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Abstract: We analyze regularizations of a class of linear-quadra-
tic optimal control problems with control appearing linearly. It is
shown that if the optimal control is bang-bang or if a coercivity
condition for the state variables is satisfied, the solutions are con-
tinuous functions of the regularization parameter. Combining error
estimates for Euler discretizations of the regularized problems with
those for the regularization error, we choose the regularization pa-
rameter in dependence of the meshsize to obtain optimal convergence
rates for the discrete solutions. Numerical experiments confirm the
theoretical findings.

Keywords: optimal control, bang-bang control, regularization,
discretization.

1. Introduction

Discretizations of optimal control problems are well studied for the case when
the optimal control is sufficiently smooth (see, e.g., Alt, 1997; Alt, Bräutigam,
Rösch, 2007; Alt, Bräutigam, 2009; Dontchev, Hager, 1993, 2001; Dontchev,
Hager, Malanowski, 2000; Dontchev, Hager, Veliov, 2000; Malanowski, Büskens,
Maurer, 2005, for control problems governed by ordinary differential equations
and Casas, Tröltzsch, 2010; Tröltzsch, 2010a,b, for control problems governed by
partial differential equations). The results are usually based on second-order op-
timality conditions. Due to the lack of such conditions for bang-bang controls,
there have been only few papers on discretizations of such controls (see Alt,
Mackenroth, 1989, and Dhamo, Tröltzsch, 2011, and the papers cited therein).
New second-order optimality conditions for bang-bang controls have been de-
veloped recently in Felgenhauer (2003), Felgenhauer, Poggiolini, Stefani (2009)
and Maurer, Osmolovskii (2004), and variants of these conditions have then
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been used in Veliov (2005) and in Alt et al. (2011, 2012) to obtain error esti-
mates for discretizations of bang-bang controls governed by ordinary differential
equations and in Deckelnick, Hinze (2010) for elliptic control problems.

Discretization combined with regularization is a good alternative to direct
discretization, since the problem to be solved is replaced by problems having
smoother solutions. The regularization of constraints and of the cost func-
tional of optimal control problems has been intensively studied during the last
years (see, e.g., Meyer, Rösch, 2004; Meyer, Rösch, Tröltzsch, 2006; Neitzel,
Tröltzsch, 2008; Tröltzsch, Yousept, 2009; Hinze, Meyer, 2010, and the papers
cited therein). The dependency of solutions on regularization parameters and
the combination with discretization has been investigated in Hager (1979) for
multiplier methods for the solution of control problems governed by ordinary
differential equations, and in Lorenz, Rösch (2010) for elliptic control problems
with state constraints. Results for control problems with a sparsity functional
can be found in Wachsmuth and Wachsmuth (2011). However, it seems that
similar results are not known for bang-bang controls of problems governed by
ordinary differential equations. The aim of the present paper is to derive such
results for a class of linear-quadratic control problems.

We use the following notations: R
n is the n-dimensional Euclidean space

with the inner product denoted by 〈x, y〉 and the norm |x| = 〈x, x〉1/2. For
an m × n-matrix B we denote the spectral norm by ‖B‖ = sup|z|≤1 |Bz|. For
1 ≤ p < ∞ we denote by Lp(0, T ;Rm) the Banach space of measurable vector
functions u : [0, T ] → R

m with

‖u‖p =

(

∫ T

0

|u(t)|p dt
)

1

p

< ∞ ,

and L∞(0, T ;Rm) is the Banach space of essentially bounded vector functions
with the norm

‖u‖∞ = max
1≤i≤m

ess sup
t∈[0,T ]

|ui(t)| .

For 1 ≤ p ≤ ∞ we denote by W 1
p (0, T ;R

n) the spaces of absolutely continuous
functions on [0, T ] with derivative in Lp(0, T ;Rn), i.e.

W 1
p (0, T ;R

n) = {x ∈ Lp(0, T ;Rn) | ẋ ∈ Lp(0, T ;Rn)}

with

‖x‖1,p =
(

‖x‖p + ‖ẋ‖pp
)

1

p

for 1 ≤ p < ∞ and

‖x‖1,∞ = max {‖x‖∞, ‖ẋ‖∞} .
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With X = X1 ×X2, X1 = W 1
∞(0, T ;Rn), X2 = L∞(0, T ;Rm), we consider the

following family of linear-quadratic control problems depending on the param-
eter ν ≥ 0:

(OQ)ν min
(x,u)∈X1×X2

fν(x, u)

s.t.

ẋ(t) = A(t)x(t) +B(t)u(t) a.e. on [0, T ],

x(0) = a ,

u(t) ∈ U a.e. on [0, T ],

where fν is a linear-quadratic cost functional defined by

fν(x, u) =
1
2x(T )

TQx(T ) + qTx(T ) (1.1)

+

∫ T

0

1
2x(t)

TW (t)x(t) + w(t)Tx(t) + r(t)Tu(t)dt+ ν
2‖u‖22 .

Here, u(t) ∈ R
m is the control, and x(t) ∈ R

n is the state of the system at time t.
Further, Q is a symmetric and positive semidefinite n×n-matrix, q ∈ R

n, and the
functions W : [0, T ] → R

n×n, w : [0, T ] → R
n, r : [0, T ] → R

m, A : [0, T ] → R
n×n

B : [0, T ] → Rn×m are Lipschitz continuous. The matrices W (t) are assumed to
be symmetric and positive semidefinite, and the set U ⊂ R

m is defined by lower
and upper bounds, i.e.,

U = {u ∈ R
m | bl ≤ u ≤ bu}

with bl, bu ∈ R
m, bl < bu, where all inequalities are to be understood compo-

nentwise. The term ν
2 ‖u‖22 is a regularization term.

We are interested in the behaviour of solutions (xν , uν) of (OQ)ν in depen-
dence of the regularization parameter ν. If the optimal control for ν = 0 is of
bang-bang type, we show that the error ‖uν −u0‖1 is of order ν (Theorem 4.1).
Otherwise we assume that a coercivity condition for the states is satisfied and
show that the error ‖xν − x0‖2 is of order

√
ν (Theorem 4.2). Combining these

error estimates with error estimates for Euler discretizations of the regularized
problems, we then choose the regularization parameter in dependence of the
meshsize h in order to obtain optimal convergence rates for ‖uν,h− u0‖1, where
uν,h are the discrete optimal controls.

The organization of the paper is as follows. In Section 2 we recall some
basic results for Problems (OQ)ν . Section 3 is concerned with uniqueness of
solutions of Problems (OQ)0. Section 4 derives error estimates for the solutions
of the regularized problems in dependence of the parameter ν. In Section 5 we
combine these error estimates with error estimates for Euler discretizations.
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2. Basic results

We denote by

U = {u ∈ X2 | u(t) ∈ U a.e. on [0, T ]}

the set of admissible controls. Furthermore,

F = {(x, u) ∈ X | u ∈ U , ẋ(t) = A(t)x(t) +B(t)u(t) a.e. on [0, T ], x(0) = a}

denotes the feasible set of Problem (OQ)ν . Since U is nonempty, the feasible
set F is nonempty and since U is bounded, it follows that ẋ is bounded for any
feasible pair (x, u) ∈ F , and therefore F ⊂ X . Moreover, there is some constant
c such that

‖x‖1,∞ ≤ c ‖u‖∞

for any solution x of the system equation, which implies that F is bounded.

Definition 2.1 A pair (xν , uν) ∈ F is called a minimizer for Problem (OQ)ν ,
if fν(xν , uν) ≤ fν(x, u) for all (x, u) ∈ F , and a strict minimizer, if fν(xν , uν) <
fν(x, u) for all (x, u) ∈ F , (x, u) 6= (xν , uν). ✸

Since the feasible set F is nonempty and bounded, and the cost functional is
convex and continuous, a minimizer (xν , uν) ∈ W 1

2 (0, T ;R
n) × L2(0, T ;Rm) of

(OQ)ν , ν ≥ 0, exists (see e.g. Ekeland, Temam, 1976, Chap. II, Proposition 1.2).
For ν > 0 the function fν is strictly convex, and therefore the solution (xν , uν)
is a strict minimizer. In Section 3 we discuss assumptions implying uniqueness
of the solution (x0, u0) of (OQ)0, and in Section 4 we derive error estimates for
‖uν − u0‖1 and ‖xν − x0‖∞.

The cost functional f0 is Lipschitz continuous on F , i.e., there is a constant
Lf such that

|f0(x, u)− f0(z, v)| ≤ Lf (‖x− z‖∞ + ‖u− v‖1) ∀(x, u), (z, v) ∈ F . (2.1)

Since U is compact there exists a constant K such that for any feasible control
u ∈ U and the associated solution x of the system equation we have

|x(t)| ≤ K ∀t ∈ [0, T ] ,

hence, with some constant R we have

|ẋ(t)| ≤ R a.e. on [0, T ]. (2.2)

This shows that the feasible trajectories are uniformly Lipschitz continuous with
Lipschitz modulus R.
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Let (xν , uν) ∈ F be a minimizer of (OQ)ν . Then there exists a function
λν ∈ W 1

∞(0, T ;Rn) such that the adjoint equation

−λ̇ν(t) = A(t)Tλν(t) +W (t)xν(t) + w(t)

a.e. on [0, T ], λν(T ) = Qxν(T ) + q, (2.3)

and the minimum principle

[νuν(t)
T + r(t)T + λν(t)

TB(t)](u − uν(t)) ≥ 0 ∀u ∈ U (2.4)

hold a.e. on [0, T ]. In case of ν = 0 we denote by

σ(t) := r(t) +B(t)Tλ0(t) (2.5)

the switching function. It is well known that (2.4) implies for i ∈ {1, . . . ,m}
(see, e.g., Felgenhauer, 2003; Lenhart, Workman, 2007, Chap. 17)

u0,i(t) =



















bl,i, if σi(t) > 0,

bu,i, if σi(t) < 0,

undetermined, if σi(t) = 0.

(2.6)

Therefore, if ν = 0, the optimal control u0 is of bang-bang type or may have
singular arcs.

The parameter ν is a regularization parameter. For ν > 0, Problem (OQ)ν
admits a unique solution (xν , uν) (see, e.g., Lions, 1971, Chap. 1, Dontchev,
Hager 1993, Lemma 4). Moreover, it follows from (2.4) that for ν > 0 the
optimal control uν is defined by (compare Malanowski, 1981, Sect. 1)

uν(t) = Pr[bl,bu]

(

− 1

ν

(

r(t) +B(t)Tλν(t)
)

)

, (2.7)

where Pr[bl,bu] denotes the projection onto the interval [bl, bu], which implies
that uν is Lipschitz continuous.

Remark Since λ0 satisfies the adjoint equation and A, W , w are Lipschitz con-
tinuous, λ0 is absolutely continuous with bounded derivative and hence Lipschitz
continuous, which implies that σ is also Lipschitz continuous.

Since (OQ)ν is a convex optimization problem for all ν ≥ 0, a pair (xν , uν) ∈
F satisfying the minimum principle (2.4) with some function λν solving the
adjoint equation (2) is a solution of (OQ)ν . ✸

3. Uniqueness of solutions

The analysis of parametric control problems is usually based on a second-
order optimality condition (compare, e.g., Dontchev, Hager, Malanowski, 2000;
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Malanowski, Büskens, Maurer, 1997). We show in the following that for Prob-
lem (OQ)0 a similar condition holds, if the optimal control is of bang-bang type
or if a coercivity condition w.r.t. the state variables holds. To this end we use re-
cent results on second-order sufficient optimality conditions due to Felgenhauer
(2003). For the bang-bang case we assume that

(A1) The set Σ of zeros of the components σi, i = 1, . . . ,m, of the switching
function σ defined by (2.5) is finite and 0, T /∈ Σ, i.e., Σ = {s1, . . . , sl}
with 0 < s1 < . . . < sl < T .

Let I(sj) := {1 ≤ i ≤ m : σi(sj) = 0} be the set of active indices for the
components of the switching function. In order to get stability of the bang-type
structure we need an additional assumption (compare Felgenhauer, 2003):

(A2) There exist σ̄ > 0, τ̄ > 0 such that
σi(τ) ≥ σ̄(τ − sj)

for all j ∈ {1, . . . , l}, i ∈ I(sj), and all τ ∈ [sj − τ̄ , sj + τ̄ ], and
σi(sj − τ̄ )σi(sj + τ̄) < 0,

i.e., σi changes the sign in sj .

Assumptions (A1) and (A2) imply uniqueness of the optimal control u0 (see the
remark following (3.6)).

The following result is extracted from the proof of Lemma 3.3 in Felgenhauer
(2003). A proof can also be found in Alt et al. (2011).

Lemma 3.1 Let (x0, u0) be a minimizer for Problem (OQ)0, and let the switch-
ing be defined by (2.5). If Assumptions (A1) and (A2) are satisfied, then there
are constants α, γ, δ̄ > 0 such that for any feasible pair (x, u)

∫ T

0

σ(t)T(u(t)− u0(t))dt ≥ α ‖u− u0‖21 (3.1)

if ‖u− u0‖1 ≤ 2γδ̄, and

∫ T

0

σ(t)T(u(t)− u0(t))dt ≥ α ‖u− u0‖1 (3.2)

if ‖u− u0‖1 ≥ 2γδ̄. ✸

Lemma 3.1 implies a quadratic minorant for the minimal values of Prob-
lem (OQ) in a sufficiently small L1-neighborhood, and a linear minorant outside
this neighborhood.

Theorem 3.1 Let (x0, u0) be a minimizer for Problem (OQ)0. If Assumptions
(A1) and (A2) are satisfied, then there are constants α, γ, δ̄ > 0 such that for
any feasible pair (x, u)

f0(x, u)− f0(x0, u0) ≥ α ‖u− u0‖21 (3.3)
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if ‖u− u0‖1 ≤ 2γδ̄, and

f0(x, u)− f0(x0, u0) ≥ α ‖u− u0‖1 (3.4)

if ‖u− u0‖1 ≥ 2γδ̄. ✸

Proof. Let (x, u) be feasible for problem (OQ)0, let (x0, u0) be optimal, and let
λ0 be the adjoint state. Defining z = x− x0, v = u− u0 we have

f0(x, u)− f0(x0, u0) = (Qx0(T ) + q)Tz(T ) +
1

2
z(T )TQz(T )

+

∫ T

0

(x0(t)W (t) + r(t)T)z(t) dt+
1

2

∫ T

0

z(t)TW (t)z(t) dt

≥ (Qx0(T ) + q)Tz(T ) +

∫ T

0

(x0(t)
TW (t) + r(t)T)z(t) dt,

since Q and W (·) are positive semidefinite. From λ0(T ) = Qx0(T ) + q follows

f0(x, u)− f0(x0, u0) ≥ λ0(T )
Tz(T ) +

∫ T

0

(x0(t)
TW (t) + r(t)T)z(t) dt.

Since z(0) = 0 we further obtain

f0(x, u)− f0(x0, u0) ≥
∫ T

0

(x0(t)
TW (t) + r(t)T)z(t) dt+ λ0(T )

Tz(T )

=

∫ T

0

(x0(t)
TW (t) + r(t)T)z(t) dt+

∫ T

0

ż(t)Tλ0(t) dt+

∫ T

0

z(t)Tλ̇0(t) dt

=

∫ T

0

(x0(t)
TW (t) + r(t)T)z(t) dt+

∫ T

0

[A(t)z(t) +B(t)v(t)]Tλ0(t) dt

−
∫ T

0

z(t)T
[

A(t)Tλ0(t) +W (t)x0(t) + r(t)
]

dt

=

∫ T

0

λ0(t)
TB(t)v(t)dt =

∫ T

0

σ(t)Tv(t)dt.

The assertion now follows from Lemma 3.1.

Since x0 solves the state equation for u0 and x solves the state equation for
u, we have

ẋ(t)− ẋ0(t) = A(t)(x(t) − x0(t)) +B(t)(u(t)− u0(t)) a.e. on [0, T ],

and x(0)− x0(0) = 0. This implies

‖x− x0‖1,1 ≤ c ‖u− u0‖1
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with some constant c. Together with (3.3), (3.4) we obtain with some constant
α̃ > 0

f0(x, u)− f0(x0, u0) ≥ α̃(‖u− u0‖21 + ‖x− x0‖21,1) (3.5)

for any feasible pair (x, u) with ‖u− u0‖1 ≤ 2γδ̄, and

f0(x, u)− f0(x0, u0) ≥ α̃(‖u− u0‖1 + ‖x− x0‖1,1) (3.6)

for any feasible pair (x, u) with ‖u− u0‖1 ≥ 2γδ̄.

Remark (compare Felgenhauer, 2003, Theorem 2.2) These estimates also im-
ply uniqueness of the solution of (OQ)0. If (x, u) ∈ F is an arbitrary solution
of (OQ)0, then f0(x, u) = f0(x0, u0). By (3.5), respectively (3.6) we then obtain
(x, u) = (x0, u0). ✸

Example 3.1 (Lenhart, Workman, 2007, Example 17.2) We consider the prob-
lem

(OQ1)ν min

∫ 2

0

−2x(t) + 3u(t) dt+
ν

2
‖u‖2

s.t.

ẋ(t) = x(t) + u(t) a.e. on [0, 2],

x(0) = 5 ,

0 ≤ u(t) ≤ 2 a.e. on [0, 2].

For ν = 0 the unique solution of the adjoint equation is given by

λ0(t) = 2− 2e2−t ∀t ∈ [0, 2]. (3.7)

Therefore, the switching function is defined by

σ(t) = r(t) + λ0(t) = 3 + λ0(t) = 5− 2e2−t. (3.8)

The unique zero of this function in [0, 2] is s1 = 2− ln(5/2), which implies that
the optimal control for ν = 0 is of bang-bang type and given by

u0(t) =







2 for 0 ≤ t < s1,

0 for s1 < t ≤ 2,

with associated state function

x0(t) =







7et − 2 for 0 ≤ t < s1 ,

7et − 5et−2 for s1 < t ≤ 2 .

Since σ′(s1) = 5, Assumptions (A1) and (A2) are satisfied, and the solution is
uniquely determined. ✸
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If Assumptions (A1) and (A2) are not satisfied, an optimal solution u0 of
(OQ)0 may have singular arcs. This case is considered next. Using the fact that
for any (x, u) ∈ F we have

f ′
0(x0, u0)((x, u) − (x0, u0)) ≥ 0

by the optimality of (x0, u0), we obtain

f0(x, u)− f0(x0, u0) ≥
1

2
(x(T )− x0(T ))

TQ(x(T )− x0(T )) (3.9)

+
1

2

∫ T

0

(x(t) − x0(t))
TW (t)(x(t) − x0(t))dt.

In order to assure uniqueness of the solution we assume that

(A3) The matrices W (t), t ∈ [0, T ], are uniformly positive definite, i.e., there is
some α > 0 such that for all t ∈ [0, T ]

xTW (t)x ≥ α |x|2 ∀x ∈ R
n.

Now let (z0, v0) ∈ F be any solution of (OQ)0 with associated multiplier µ0.
Then f0(z0, v0) = f0(x0, u0). If Assumption (A3) is satisfied, it follows from
(3.9) and the positive semi-definiteness of Q that

0 ≥
∫ T

0

(z0(t)− x0(t))
TW (t)(z0(t)− x0(t))dt ≥ α ‖z0 − x0‖22,

and therefore z0 ≡ x0. By the adjoint equations this further implies µ0 ≡ λ0,
and hence uniqueness of the switching function. Especially, the sets

Σ0,i = {t ∈ [0, T ] | σi(t) = 0} , i = 1, . . . ,m ,

are independent of the special solution, and hence by (2.6)

v0,i(t) = u0,i(t) a.e. on [0, T ] \ Σ0,i.

Uniqueness of the control u0,i on an interval [t1, t2] ⊂ Σ0,i, t1 < t2, can only be
guaranteed under additional assumptions. By the system equation we have

B(t)TB(t)u0(t) = B(t)T [ẋ0(t)−A(t)x0(t)] . (3.10)

This uniquely determines u on [t1, t2] for instance, if B(t)TB(t) is invertible on
[t1, t2]. In case of scalar controls (m = 1) this is satisfied, if B(t) 6= 0n for all
t ∈ [t1, t2].

Example 3.2 (Lenhart, Workman, 2007, Example 17.3) We consider the prob-
lem

(OQ2)ν min
1

2

∫ 2

0

(x(t) − xd(t))
2 dt+

ν

2
‖u‖2

s.t.

ẋ(t) = u(t) a.e. on [0, 2],

x(0) = 5 ,

0 ≤ u(t) ≤ 2 a.e. on [0, 2],
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with xd(t) = t. For ν = 0, the functions u0, x0, λ0, defined by

u0(t) = 0 , x0(t) = 1 , λ0(t) =
1

2
(t− 1)2

for t ∈ [0, 1] and

u0(t) = 1 , x0(t) = t , λ0(t) = 0

for t ∈ [1, 2] satisfy the optimality conditions. Therefore, (x0, u0) is a solution
of (OQ2)0. On [0, 1] the optimal control is of bang-bang type, and on [0, 2] the
solution is given by (3.10). Hence the solution is uniquely determined. ✸

4. Error estimates for solutions of regularized problems

In order to derive error estimates for ‖uν−u0‖1 and ‖xν−x0‖∞ we use standard
techniques from parametric optimization.

Theorem 4.1 Let Assumptions (A1) and (A2) be satisfied. Then there exist
constants c1, c2 independent of ν such the estimates

‖uν − u0‖1 ≤ c1 ν , ‖xν − x0‖1,1 ≤ c2 ν (4.1)

hold. ✸

Proof. For ν > 0 we have by Lemma 3.1

∫ T

0

σ(t)T(uν(t)− u0(t))dt ≥ α ‖uν − u0‖21, (4.2)

if ‖uν − u0‖1 ≤ 2γδ̄, and

∫ T

0

σ(t)T(uν(t)− u0(t))dt ≥ α ‖uν − u0‖1, (4.3)

if ‖uν − u0‖1 ≥ 2γδ̄, where α ≥ 0 and α > 0, if Assumptions (A1) and (A2) are
satisfied. From the minimum principle (2.4) we obtain

∫ T

0

[νuν(t)
T + r(t)T + λν(t)

TB(t)](u0(t)− uν(t)) ≥ 0 . (4.4)

Adding (4.4) and (4.2), respectively (4.3), we obtain

α ‖uν−u0‖21 ≤
∫ T

0

[−νuν(t)
T+(λ0(t)

T−λν(t)
T)B(t)](uν(t)−u0(t))dt, (4.5)

if ‖uν − u0‖1 ≤ 2γδ̄, and

α ‖uν−u0‖1 ≤
∫ T

0

[−νuν(t)
T+(λ0(t)

T−λν(t)
T)B(t)](uν(t)−u0(t))dt, (4.6)
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if ‖uν −u0‖1 ≥ 2γδ̄. Since xν , x0 satisfy the system equation, and λν , λ0 satisfy
the adjoint equation we obtain

∫ T

0

[(λ0(t)
T − λν(t)

T)B(t)](uν(t)− u0(t))dt

= (x0(T )− xν(T ))
TQ(xν(T )− x0(T ))

+

∫ T

0

(x0(t)− xν(t))
TW (t)(xν(t)− x0(t)) dt.

Together with (4.5), (4.6) this implies

α ‖uν − u0‖21 + (xν(T )− x0(T ))
TQ(xν(T )− x0(T ))

+

∫ T

0

(xν(t)− x0(t))
TW (t)(xν(t)− x0(t)) dt (4.7)

≤ −ν

∫ T

0

uν(t)
T(uν(t)− u0(t))dt,

if ‖uν − u0‖1 ≤ 2γδ̄, and

α ‖uν − u0‖1 + (xν(T )− x0(T ))
TQ(xν(T )− x0(T ))

+

∫ T

0

(xν(t)− x0(t))
TW (t)(xν(t)− x0(t)) dt (4.8)

≤ −ν

∫ T

0

uν(t)
T(uν(t)− u0(t))dt,

if ‖uν − u0‖1 ≥ 2γδ̄.
If Assumptions (A1) and (A2) are satisfied, we have α > 0. Since the

matrices Q, W (t), t ∈ [0, T ], are assumed to be positive semidefinite, we obtain
by (4.7)

α ‖uν − u0‖21 ≤ ν ‖uν‖∞‖uν − u0‖1,

if ‖uν − u0‖1 ≤ 2γδ̄, and by (4.7)

α ‖uν − u0‖1 ≤ νT ‖uν‖∞(‖uν‖∞ + ‖u0‖∞),

if ‖uν − u0‖1 ≥ 2γδ̄. In both cases we obtain the first estimate of (4.1) with
some constant c1 independent of ν. This also implies the second estimate of
(4.1) since z = xν − x0 satisfies the linear differential equation

ż(t) = A(t)z(t) +B(t)(uν(t)− u0(t))

with initial condition z(0) = 0.
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Remark Using the proof technique of Theorem 5.5 in Alt et al. (2011) one can
show in addition that there exists a constant κ independent of ν such that for
sufficiently small ν the optimal controls uν coincide with u0 except on a set of
measure ≤ κν. ✸

Example 4.1 We consider Problem (OQ1)ν of Example 3.1. As for ν = 0 the
unique solution of the adjoint equation for ν > 0 is given by (3.7), i.e., in this
special case λν is independent of ν. Therefore, with the switching function σ
defined by (3.8) it follows from (2.7) that the optimal control uν is the projection
onto the interval [0, 2] of the function

− 1

ν
σ(t) = − 1

ν

(

5− 2e2−t
)

,

which is given by

uν(t) =



















2 for 0 ≤ t < s0,

− 1
ν

(

5− 2e2−t
)

for s0 ≤ t < s1,

0 for s1 < t ≤ 2,

where

s0 = 2− ln(
5

2
+ ν) , s1 = 2− ln(

5

2
).

Since s1 − s0 ≤ 2
5ν and uν coincides with u0 on [0, s0]∪ [s1, 2], this confirms the

result of Theorem 4.1. ✸

If Assumptions (A1) and (A2) are not satisfied, we assume that (A3) holds.
Then it follows from (4.7) or (4.8) that with some constant α > 0

α ‖xν − x0‖22 ≤ νT ‖uν‖∞(‖uν‖∞ + ‖u0‖∞),

which implies

‖xν − x0‖2 ≤ c
√
ν

with some constant c independent of ν. Thus, we have shown the following
result.

Theorem 4.2 Let Assumption (A3) be satisfied. Then for sufficiently small ν
the error estimate

‖xν − x0‖2 ≤ c
√
ν (4.9)

holds with a constant c independent of ν. ✸
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5. Euler discretization

Given a natural number N , let h = T/N be the mesh size. We approximate
the space X2 of controls by functions in the subspace X2,N ⊂ X2 of piecewise
constant functions represented by their values u(tj) = uj at the gridpoints
tj = jh, j = 0, 1, . . . , N − 1. Further, we approximate state and adjoint state
variables by functions in the subspace X1,N ⊂ X1 of continuous, piecewise linear
functions represented by their values x(tj) = xj , λ(tj) = λj at the gridpoints
tj , j = 0, 1, . . . , N . Then the Euler discretization of (OQ) is given by (see, e.g.,
Dontchev, Hager, 1993)

(OQ)ν,h min
(x,u)∈X1,N×X2,N

fν,h(x, u)

s.t.

xj+1 = xj + h [A(tj)xj +B(tj)uj ] , j = 0, 1, . . . , N − 1 ,

x0 = a ,

uj ∈ U, j = 0, 1, . . . , N − 1 ,

where fh is the linear-quadratic cost functional defined by

fν,h(x, u) =
1

2
xT

NQxN + qTxN

+h

N−1
∑

j=0

[

1

2
xT

j W (tj)xj + w(tj)
Txj + r(tj)

Tuj

]

+
ν

2
h

N−1
∑

j=0

|uj |2.

We now combine known results for Euler discretizations of the regularized prob-
lems with the error estimate (4.1) for bang-bang controls. The proofs for error
estimates for Euler approximations (see Dontchev, Hager, 1993; Seydenschwanz,
2010) shows that for the solution (xν,h, uν,h) of (OQ)ν,h and the associated mul-
tiplier λν,h we have the estimate

max{‖uν,h − uν‖∞, ‖xν,h − xν‖∞, ‖λν,h − λν‖∞} ≤ c1
h

ν
(5.1)

with a constant c1 independent of the mesh size h. If Assumptions (A1) and
(A2) are satisfied it then follows from (4.1) that

‖uν,h − u0‖1 ≤ ‖uν,h − uν‖1 + ‖uν − u0‖1
≤ c2‖uν,h − uν‖∞ + ‖uν − u0‖1

≤ c3
h

ν
+ c4 ν

with constants c2, c3, c4 independent of h and ν. Therefore, the optimal con-
vergence rate is obtained if we choose ν =

√
h which implies for uh := uν,h

‖uh − u0‖1 ≤ c
√
h (5.2)
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with a constant c independent of the mesh size h. The following numerical
experiments confirm this estimate.

Example 5.1 We consider the control problem (OQ1) of Example 3.1. Fig. 1
shows a control computed by Euler discretization and Table 1 shows some error
estimates for ‖u0 − uh‖1 which confirm the theoretical findings. ✸

Table 1. Error for regularized solutions with ν =
√
h

N 10 25 50 75 100 150 200

h 0.2 0.08 0.04 0.02667 0.02 0.01333 0.01√
h 0.4472 0.2828 0.2 0.1633 0.1414 0.1155 0.1

‖uh − u0‖1 0.9827 0.4491 0.303 0.1978 0.1811 0.135 0.1101

‖uh−u0‖1√
h

2.197 1.588 1.515 1.211 1.281 1.169 1.101

Figure 1. Optimal control for regularization with ν =
√
h, N = 50

Example 5.2 We consider the following control problem

(OQ1a)ν min

∫ 1

0

2x1(t) + 6x2(t)− u1(t)− u2(t) dt+
ν

2
‖u‖2

s.t.

ẋ(t) =

(

x1(t) + u1(t)
x2(t) + u2(t)

)

a.e. on [0, 1],

x(0) =

(

0
0

)

,

−1 ≤ u1(t) ≤ 1, −2 ≤ u2(t) ≤ 2 a.e. on [0, 1].
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For ν = 0 the optimal control is

u0,1 =

{

−1 t < 1− ln(32 )

1 t > 1− ln(32 )
, u0,2 =

{

−2 t < 1− ln(76 )

2 t > 1− ln(76 )
.

Table 2 shows some error estimates for ‖u0 − uh‖1 which again confirm the
theoretical findings. ✸

Table 2. Error for regularized solutions with ν =
√
h

N 10 25 50 75 100 150 200

h 0.1 0.04 0.02 0.01333 0.01 0.006667 0.005√
h 0.3162 0.2 0.1414 0.1155 0.1 0.08165 0.07071

‖uh − u0‖1 0.7535 0.4313 0.2781 0.2201 0.1872 0.1506 0.131

‖uh−u0‖1√
h

2.383 2.157 1.966 1.906 1.872 1.844 1.853

If Assumptions (A1) and (A2) are not satisfied, we assume that (A3) holds.
Then it follows from (4.9) and (5.1) that

‖xν,h − x0‖2 ≤ c3
h

ν
+ c4

√
ν

with constants c3, c4 independent of h and ν. Therefore, the optimal conver-
gence rate is obtained if we choose ν = h

2

3 which implies for xh := xν,h

‖xh − x0‖2 ≤ c h
1

3 (5.3)

with a constant c independent of the mesh size h.

Example 5.3 We consider the control problem (OQ2) of Example 3.2. The
results of Table 3 show that in this case the theoretical error estimates are not
optimal. The results of Table 4 show that the optimal choice for the regulariza-
tion parameter here seems to be ν =

√
h. ✸

Table 3. Discretization error for regularization with ν = 0.1h
2

3

N 10 25 50 75 100 150 200

h 0.2 0.08 0.04 0.02667 0.02 0.01333 0.01

‖xh − x0‖2 0.5275 0.2294 0.1364 0.1035 0.08614 0.06726 0.05682

‖xh−x0‖2
h

1

3

0.902 0.5323 0.3989 0.3463 0.3174 0.2837 0.2637

Table 4. Discretization error for regularization with ν = 0.1
√
h

N 10 25 50 75 100 150 200

h 0.2 0.08 0.04 0.02667 0.02 0.01333 0.01

‖xh − x0‖2 0.5677 0.2779 0.1836 0.1484 0.1292 0.1073 0.09461

‖xh−x0‖2√
h

1.269 0.9827 0.9178 0.9086 0.9133 0.9289 0.9461
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