model, which was introduced by Chaplain and Lolas (2006). The ob-
jective of the paper is to demonstrate that the model by Chaplain and Lolas
(2006) has the potential to describe the behaviour of cell populations in vivo

and to predict growths of tumours. In this paper, we have obtained a corre-
spondence between predicted and laboratory data. We computed the predicted
data from the model by Chaplain and Lolas (2006) and present them in the
next section. The data are compared with laboratory data in Fig. 1.

For the cancer cell motion, Chaplain and Lolas (2006) considered the follow-
ing partial differential equation:

∂n

∂t
=

∂

∂x

(

dn
∂n

∂x

)

︸ ︷︷ ︸

dispersion

−
∂

∂x

(

χn
∂m

∂x

)

︸ ︷︷ ︸

chemotaxis

−
∂

∂x

(

γn
∂f

∂x

)

︸ ︷︷ ︸

haptotaxis

+µ1np(1− n− f)
︸ ︷︷ ︸

proliferation

, (2.1)

where the tumour cell density n depends on time t and the spatial variable x
from the scaled domain [0, 1]. Moreover, dn is the random motility coefficient,
µ1 is the proliferation rate of the tumour cells, and χ and γ are the chemotactic
and haptotactic coefficients, respectively. The proliferation of tumour cells is
modelled by the term µ1pn(1−n−f), which, because of p, the concentration of
the urokinase plasminogen activator (uPA) bound to the uPA receptor (uPAR),
allows to incorporate the oscillatory behaviour in the cancer cells, see Chaplain
and Lolas (2006). The unknown functions f and m represent the density of the
extracellular matrix (ECM) and uPA concentration, respectively.

The extracellular matrix is a complex meshwork of proteins and proteogly-
cans that isolates tissue compartments, within which solid organs are placed
(see Liotta et al., 1983). The equation governing the processes of the ECM
degradation and production is the following equation:

∂f

∂t
= − ηmf

︸︷︷︸

proteolysis

+µ2fp(1− n− f)
︸ ︷︷ ︸

renewal

, (2.2)

where η and µ2 are the rate constants for the degradation and growth, respec-
tively. Motivated by the information on clinical observations of the increased
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production (re-establishment) of ECM in case of prostate cancer (see Liotta et
al., 1983), we consider the model with µ2 6= 0.

Proteases such as metalloproteases and serine proteases are enzymes that
are released from tumours. They play very significant role in the degradation
of ECM thus allowing the migration of cancer cells and their metastasis. The
serine proteases of the plasminogen activation system include urokinase uPA,
which uses a specific uPA receptor (uPAR) to migrate through the ECM (see
Andreasen et al., 1997, 2000). The uPA is produced by the tumour cells, diffuses
throughout the tissue, and undergoes decay. Therefore, the equation governing
the evolution of uPA concentration is given by

∂m

∂t
= dm

∂2m

∂x2
︸ ︷︷ ︸

diffusion

+ αn
︸︷︷︸

production

− βm
︸︷︷︸

decay

, (2.3)

where dm is a constant diffusion coefficient, α is the production rate, and β is
the decay rate.

As in Chaplain and Lolas (2006), we choose the following system of ordinary
differential equations for the uPAR kinetics:

dp

dt
= q − 3

dq

dt
= (q − 3)

(

1− (p− 2.1)2
)

− (p− 2.1),

(2.4)

where q represents the concentration of the uPAR. Figure 18 in Chaplain and Lo-
las (2006), illustrates the limit cycle kinetics of the system (2.4). The combined
system (2.1)-(2.4) overcomes the weakness of the models, which incorporate only
constant reduction terms for cancer cells.

The system (2.1)-(2.4) is not complete and has to be closed by initial and
boundary conditions. As in Chaplain and Anderson (2003) and Chaplain and
Lolas (2006), we assume that at time t = 0, the initial small lump of cancer cells
is centered around x = 0 and the function n has the initial Gaussian distribution

n(x, 0) = exp
(
− x2/ǫ

)
, (2.5)

where ǫ is a positive constant. For the initial distribution of ECM and uPA we
choose

f(x, 0) = 1− 0.5n(x, 0),

m(x, 0) = 0.5n(x, 0),
(2.6)

where x ∈ [0, 1], see Chaplain and Anderson (2003), and we choose p(0) and
q(0) according to numerical experiments and laboratory data. For the boundary
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conditions we choose the zero-flux conditions

∂n

∂x
(0, t) =

χ

dn
n(0, t)

∂m

∂x
(0, t) +

γ

dn
n(0, t)

∂f

∂x
(0, t),

∂m

∂x
(0, t) = 0

(2.7)

at the left edge x = 0 (the condition (2.6) is denoted in Chaplain and Lolas
(2006) by (8) and the condition (2.7) is denoted in Chaplain and Lolas (2006)
by (6)-(7)), and the Dirichlet conditions

n(1, t) = 0, m(1, t) = 0, (2.8)

at the right edge x = 1 of the considered part of the tissue, which abuts a
healthy part of the organism at x = 1.

The purpose of this paper is to apply the experimental data from Calvo et
al. (2002) to the model (2.1)-(2.8) and demonstrate that its solutions correlate
with the in vivo growths of prostate tumours tested in five nude mice (see
Calvo et al., 2002). In the next section, we construct a numerical algorithm
for the model (2.1)-(2.8) and compute its parameters µ1, µ2, α, β, γ, η, χ, dn, dm
by minimizing the error between its numerical solutions and the experimental
data from Calvo et al. (2002). Since the solutions have to be computed for
many different sets of the parameters, we construct the algorithm by using
spectrally accurate approximations so that the resulting schemes are based on
small amounts of spatial grid-points and low-dimensional vectors, which saves
computational time for each solution corresponding to one combination of the
parameters. Thanks to the spectral accuracy we found such parameter values
of the model equations for which the resulting numerical data correlate with the
laboratory data.

3. Numerical algorithm

In this section, we describe the numerical algorithm, which we apply to the
model (2.1)-(2.4). Consider the Chebyshev-Gauss-Lobatto points

xi =
1

2
−

1

2
cos

iπ

N + 1
, (3.1)

with i = 0, 1, . . . , N + 1 and the first order differentiation matrix

D =

[

di,j

]N+1

i,j=0
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based on (3.1). The entries di,j are defined by the expressions

di,j =







ci
cj

(−1)i+j

xi − xj

, i 6= j,

−
xj

2(1− x2
j )
, 1 ≤ i = j ≤ N,

2(N + 1)2 + 1

6
, i = j = 0,

−
2(N + 1)2 + 1

6
, i = j = N + 1,

where

ci =







2, i = 0, N + 1,

1, i = 1, . . . , N,

see Canutp et al. (1998).
We note that the word matrix is used here in the mathematical sense (as e.g.

in Canuto (1998) and Fornberg (1996)) as an array of quantities or expressions
in rows and columns. On the other hand, before Section 3, we use the word
matrix (ECM-ExtraCellular Matrix) in the biological sense as e.g. in Chaplain
and Anderson (2003) and Chaplain and Lolas (2006).

We use the following notations

n(t) =











n(x0, t)

n(x1, t)
...

n(xN , t)











, nx(t) =














∂n

∂x
(x0, t)

∂n

∂x
(x1, t)

...
∂n

∂x
(xN , t)














, nxx(t) =














∂2n

∂x2
(x0, t)

∂2n

∂x2
(x1, t)

...

∂2n

∂x2
(xN , t)














,

and similar notations for f and m. For the first order derivatives, we obtain the
following approximations

nx(t) ≈ D
(1)
0 n(t) +

γ

dn
n(x0, t)s

f
0 (t)e1, (3.2)

fx(t) ≈ D(1)f(t) + f(xN+1, t)w, (3.3)

mx(t) ≈ D
(1)
0 m(t), (3.4)

with

D(1) =

[

di,j

]N

i,j=0

,
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and D
(1)
0 being an N + 1 by N + 1 matrix with zeros in the first row and the

other rows as in D(1), w is an N + 1 by 1 column vector including the entries
of the last column of D except the last entry dN+1,N+1, e1 is the unit N +1 by
1 column vector and

sf0 (t) =

N+1∑

j=0

d0,jf(xj , t).

From (3.4), we obtain the approximation














∂

∂x

(

n(x0, t)
∂m

∂x
(x0, t)

)

∂

∂x

(

n(x1, t)
∂m

∂x
(x1, t)

)

...
∂

∂x

(

n(xN , t)
∂m

∂x
(xN , t)

)














≈ D(1)

(

n(t)⊙
(

D(1)m(t)
)
)

,

for the chemotaxis term in (2.1). Here, ⊙ stands for the component-wise mul-
tiplication between two vectors. From (3.3) we obtain














∂

∂x

(

n(x0, t)
∂f

∂x
(x0, t)

)

∂

∂x

(

n(x1, t)
∂f

∂x
(x1, t)

)

...
∂

∂x

(

n(xN , t)
∂f

∂x
(xN , t)

)














≈ D(1)

(

n(t)⊙
(

D(1)f(t) + f(xN+1, t)w
)
)

,

for the haptotactic term. Considering the general case with the random motility
coefficient dn = dn(f,m), which may be a function of ECM or/and uPA, for the
dispersion term in (2.1), from (3.2), we obtain the approximation














∂

∂x

(

dn,0(t)
∂n

∂x
(x0, t)

)

∂

∂x

(

dn,1(t)
∂n

∂x
(x1, t)

)

...
∂

∂x

(

dn,N(t)
∂n

∂x
(xN , t)

)














≈
D(1)

(

dn(t)⊙
(

D
(1)
0 n(t)+

γ

dn
n(x0, t)s

f
0 (t)e1

)
)

+dn,N(t)snN+1(t)w,
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where

dn(t) =











dn,0(t)

dn,1(t)

...

dn,N (t)











,

dn,i(t) = dn(xi, t), i = 0, 1, . . . , N,

and

snN+1(t) =

N+1∑

j=0

dN+1,jn(xj , t).

From (2.1) and the above three approximations, for the chemotaxis, haptotaxis,
and dispersion terms, we obtain the following ordinary differential equation

dn

dt
(t) = D(1)

(

dn(t)⊙
(

D
(1)
0 n(t) +

γ

dn
n(x0, t)s

f
0 (t)e1

)
)

+ dn,N (t)snN+1(t)w − χD(1)

(

n(t)⊙
(

D(1)m(t)
)
)

− γD(1)

(

n(t)⊙
(

D(1)f(t) + f(xN+1, t)w
)
)

+ µ1n(t)⊙ p(t)⊙
(

1− n(t)− f(t)
)

.

(3.5)

The discrete form for (2.2) is written in the following way

df

dt
(t) = f(t)⊙

(

µ2p(t)⊙
(

1− n(t)− f(t)
)

− ηm(t)

)

. (3.6)

The diffusion of the uPA can be approximated by

mxx(t) ≈ D(1)mx(t) + smN+1(t)w,

which, from (3.4), gives

mxx(t) ≈ D(1)D
(1)
0 m(t) + smN+1(t)w

and results in the following discrete form for (2.3)

dm

dt
(t) = dmD(1)D

(1)
0 m(t) + dmsmN+1(t)w + αn(t) − βm(t). (3.7)
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The system of ordinary differential equations (3.5), (3.6), (3.7), and (2.4) is
not complete and has to be closed by initial conditions. From (2.5)-(2.6) we
obtain

n(0) =











exp
(
− x2

0/ǫ
)

exp
(
− x2

1/ǫ
)

...

exp
(
− x2

N/ǫ
)











(3.8)

and the starting vectors for the ECM and uPA are

f(0) = 1− 0.5n(0), m(0) = 0.5n(0), (3.9)

respectively. The value ǫ = 0.01 is chosen according to the laboratory data from
Calvo et al. (2002) at the initial measurement. The initial conditions

p(0) = 1, q(0) = 1

are chosen according to the numerical experiments with the semi-discrete scheme
(3.5), (3.6), (3.7), (2.4), (3.8), and (3.9) and comparison of the numerical results
with the laboratory data from Calvo et al. (2002).

The parameter values µ1, µ2, α, β, γ, η, χ, dn, and dm used in the model equa-
tions (2.1)-(2.3) and in the construction of the numerical scheme (3.5), (3.6),
(3.7) are unknown and have to be estimated in order to find the approximations
to the tumour cell density n, the ECM density f , and the uPA concentration m.
In this paper, we apply the laboratory data from Calvo et al. (2002) to estimate
the parameter values for the model (2.1)-(2.3).

The laboratory data from Calvo et al. (2002) are shown in Fig. 1 by ⊲,
⋄, +, ◦, and ∗ for the in vivo tumour growth rates from the five prostate
Pr14C1, Pr14C2, Pr117, Pr14, and Pr111 cell lines, respectively. For com-
parison, the numerical data are displayed by the solid curves. The laboratory
data from Calvo et al. (2002) are compared with numerical data computed from
the model equations (2.1)-(2.4) with various sets of values assigned for the con-
stants µ1, µ2, α, β, γ, η, χ, dn, and dm. Each set of the constants gives a different
solution n and among many solutions, for each prostate cell line, only the so-
lutions which capture the main characteristic features of the in vivo tumour
growth rates are chosen. This selection of solutions of the model equations
(2.1)-(2.4) and their corresponding parameter values is computationally expen-
sive and thus the design of the numerical algorithm is crucial in the estimations
of the unknown parameters. Since our algorithm is based on spectrally accurate
approximations for the partial derivatives with respect to x, instead of using
large dimensional vectors, like e.g. in finite difference schemes, we use low di-
mensional vectors and save computational time for each solution computed for
the selection of the parameter values.
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Figure 1. Laboratory versus numerical data. Laboratory data are denoted
by ⊲, ⋄, +, ◦, and ∗ for Pr14C1, Pr14C2, Pr117, Pr14, and Pr111 cell lines,
respectively. Numerical data are represented by the solid curves

For each cell line, the parameter values are chosen according to the minimal

error between the data and the computed values v(t) =
4

3
πr3(t), where

r(t) = k

∫ 1

0

n(x, t)dx,

and k is a constant of proportionality approximated by using the vertical scale
from Figure 1I presented by Calvo et al. (2002). Here,

∫ 1

0

n(x, t)dx ∈ [0, 1]

corresponds with a mass of cells along a line segment scaled to the x-domain
[0, 1], which is shifted in such a way that the tumours are centered around
x = 0. The resulting parameter values are listed for each cell line in Table 1
and the solutions that correspond to these parameter values are presented in
Fig. 1. As in Kolev and Zubik-Kowal (2011), we consider x ∈ [0, 1] for which

r(t) = k
∫ 1

0
n(x, t)dx corresponds with a mass of cells along a line segment in
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1-dimensional x-domain and the volume is computed like in Kolev and Zubik-
Kowal (2010) from v(t) = 4

3πr
3(t).

The curves from Fig. 1 show good correlations between the numerical and
laboratory data for all the cell lines provided in Calvo et al. (2002). The strate-
gies presented in this paper can also be used to predict in vivo tumour growth
rates for other cell lines e.g. the mammary cancer cells considered in Jorcyk,
Kolev and Zubik-Kowal (2011) (C3(1)/SV40 Large T-antigen (Tag) transgenic
mouse model) and in Jorcyk et al. (2011) (spontaneous tumours of the mam-
mary gland).

Table 1. Parameter values for in vivo cell growth in C3(1)Tag Mice.

Param. Pr111 Pr117 Pr14 Pr14C2 Pr14C1

µ1 5.1 · 10−1
1.4 · 101 4.6 · 102 1.3 · 105 9.0

µ2 2.9 · 10−4
7.7 · 10−9

1.3 · 10
−14

8.9 · 101 2.9 · 10
−3

α 2.9 7.8 · 10−1
2.9 1.1 5.8

β 3.5 · 10−3
8.4 · 10−6

3.7 · 10−5
9.1 · 10−9

3.8 · 10−10

γ 7.8 · 10−3
3.2 · 10−9

1.7 · 10−9
1.6 · 101 3.7 · 10−10

χ 8.2 · 10
−11

2.2 · 10−3
1.0 · 10−7

1.0 · 10−4
6.6 · 10

−4

η 4.9 · 10−2
5.4 · 10−1

2.4 · 10−1
3.6 · 10−1

2.0

dn 6.4 · 10−3
6.5 · 10−2

7.0 · 10−2
1.2 · 102 2.8 · 10

−1

dm 8.7 · 10−8
1.9 · 10

−16
3.2 · 10

−12
2.2 · 10−15

1.5 · 10−10

4. Concluding remarks and future directions

This paper shows that it is possible to construct mathematical models, which
correlate with experimental data. We have applied the laboratory data from
Calvo et al. (2002) and have estimated parameter values for the mathematical
model of cancer cell invasion of tissue, which includes the chemotaxis, hapto-
taxis, and proliferation terms (see Chaplain and Lolas, 2006). The ability of the
model to fit well the experimental data demonstrated in our paper confirms the
usefulness of the mathematical modeling approach and the computational sim-
ulations in cancer research. In our future work we plan to develop the model for
further investigations of mechanisms of cancer invasion and metastasis, which
could be used for the design and improvement of treatment strategies.
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