Control and Cybernetics
vol. 40 (2011) No. 3

XCleaner: A new method for clustering XML documents
by structure*!

by

Dariusz Brzezinski, Anna Les$niewska, Tadeusz Morzy
and Maciej Piernik

Institute of Computing Science, Poznan University of Technology
Piotrowo 2, 60-965 Poznan, Poland

Abstract: With the vastly growing data resources on the In-
ternet, XML is one of the most important standards for document
management. Not only does it provide enhancements to document
exchange and storage, but it is also helpful in a variety of information
retrieval tasks. Document clustering is one of the most interesting
research areas that utilize semi-structural nature of XML. In this
paper, we put forward a new XML clustering algorithm that re-
lies solely on document structure. We propose the use of maximal
frequent subtrees and an operator called Satisfy/Violate to divide
documents into groups. The algorithm is experimentally evaluated
on real and synthetic data sets with promising results.

Keywords: XML, clustering, patterns.

1. Introduction

XML is a standard for developing numerous web applications that deal with
document retrieval and storage. It is also widely used for annotating Web
resources like articles, movies, and web services. An XML document consists
of a structure and content, and in this way differs from traditional data. This
semi-structural nature of XML allows to model a wide variety of databases as
XML documents. There is a number of papers (see Widom, 1999; Florescu
and Kossmann, 1999; Chawathe, 1999) that have raised the issue of processing,
storing, and managing of documents in this format. However, in the field of XML
processing, data mining is still a new topic. Clustering represents one of the
most interesting trends in this research area (see Lian et al., 2004; Lesniewska,
2009; Costa et al., 2004; Tran et al., 2008).

*Submitted: September 2010; Accepted: August 2011.
TThis is an extended and amended version of the paper, presented at the 5*® Congress of
Young IT Scientists (Miedzyzdroje, 23-25 September 2010).

878 D. BRZEZINSKI, A. LESNIEWSKA, T. MORZY, M. PIERNIK

Clustering aims at grouping together similar objects, in this case documents,
usually according to a similarity measure. Because text document clustering al-
gorithms ignore the structural information in the data, they are considered to
be inappropriate for the purposes of grouping XML documents (see Dalama-
gas et al., 2004). Thus, there is a need to develop new clustering algorithms
specifically for XML documents.

XML clustering methods can be categorized into three main groups: methods
based on content, methods based on structure, and methods that analyze both
content and structure. In this article we are focusing on the structural similarity
of documents. This approach has many real-world applications in a wide variety
of domains. Identification of documents with similar structure can prove useful
for systems that extract DTDs and XSDs from XML data sets. Structure-based
clustering can also help to solve the problem of recognition of different sources
that provide the same kind of information. Alternatively, it can be used in the
structural analysis of a Web site. Moreover, since the XML language can encode
hierarchical data, structure-based methods can be exploited in the discovery of
structurally similar macromolecular tree patterns, encoded as XML documents,
in bioinformatics.

The main contribution of this paper is a new methodology for clustering
XML documents by structure. Our approach is based on a divisive algorithm
that uses maximal frequent subtrees to split documents into groups. To perform
the clustering, we introduce a subtree matching algorithm and a new operator
called Satisfy/Violate. The proposed methodology is tested against heteroge-
neous and homogeneous sets of data. The preliminary results of the research
indicate that our algorithm can provide high quality clustering for both types
of data sets.

The structure of this paper is as follows: Section 2 discusses relevant work
on the issue of clustering XML documents by structure; Section 3 contains the
description of our method with examples; Section 4 presents the experimental
environment and achieved results; Section 5 contains conclusions and shows
directions of further research.

2. Related work

One of the earliest approaches to clustering XML documents based on their
structure is the XClust algorithm, see Lee et al. (2002), where authors propose to
cluster documents by using Document Type Definitions (DTDs). This approach
uses a similarity measure based on the semantic and structural information of
elements in the corresponding document DTDs. However, this approach is not
suitable for environments where documents do not have DTDs.

Most of the existing representations of XML documents are based on a la-
beled tree (see Candillier et al., 2006; Nayak and Iryadi, 2006) as it is a natural
model for XML hierarchical structure. An XML document can be easily trans-
formed into a rooted labeled tree, but solutions based on tree-like structures

XCleaner: a new method for clustering XML documents by structure 879

require complex computations. Lian et al. (2004) showed that calculating the
similarity between two documents represented as rooted ordered labeled trees,
using the tree edit distance, is not efficient. Therefore, they proposed a graph
summarization of XML documents called s-graph. To capture structural simi-
larities, the distance between two s-graphs is computed according to the number
of common element-subelement relationships. A similar solution, based also on
a tree structure, was proposed by Dalamagas et al. (2004). This approach in-
troduced different structural summaries and improved computational efficiency
without compromising cluster quality.

A different approach was presented in the XProj algorithm (see Aggarwal et
al., 2007). The authors propose to use rooted ordered labeled trees to represent
XML documents. The XProj algorithm uses a set of frequent substructures
(sequences of tree edges) as the representatives of document clusters. The clus-
tering algorithm is a partition based algorithm, which constructs groups that
maximize the structural similarities among the documents within a group.

Our solution is based on the assumption, similar to that in XProj, that fre-
quent substructures preserve more information than simple element-subelement
relationships (see Dalamagas et al., 2004) or nodes and edges (see Lian et al.,
2004). In contrast to XProj, we propose a hierarchical method which uses
maximal frequent subtrees as patterns that represent clusters. Our solution is
also unique in the use of an operator called Satisfy/Violate that determines the
proper cluster for a document.

3. The XCleaner methodology

Our approach is based on a real-world observation that similar objects can be
characterized by a set of unique features. It is unnecessary to compare all objects
in a set if we know the characteristic features of groups we want to create. For
example, for a set of shapes it is unnecessary to compare all figures if we know it
contains only triangles and rectangles. The easiest solution is to check whether
a shape is a rectangle or triangle and assign it to the proper cluster based on
the answer. This approach, called clustering by patterns, is the basis of our
algorithm. We extract characteristic patterns from the input data set and use
them to group objects by simple comparison.

In the following subsections we present the main components of our ap-
proach. In Section 3.1 we describe the document representation used in our
algorithm. In Section 3.2 we define patterns that will represent clusters and
the algorithm to obtain them. In Sections 3.3 and 3.4 we present the main
components of the XCleaner algorithm: the subtree matching algorithm and the
Satisfy/Violate operator. In Section 3.5 we present the XCleaner algorithm,
using the Satisfy/Violate operator to perform XML document clustering by
patterns. Finally, Section 3.6 discusses the computational complexity of the
presented approach.

880 D. BRZEZINSKI, A. LESNIEWSKA, T. MORZY, M. PIERNIK

3.1. Document representation

In our work we use a tree-based document representation proposed by Zaki
(2002). This representation relies on mapping the set of all XML tags in the
document database into integers and then coding each document tree as a string.
The string representation Sz of document tree 7 is constructed as follows: add
vertex labels to Sz in a depth-first preorder traversal of 7 and add symbol -1
whenever backtracking from a child to its parent. For example, the tree in Fig. 1
would be coded as 013 1-1-1-122-13-1-1. The numbers in brackets next
to the tree nodes in Fig. 1 show the depth-first traversal order.

Figure 1. Tree representation of an XML document.

3.2. Pattern mining

One of the most important components of our approach is the pattern mining
algorithm. To describe it we present some necessary definitions. A rooted,
ordered, labeled tree 7’ is a subtree of a tree 7 if there exists a one-to-one
mapping between each element and edge of 7/ and 7. A subtree F is called
frequent in the set of document trees at a user defined minimum support level
minsup, if it is a subtree of minsup percent or more document trees. A frequent
subtree M is called maximal if there does not exist any other frequent subtree
T’ for which M would be a subtree. In this paper we will often refer to maximal
frequent subtrees as patterns. To find patterns in a data set of XML documents
we use the CMTreeMiner proposed by Chi et al. (2005).

Not all frequent subtrees provide valuable information for clustering. Pat-
terns that occur in all documents do not allow to differentiate documents from
each other. Therefore, we use an additional parameter mazsup that defines the
maximal percentage of documents that a pattern can occur in. By decreasing
the value of this parameter we reduce the maximal number of documents that
can be assigned to one cluster.

3.3. Subtree matching algorithm

The role of the subtree matching algorithm is to determine, in an efficient way,
whether a document contains a given pattern or not. The algorithm finds all

XCleaner: a new method for clustering XML documents by structure 881

the occurrences of the pattern root in the document by performing a depth-
first traversal and tries to expand the pattern from each of those points. The
algorithm terminates when the first occurrence of the pattern is found or when
it reaches the end of the document. The exact steps are given in Algorithm 1.

Algorithm 1 Subtree Matching Algorithm

Input: d - an XML document in string format; p - a pattern in string format
Output: true if p is a subtree of d, false otherwise

g

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

docPos «— 0;
startPos «— null
calculate depth level for each label p; € p and remove all return marks —1
from p;
docLevel « 0;
if startPos # null then
docPos <+ startPos;
if startPos > last occurrence of p[0] in d then
return false;
startPos «— null,;
for i = {0, ...,legth(p) — 1} do
while docPos < docLength and (p[i] # d[docPos] or docLevel #
depth(pli))) do
if i > 0 then
if d[docPos] # —1 then
docLevel «— docLevel + 1. ;
else
docLevel «+— docLevel — 1;
if IsLevelCrossed(p,docLevel, i) then
i « index of the parent of pli];
if d[docPos] = p[0] and startPos = null then
startPos < docPos;
docPos «— docPos + 1;
if d[docPos] = p[0] and startPos = null then
startPos < docPos;
if docPos > docLength then
goto 5;
else if i = legth(p) — 1 then
return ftrue;
else
docLevel «+ docLevel + 1;
docPos <« docPos + 1;

882 D. BRZEZINSKI, A. LESNIEWSKA, T. MORZY, M. PIERNIK

We will illustrate the algorithm with an example depicted in Fig. 2. Let us
define the symbols we will use:
e docPos: current position in the document string representation,
e docLevel: depth of the current node relative to the pattern root found in
the document,
e startPos: the next root occurrence when the algorithm does not manage
to find the pattern match in a single pass.

Example document:01223-1-14-1-1-1235-1-134-1-1-1

docPos = 2, docLevel =0, docPos = 3, docLevel = 1, docPos =9, docLevel =0,
startPos = null startPos = null startPos = 3

{23) ()
© (1)

OO z’i‘-
docPos = 11, docLevel = 0, docPos = 12, docLevel = 1, docPos = 15, docLevel = 1,
startPos = 3 startPos = 3 startPos = 3
(9)
.:.41‘,
~\
1
docPos = 16, docLevel = 1 docPos = 17, docLevel = 2,
’ ’ ’ ’ rn foun
startPos = 3 startPos = 3 pattern found

Figure 2. Subtree matching example

Let d be an XML document and p be a pattern. We begin with transforming
p from its string format (2 3 4 -1 -1) to a label[level] format (2[1] 3[2] 4[3]).
Next, we seek for the first occurrence of the pattern root (2) (Fig. 2(a)). Once
we found it, we continue traversing the tree in search for the next pattern

XCleaner: a new method for clustering XML documents by structure 883

element (3). While searching for the second pattern element we find an element
with a label identical to that of the pattern root, so we store its position as
startPos (Fig. 2(b)). Continuing with the depth-first traversal of the document
we find the second pattern element (label 3 at position 4), but the docLevel
of this element is 3, while we are looking for the element at level 2. So, we
have to continue searching for the second pattern element, which finally leads
us a level higher than the found pattern root (Fig. 2(c)). This forces us to
search once again for the pattern root. In Fig. 2(d-f) we see another attempt
at matching p to d, this time from docPos = 11. While searching for the third
pattern element we reach the level of its parent and have to search for it again
(Fig. 2(f)). Fig. 2(g-i) shows the last three steps in matching pattern p to
document d.

3.4. Satisfy/Violate operator

The Satisfy/Violate operator divides a set into two subsets according to a user-
specified rule. More formally, for a set of objects D and a rule r the Sat-
isfy/Violate operator divides D into subset S containing objects which satisfy
r and subset V containing objects which do not satisfy 7.

The idea standing behind the Satisfy/Violate operator is much broader than
just our application. It can be used, for example, in divisive clustering or
decision tree construction algorithms as a split operator. The rule behind the
operator can be anything from a simple value comparison to a decision rule. In
our example, a set of XML documents serves as an input set and the patterns
serve as a set of rules. Additionally, we add a sensitivity parameter o which
indicates the percent of patterns that a single document has to contain to be
assigned to the satisfy set. Consequently, (1 — «) is the percent of patterns that
a single document cannot contain to be assigned to the violate set. The process
of applying the operator in our application is outlined in Algorithm 2.

Algorithm 2 Satisfy /Violate operator for a set of patterns and XML documents

Input: D - set of documents; P - set of rules/patterns; « - sensitivity factor
Output: S - Satisfy set; V - Violate set

1: for all documents d € D do
matchCount « 0;
for all patterns p € P do

if Matches(d,p) then

matchCount «— matchCount + 1;

if matchCount > « - count(P) then

S — Su{d};
else

V—VU{d}

884 D. BRZEZINSKI, A. LESNIEWSKA, T. MORZY, M. PIERNIK

3.5. The XCleaner algorithm

Given the above definitions we can now describe the XCleaner methodology.
Algorithm 3 outlines the procedure of clustering XML documents by using the
Satisfy/Violate operator with maximal frequent subtrees.

Algorithm 3 The XCleaner Algorithm

Input: D - set of documents to cluster; k - number of clusters; minsup - minimal
support for patterns; maxsup - maximal support for patterns; « - sensitivity of
the Satisfy/Violate operator

Output: C - a set of XML document clusters

1: P« TreeMiner(D, minsup, maxsup);
2: Pgroups — AHC(P, k’),
3: C < k empty clusters each defined by one pattern cluster p. € Pgroups;
4: candidateSet < D;
5. for all c € C do

6: ¢« Satisfy/Violate(candidateSet, p., a).S;

7. candidateSet — Satisfy/Violate(candidateSet, p.,).V,

The algorithm begins with searching the document data set for patterns.
Next, it clusters the patterns into £ groups with an agglomerative hierarchical
clustering (AHC) algorithm (see Johnson et al., 1967; Jain et al., 1999), k being
a user defined number of clusters. Although there are several statistical methods
for determining the number of clusters automatically (see Milligan and Cooper,
1985), for simplicity we decided that k is given a priori. To perform this step, the
algorithm needs to compute the similarity matrix for all pairs of patterns. This is
done by applying the Satisfy/Violate operator on the whole document set D for
each pattern and then using the number of common documents as the similarity
between patterns. After preliminary experiments we decided to use complete-
linkage to calculate distance between clusters. After obtaining k clusters, each
document is tested against cluster definitions represented by pattern sets and
assigned to the first one it satisfies, according to the Satisfy/Violate operator.
This approach has the advantage of producing groups that do not overlap. If
documents were not assigned to the first matching pattern set, they could belong
to many groups thus producing interleaving clusters.

After clustering the documents according to patterns, there still might be
some documents left in the candidate set - documents that did not satisfy any
cluster definition. Those documents have to be either assigned with a different
method or treated as outliers.

According to the above algorithm description, the order of applying pattern
sets in clustering the documents is relevant. If a document satisfies more than
one pattern set, it will be assigned to the first presented. This order dependency

XCleaner: a new method for clustering XML documents by structure 885

is a consequence of the definition of the Satisfy/Violate operator, which has a
binary output - a document satisfies a set or it does not. If the algorithm was
to use an operator with a scalar output, all patterns would have to be analyzed
for each document. On the other hand, by using the Satisfy/Violate operator
the proposed algorithm, on an average, needs to analyze only half of the pattern
sets. From this point of view, the o parameter can be used to manipulate the
rate at which the documents are clustered. The lower the a value, the easier it
is for a document to satisfy a pattern set and thus the less pattern sets need to
be analyzed.

Now we will present the main steps of XCleaner in an example. The clus-
tering will be performed on documents presented in Fig. 3. We will search for
k = 2 clusters with patterns with minsup = 40% and mazsup = 100%.

Pattern 1 | =———=———- Pattern 2 | =rororereeeees Pattern 3

Figure 3. Document trees with their string encoded representations

Step 1: Obtaining patterns We apply the CMTreeMiner algorithm on the
document set to obtain patterns which are presented in Fig. 4.

Step 2: Pattern clustering We apply the Satisfy/Violate operator on the
document set for each pattern. According to Fig. 4, Pattern 1 co-occurs with
Pattern 2 in one document, so their similarity equals 1, while other pattern
pairs do not co-occur with each other and their similarity equals 0. Table 1
presents the full similarity matrix. Since the number of clusters k is 2, the AHC
algorithm will output two groups: the first will contain Pattern 1 and Pattern
2 while the second Pattern 3.

Step 3: Document clustering We use the groups of patterns to cluster the
documents. To achieve this goal we take the first group, containing Patterns 1
and 2, and apply the Satisfy/Violate operator on the entire set of documents.
As a result we get documents a, b and ¢, which form the first cluster. Next,

886 D. BRZEZINSKI, A. LESNIEWSKA, T. MORZY, M. PIERNIK

Pattern 1 | ======== Pattern 2 | «-seeeeeeeees Pattern 3

Figure 4. Patterns and their occurrences in the documents

Table 1. Pattern similarity matrix.

P1 | P2 | P3
P1| - 1 0
P2 1 - 0
P3| 0O 0 -

we take the second group, containing Pattern 3, and apply the Satisfy/Violate
operator on the wviolate set from the previous step. This results in assigning the
documents d and e to the second cluster. This is the end of the algorithm. The
documents are clustered into two groups: one containing documents a, b and c,
and the second one containing documents d and e.

3.6. Complexity analysis

Let us analyze the worst-case complexity of each step of our approach. The cost
of transforming a single XML document into the chosen representation is equal
to the cost of depth-first traversal, that is O(v + e), where v is the number of
nodes in the document tree and e is the number of edges in the document tree.
Therefore, transforming a set D,, of n documents requires O(n - maz(v + €))
operations, where max(v + e) is the largest sum of the number of edges and
vertices found in a single document in D,,. Pattern mining is the most expensive
step of our algorithm. According to Chi et al. (2005), the cost of mining maximal
frequent subtrees is linearly proportional to depth h of each document and
exponentially proportional to its width w, giving an overall complexity of O(2").
The next step, pattern clustering, uses AHC, which is a quadratic algorithm,
which means that for p patterns the complexity of this step is O(p?). In the
last stage the documents are clustered. This step uses the pattern matching
algorithm, which in the worst-case scenario restarts from every possible pattern

XCleaner: a new method for clustering XML documents by structure 887

root found in a document. Therefore, for a single document and pattern, the
subtree matching algorithm requires O((v + €)?) passes. Since in the worst case
scenario each document is compared with each pattern, the complexity of the
document clustering step is O(p - n - maz(v + €)?). Given the above, the overall
worst-case complexity of our algorithm equals O(2%me=), where wyq, is the
width of the “widest” document in a data set.

It is easy to notice that the acquired complexity depends mainly on the
pattern definition. Maximal frequent subtrees offer comprehensive structural
information but imply high computational costs in the pattern mining phase.
In practice, the described algorithm performs in acceptable time for documents
which are similar in size to those used in the experiments. However, our ap-
proach presents a more general idea - a framework which does not imply the use
of a specific pattern definition. By using different objects as patterns one can
achieve lower overall complexity. For example, narrowing the subtree pattern
definition to edges results in a pessimistic complexity of O(n - €mqz) for the
pattern mining algorithm, where e,,4, is the maximum number of edges found
in a single document in a data set of n objects.

4. Experimental results

In our experiments we compared the XCleaner to the XProj algorithm (see
Aggarwal et al., 2007) and the Tag only approach (see Doucet et al., 2002).
Unfortunately, we were unable to acquire the source code for XProj, so we
decided to use the same data sets to make the comparison possible. We took
the same real data set, which is the XML SIGMOD database, and for generating
the synthetic data sets we used the same DTDs. For the evaluation of the Tag
only approach we used our implementation of the algorithm with the AHC
algorithm for clustering, the cosine distance between documents and complete-
linkage distance between clusters.

4.1. Test environment

The XCleaner algorithm was implemented in C# and used a C++ implementa-
tion of the CMTreeMiner, which served us for maximal frequent subtree mining.
The experiments took place on a machine equipped with an Intel Pentium Dual
Core E2140 @ 1.60 GHz processor and 3.00 GB of RAM.

4.2. Data sets

4.2.1. Real data sets

The real data set consists of 140 XML documents from the SIGMOD Record,
which can be downloaded from http://www.sigmod.org/publications/sig-
mod-record/xml-edition. The documents correspond to two DTDs: Indez-
TermsPage.dtd and OrdinarylssuePage.dtd (70 XML documents for each DTD).

888 D. BRZEZINSKI, A. LESNIEWSKA, T. MORZY, M. PIERNIK

4.2.2. Synthetic data sets

We used three synthetic data sets: one homogeneous and two heterogeneous. To
generate these sets we used the ToXgene framework (see Barbosa et al., 2002)
and the same DTDs as Aggarwal et al. (2007). The homogeneous set consists
of 300 documents grouped into 3 clusters, each containing 100 documents. The
MazRepeats parameter, determining the maximum number of times a node will
appear as a child of its parent node, was set to 3 for this data set. The het-
erogeneous data sets, denoted by Heterogeneous 3 and Heterogeneous 6, both
contain 1000 XML documents and were generated from 10 different real DTDs,
each of which was used to generate 100 documents. The MaxRepeats parameter
was set to 3 for Heterogeneous 3 and 6 for Heterogeneous 6.

4.3. Results

To evaluate our clustering method we used the precision and recall measures
(see Aggarwal et al., 2007), defined as follows:

%’ recall = %’ i=1.k
st v disitdmi

where k is the number of clusters, s; is the number of documents correctly
assigned to a cluster C;, v; the number of documents incorrectly assigned to
C; and m; the number of documents which should be, but were not assigned
to C;. Although the described measures originate from supervised learning, we
can use them to evaluate our experiments, because all of the data sets we use
contain already labeled documents. It is worth noticing that such a situation is
unusual, since clustering belongs to the group of unsupervised learning problems.
Therefore, in most cases it is necessary to use other evaluation measures such
as Cohesion and Separation (see Tan et al., 2005), which require the definition
of document similarity.

The selection of the minsup value is not an easy task because it highly
depends on the data and its complexity. However, if the number of clusters is
given a priori (this is one of the assumptions of the algorithm) and the density of
clusters is suspected to be uniformly distributed, we suggest to set the minsup
value to %, where k is the number of clusters. The maxsup value has a smaller
impact on the clustering result and for data considered to be easy (such as
heterogeneous data sets) it can be set to 1. Manipulating this parameter can
be necessary for more difficult data (such as homogeneous data sets). In this
case, if we assume, like with minsup, that the number of clusters is known and
the density of clusters is uniformly distributed, then maxsup can be lowered to
values close to the minsup value. This could help getting better precision but
may negatively affect the recall measure.

Considering the above, for mining the patterns in each data set, we set the

minsup to %, where k is the number of clusters. Therefore, for the SIGMOD

precision =

XCleaner: a new method for clustering XML documents by structure 889

data set minsup was equal 50%, for the homogeneous data set 33%, and for
both heterogeneous data sets 10%. For the heterogeneous document sets we
used the same « and mazsup parameters (0% and 100% respectively). To better
distinguish similar documents in the homogeneous data set, we set mazsup to
34% and «a to 30%.

Table 2. Precision and recall for real and synthetic data sets.

Data Set Precision Recall
Tags | XProj | XCleaner | Tags | XProj [XCleaner
SIGMOD 1.00 1.00 1.00 1.00 - 1.00
Heterogeneous 3 | 0.56 1.00 1.00 0.56 1.00 1.00
Heterogeneous 6 | 0.52 1.00 1.00 0.52 1.00 1.00
Homogeneous OT | 0.51 1.00 1.00 0.51 1.00 0.90
Homogeneous 0.51 1.00 1.00 0.51 1.00 1.00

As Table 2 shows, all compared algorithms present the same quality (ac-
cording to precision and recall measures) in clustering data from the SIGMOD
record. The comparison of the results from synthetic heterogeneous sets shows
that the tag only based approach (Tags) identifies only 56% of the smaller and
52% of the larger data set clusters correctly, while both the XProj and the
XCleaner still present the best possible precision and recall. It is worth noting
that for this type of source, the CMTreeMiner found very few maximal frequent
subtrees (5 for SIGMOD and 14 for synthetic sets) and this small amount of
information was enough to correctly identify all the documents.

Unfortunately, we were unable to use the same data set as in the XProj for
the homogeneous source because of the exponential complexity of the frequent
subtrees mining problem. With the MaxRepeats parameter set to 6 we were
unable to obtain patterns for minsup lower than 65% before the CMTreeM-
iner ran out of memory. For this reason we used the same DTDs, but unlike
the XProj, where the MaxRepeats parameter was set to 6, we used it set to
3. This simplifies the mining of maximal frequent subtrees, but complicates
the clustering problem, because larger documents can present higher structural
complexity, which helps to distinguish documents from each other. Because of
this fact we cannot treat our results as corresponding to the XProj in 100%.
Nevertheless, our results for clustering homogeneous documents also presented
the highest precision, but 10% (30/300) of the documents were left unassigned.
As mentioned earlier in this paper, we propose two approaches to deal with this
problem: treating the unassigned documents as outliers or assigning them using
some measure of similarity. We tested both approaches and denoted them as:
Homogeneous OT (unassigned documents were treated as outliers) and Ho-
mogeneous (unassigned documents were added to clusters using the tag only
algorithm). All the results are presented in Table 2.

890 D. BRZEZINSKI, A. LESNIEWSKA, T. MORZY, M. PIERNIK

5. Conclusions and summary

In this article we have shown a new approach to clustering XML documents by
patterns. We employed the idea of the Satisfy/Violate operator to data mining
purposes and introduced a new clustering algorithm based on that operator.
The implemented algorithm has shown good preliminary results on heteroge-
neous and homogeneous data sets along with small clustering complexity. Our
approach was as accurate as the XProj algorithm and outperformed the tag
only method. This shows that the Satisfy/Violate operator can be successfully
used for document clustering.

The presented idea defines a methodology for clustering XML documents.
The reusability of this approach opens a new field for further research. The
components at each step of the algorithm can be modified or even replaced.
As future work, we intend to explore the use of different patterns and group-
ing algorithms as parts of the methodology. Furthermore, we plan to test the
XCleaner on data sets from the INEX contest and evaluate its performance in
comparison with other competing algorithms.

Acknowledgments

This work was partly supported by the Polish Ministry of science and Higher
Education under Grant No. N N516 365834.

References

AcGARWAL, C.C., TA, N., WaNg, J., FENG, J. and ZAk1, M.J. (2007)
Xproj: a framework for projected structural clustering of xml documents.
In: P. Berkhin, R. Caruana and X. Wu, eds., KDD. ACM, 46-55.

BARBOSA, D., MENDELZON, A.O., KEENLEYSIDE, J. and Lyons, K.A. (2002)
Toxgene: a template-based data generator for xml. In: M.J. Franklin,
B. Moon and A. Ailamaki, eds., SIGMOD Conference. ACM, 616.

CANDILLIER, L., TELLIER, I.and TORRE, F. (2005) Transforming xml trees
for efficient classification and clustering. In: N. Fuhr, M. Lalmas, S. Malik
and G. Kazai, eds., INEX. LNCS 3977, Springer, 469-480.

CHAWATHE, S.S. (1999) Describing and manipulating xml data. IEEE Data
Eng. Bull., 22 (3), 3-9.

CHL, Y., X14a, Y., YANG, Y.and MuNTZ, R.R. (2005) Mining closed and max-
imal frequent subtrees from databases of labeled rooted trees. IFEE
Trans. Knowl. Data Eng., 17 (2), 190-202.

CosTta, G., MANCO, G., ORTALE, R. and TAGARELLI, A. (2004) A tree-based
approach to clustering xml documents by structure. In: J.-F. Boulicaut,
F. Esposito, F. Giannotti and D. Pedreschi, eds., PKDD. LNCS 3202,
Springer, 137-148.

XCleaner: a new method for clustering XML documents by structure 891

DaLAMAGAS, T., CHENG, T., WINKEL, K.-J. and SELLIS, T.K. (2004) Clus-
tering xml documents by structure. In: G.A. Vouros and T. Panayiotopou-
los, eds., SETN. LNCS 3025, Springer, 112-121.

DOUCET, A. andD AHONEN-MYKA, H. (2002) Naive clustering of a large xml
document collection. In: N. Fuhr, N. Govert, G. Kazai and M. Lalmas,
eds., INEX Workshop. ERCIM, European Research Consortium for Infor-
matics and Mathematics, 81-87.

FLorEscu, D. and KossMaNN, D. (1999) Storing and querying xml data
using an rdmbs. IEEE Data Eng. Bull., 22 (3), 27-34.

JaN, A.K., MurTYy, M.N. and FLyNN, P.J. (1999) Data clustering: A re-
view. ACM Comput. Surv., 31 (3), 264-323.

JOHNSON, S. (1967) Hierarchical clustering schemes. Psychometrika, 32 (3),
241-254.

LEg, M.-L., YanG, L.H., Hsu, W. and YANG, X. (2002) Xclust: clustering
xml schemas for effective integration. In: CIKM. ACM, 292-299.

LESNIEWSKA, A. (2009) Clustering xml documents by structure. In: J. Grund-
spenkis, M. Kirikova, Y. Manolopoulos and L. Novickis, eds., ADBIS
(Workshops). LNCS 5968, Springer, 238-246.

Lian, W., CHEUNG, D.W.-L., MamouLis, N. and Y1u, S.-M. (2004) An ef-
ficient and scalable algorithm for clustering xml documents by structure.
IEEE Trans. Knowl. Data Eng., 16 (1), 82-96.

MiLLIGAN, G. and COOPER, M. (1985) An examination of procedures for
determining the number of clusters in a data set. Psychometrika, 50,
159-179. 10.1007/BF02294245.

Navak, R. and IRyaDI, W. (2006) Xmine: A methodology for mining xml
structure. In: X. Zhou, J. Li, H.T. Shen, M. Kitsuregawa and Y. Zhang,
eds., APWeb. LNCS 3841, Springer, 786—792.

TaN, P.-N., STEINBACH, M. and KUMAR, V. (2005) Introduction to Data
Mining. Addison Wesley.

TrAN, T., NAYAK, R. and Bruza, P. (2008) Combining structure and con-
tent similarities for xml document clustering. In: J.F. Roddick, J. Li,
P. Christen and P.J. Kennedy, eds., AusDM. CRPIT 87, Australian Com-
puter Society, 219-226.

WiboMm, J. (1999) Data management for xml: Research directions. IEEE
Data Eng. Bull., 22 (3), 44-52.

ZAKI, M.J. (2002) Efficiently mining frequent trees in a forest. In: KDD.
ACM, 71-80.

