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Abstract: A general framework for calculating shape derivatives
for domain optimization problems with partial differential equations
as constraints is presented. The first order approximation of the
cost with respect to the geometry perturbation is arranged in an
efficient manner that allows the computation of the shape derivative
of the cost without the necessity to involve the shape derivative of
the state variable. In doing so, the state variable is only required
to be Lipschitz continuous with respect to geometry perturbations.
Application to shape optimization with the Navier-Stokes equations
as PDE constraint is given.
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1. Introduction

In this paper, we consider the problem of finding a domain Ω (in a class of
admissible domains Uad) minimizing the functional

J(u,Ω) ≡

∫

Ω

j1(Cγu) dx (1)

subject to a constraint

E(u,Ω) = 0, u ∈ X. (2)

Here E(u,Ω) = 0, represents a partial differential equation posed on Ω with
boundary ∂Ω, u is the state variable and X ⊂ L2(Ω)l, l ∈ N, is a Hilbert
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space with a dual X∗. The class of admissible domains Uad does not admit
a vector space structure, making the application of traditional optimization
methods difficult. This difficulty is bypassed by describing shapes by means of
transformations. Due to lack of closed form solutions to E(u,Ω) = 0, problem
(1-2) is usually solved numerically using iterative methods, e.g., the gradient
descent method.

For such methods, one needs to compute the derivative of the cost with
respect to Ω. Rigorous derivations of shape derivative of J can be found in
literature, see e.g., Simon (1980), Bello et al. (1997), Ito, Kunisch and Pe-
ichl (2008), Haslinger et al. (2009), Gao, Ma and Zhuang (2008), Gao and
Ma (2008), Delfour and Zolésio (1988), and so on, as well as the monographs
Sokolowski and Zolésio (1992), Delfour and Zolésio (2001). In Simon (1980),
Bello et al. (1997), Gao, Ma and Zhuang (2008), and Sokolowski and Zolésio
(1992), the approach taken involves differentiation of the state equation with
respect to the domain.

The state variable varies in a Hilbert space X which depends on the geom-
etry with respect to which optimization is carried out. To obtain sensitivity
information of Ω 7→ Ĵ(Ω) = J(Ω, u(Ω)), a chain rule approach involving the
shape derivative of Ω 7→ u(Ω) is chosen. The rigorous analysis of this intermedi-
ate step is a non-trivial task as shown in Ito, Kunisch and Peichl (2008), where
an example is provided where the assumption of this paper are applicable, while
shape differentiability of the state is not. Other techniques presented in, e.g.,
Delfour and Zolésio (1988), Gao, Ma and Zhuang (2008), Gao and Ma (2008),
and Delfour and Zolésio (2001), Chapter 9, use function space parameterization
and function space embedding methods. The latter depends strongly on sophis-
ticated differentiability properties of saddle point problems. In this paper, we
present a computation of the shape derivative of J under minimal regularity
assumptions. The technique we employ was first suggested in Ito, Kunisch and
Peihl (2008), and then used in Haslinger et al. (2009), and allows to compute
the shape derivative of the mapping Ω 7→ Ĵ(Ω) without using the shape deriva-
tive of the state variable with respect to the geometry. In Ito, Kunisch and
Peichl (2008) a cost functional J : X 7→ R of the form J(u,Ω) =

∫

Ω j1(u) dx
was considered. However, in many applications such as vortex control in fluids,
cost functionals are typically of the form (1), where Cγ : X 7→ H , H a Banach
space, is either a linear operator, e.g., Cγu = curl u or generally a non-linear
operator, e.g., Cγu = det ∇u. In addition, we note that cost functionals of the
form (1) can be expressed as

J(u,Ω) = G(F (u)), (3)

where the mappings
F : X 7→ H, G : H 7→ R,

are defined as F (u) = Cγu and G(v) =
∫

Ω j1(v) dx, respectively. In this work,
we specifically address this composite structure of the cost functionals of the
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form (1), where Cγ is an affine operator

Cγ : u(·) 7→ Cu(·) + γ(·) γ ∈ L2(D), (4)

D, an open and bounded hold all domain to be specified later, and C ∈
L(X,L2(Ω)) is a linear operator. An application involving a cost functional
with a non-linear operator C in the integrand is also presented. The approach
that we use can be summarized as follows: The difference quotient of the cost J
with respect to the geometry perturbation is arranged in an efficient manner so
that computation of the shape derivative of the state can be bypassed. In doing
so, the existence of the material derivative of the state u can be replaced by
Hölder continuity with exponent greater than or equal to 1

2 of u with respect to
the geometric data. The constraint E(u,Ω) = 0 is observed by introducing an
appropriately defined adjoint equation. Furthermore, well known results from
the method of mapping and the differentiation of functionals with respect to
geometric quantities are utilized on a technical level.

The rest of the paper is organized as follows. In Section 2 we present the
proposed general framework to compute the shape derivative for (1-2). The
application of the general theory to shape optimization problems with the Navier
Stokes equations as equality state constraints is presented in Section 3.

2. Shape derivative

In this section we focus on sensitivity analysis for the shape optimization prob-
lem (1)-(2). To describe the class of admissible domains Uad, let D ⊂ R

d,
d = 2, 3 be a fixed bounded domain with a C2 boundary ∂D and let S be a
domain with a C2 boundary Γ := ∂S satisfying S̄ ⊂ D (see Fig. 1). For the

Figure 1. Domain

reference domain, we consider Ω = S whose boundary ∂Ω is given by ∂Ω = Γ.
Shapes are difficult entities to be dealt with directly, so we manipulate them
by means of transformations. If Ω is the initial admissible shape, and Ωt is the
shape at time t, one considers transformations Tt : Ω 7→ Ωt. Such transforma-
tions can be constructed, for instance, by perturbation of the identity (Delfour
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and Zolésio, 2001). To construct an admissible class of these transformations,
let Ω ⊂ D̄ be a bounded domain and

H = {h ∈ C2(D̄) : h|∂D = 0}

be the space of deformation fields. The fields h ∈ H define for t > 0 a pertur-
bation of Ω by

Tt : Ω 7→ Ωt,

x 7→ Tt(x) = x+ th(x).

For each h ∈ H, there exists τ̃ > 0 such that Tt(D) = D and {Tt} is a family
of C2-diffeomorphisms for |t| < τ̃ (Delfour and Zolésio, 2001). For each t ∈ R

with |t| < τ̃ , we set Ωt = Tt(Ω), Γt = Tt(Γ). Thus Ω0 = Ω, Γ0 = Γ, Ωt ⊂ D.

2.1. Notation

In what follows, the following notation will be used:

It = det DTt, Bt = (DTt)
−T , (5)

and ∇u shall stand for (Du)T where u is either a scalar or vector valued function
(if u is bold faced, i.e., u). In (5), (DTt)

−T takes the meaning of transpose of
the inverse matrix (DTt)

−1. Furthermore, two notations for the inner product
in R

d shall be used, namely (x, y) and x · y, respectively. The latter shall be
used in case of nested inner products. In addition, throughout this work, unless
specified otherwise, the following parenthesis (·, ·)Ω, (·, ·)∂Ω shall denote the
L2(Ω), L2(∂Ω) inner products, respectively. In some cases, the subscript Ω may
be omitted, but the meaning will remain clear in the given context. The scalar
product and the norm in the Hilbert space X will be denoted by (·, ·)X and
‖ · ‖X , respectively, and the duality pairing between X∗ and X is denoted by
〈·, ·〉X∗×X . The curl of a vector field u = (u1, u2) ∈ R

2, denoted by curl u, is
defined as

curl u :=
∂u2
∂x

−
∂u1
∂y

,

while the curl of a scalar field u in the case d = 2, denoted by curl u, is defined
as

curl u := (
∂u

∂y
,−

∂u

∂x
).

The determinant of the velocity gradient tensor of a vector field u = (u1, u2) ∈
R

2, denoted by det∇u(x), is defined as

det∇u(x) :=
∂u1
∂x

∂u2
∂y

−
∂u2
∂x

∂u1
∂y

. (6)
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The unit outward normal and tangential vectors to the boundary ∂Ω shall be
denoted by n = (nx, ny) and τ = (−ny, nx), respectively. We denote by Hm(S),
m ∈ R, the standard Sobolev space of order m defined by

Hm(S) :=
{
u ∈ L2(S) | Dαu ∈ L2(S), for 0 ≤ |α| ≤ m

}
,

where Dα is the weak (or distributional) partial derivative, and α is a multi-
index. Here S, which is either the flow domain Ω, or its boundary ∂Ω, or part
of its boundary. The norm || · ||Hm(S) associated with Hm(S) is given by

||u||2Hm(S) =
∑

|α|≤m

∫

S

|Dαu|2 dx.

Note that H0(S) = L2(S) and || · ||H0(S) = || · ||L2(S). For the vector valued
functions, we define the Sobolev space Hm(S) by

Hm(S) := {u = (u1, u2) | ui ∈ Hm(S), for i = 1, 2} ,

and its associated norm

||u||2
Hm(S) =

2∑

i=1

||ui||
2
Hm(S).

2.2. Properties of Tt

Let J = [0, τ0] with τ0 sufficiently small. Then, the following regularity prop-
erties of the transformation Tt can be shown, see for example Ito, Kunisch and
Peichl (2008), Sokolowski and Zolésio (1992), Delfour and Zolésio (2001, Chap-
ter 7):

T0 = id t 7→ Tt ∈ C1(J , C1(D̄;Rd))

t 7→ T−1
t ∈ C1(J , C1(D̄;Rd)) t 7→ It ∈ C1(J , C(D̄))

t 7→ (DTt)
−T ∈ C1(J , C(D̄;Rd×d)) d

dt
Tt|t=0 = h

d
dt
T−1
t |t=0 = −h d

dt
DTt|t=0 = Dh

d
dt
DT−1

t |t=0 = −Dh d
dt
It|t=0 = div h

It|t=0 = 1 I−1
t |t=0 = 1.

(7)

The limits defining the derivatives at t = 0 exist uniformly in x ∈ D̄. We shall
also make use of the surface divergence, denoted by divΓ, which is defined for
ϕ ∈ C1(D̄,Rd) by

divΓϕ := divϕ|Γ − (Dϕ n) · n. (8)
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2.3. The Eulerian derivative

Definition 2.1 For given h ∈ H, the Eulerian derivative of J at Ω in the
direction h is defined as

dJ(u,Ω)h = lim
t→0

J(ut,Ωt)− J(u,Ω)

t
, (9)

where ut satisfies

E(ut,Ωt) = 0. (10)

The functional J is said to be shape differentiable at Ω if dJ(Ω, u)h exists for
all h ∈ H and the mapping h 7→ dJ(Ω, u)h is linear and continuous on H.

Under suitable regularity assumptions one can furthermore show that dJ(u,Ω)h
only depends on the normal component of the deformation field h on ∂Ω and
can be represented as

dJ(u,Ω)h =

∫

∂Ω

GΩh · n ds, (11)

where the kernel GΩ does not involve the shape derivative of u with respect to
Ω. This is the main result of the Zolesio-Hadamard structure theorem, Delfour
and Zolésio (2001), p. 348. Let {Xt}t≥0 be a family of functional spaces defined
over the domains Ωt. Then the variational form of (10) is given by: Find ut ∈ Xt

such that

〈E(ut,Ωt), ψt〉X∗

t
×Xt

= 0, (12)

holds for all ψt ∈ Xt. Throughout we choose Xt :=
{
ψ ◦ T−1

t : ψ ∈ X
}

and we
assume that equation (12) has a unique solution ut, for all t sufficiently small.
Here ψ ◦ T−1

t (x) = ψ(T−1
t (x)). Using the method of mappings, equation (12)

represents the weak form of the reference problem (2) given by

〈E(u,Ω), ψ〉X∗×X = 0, for all ψ ∈ X (13)

for t = 0. The adjoint state p ∈ X to this equation is defined as the solution to

〈Eu(u,Ω)ψ, p〉X∗×X = (C∗j′1(Cγu), ψ), (14)

where we make use of the structure of Cγ in (4). Any function ut : Ωt 7→ R
l,

for l ∈ N, can be mapped back to the reference domain by

ut = ut ◦ Tt : Ω 7→ R
l. (15)

From the chain rule it follows that the gradients of ut and ut are related by

(∇ut) ◦ Tt = (DTt)
−T∇ut, (16)
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(see Sokolowski and Zolésio, 1992, Prop. 2.29). Moreover ut : Ω 7→ R
l satisfies

an equation on the reference domain which we express as

Ẽ(ut, t) = 0, |t| < τ̃ . (17)

Because T0 = id, one obtains u0 = u and

Ẽ(u0, 0) = E(u,Ω).

In order to circumvent the computation of the derivative of u with respect to Ω,
the following assumptions (H1-H4) were imposed on Ẽ and E in Ito, Kunisch
and Peichl (2008).
(H1) There is a C1-function Ẽ : X × (−τ̃ , τ̃) 7→ X∗ such that E(ut,Ωt) = 0 is

equivalent to
Ẽ(ut, t) = 0 in X∗,

with Ẽ(u, 0) = E(u,Ω) for all u ∈ X .
(H2) There exists 0 < τ0 ≤ τ̃ such that for |t| < τ0, there exists a unique

solution ut ∈ X to Ẽ(ut, t) = 0 and

lim
t→0

||ut − u0||X

|t|
1

2

= 0.

(H3) Eu(u,Ω) ∈ L(X,X∗) satisfies

〈E(v,Ω) − E(u,Ω)− Eu(u,Ω)(v − u), ψ〉X∗×X = O(||v − u||2X)

for every ψ ∈ X , and u, v ∈ X.
(H4) Ẽ and E satisfy

lim
t→0

1

t

〈

Ẽ(ut, t)− Ẽ(u, t)−
(
E(ut,Ω)− E(u,Ω)

)
, ψ

〉

X∗×X
= 0

for every ψ ∈ X , where ut and u are solutions of (17) and (2), respectively.
Additionally we need that the following assumptions on j1 and Cγ hold.
(H5) We assume that

∫

Ω j1(Cγu) dx,
∫

Ω(j
′
1(Cγu))

2 dx exists for all u ∈ X and

∣
∣
∣

∫

Ω

It

[

j1(Cγu
t)− j1(Cγu)−

(

j′1(Cγu), C(u
t − u)

)]

dx
∣
∣
∣ ≤ K||ut − u||2X ,

where K > 0 does not depend on t ∈ J and Cγ satisfies (4).
To compute the Eulerian derivative of J(u,Ω) in (9), we need to transform the
value of J(ut,Ωt) =

∫

Ωt

j1(Cγut) dxt back to Ω. This is done by using the
relation

J(ut,Ωt) =

∫

Ωt

j1(Cγut) dxt =

∫

Ω

j1((Cγut) ◦ Tt)It dx.

The transformation of (Cγut) ◦ Tt back to Ω induces some matrix At that we
shall require to satisfy:
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(H6)







There exists a matrix At such that t 7→ At ∈ C(J , C(D̄,Rd×d)) and

(Cγut) ◦ Tt = AtCu
t + tG + γ, G ∈ L2(Ω),

Cγ(u ◦ T−1
t ) = (AtCu + tG + γ) ◦ T−1

t ,

limt→0
At−I
t

exists, At|t=0 = I.
(H7) Let

M(t) =
∫

Ω It
[
j1(AtCu

t + tG + γ) − j1(AtCu + tG + γ) + j1(Cγu) −

j1(Cγu
t)
]
dx. Then we shall require M to satisfy

lim
t→0

M(t)

t
= 0. (18)

Some illustrative examples for (H6) and a remark on (H7) are given next. If
Cγ = C = ∇, i.e., γ = 0, then (16) gives At = DT−T

t and G = 0. This gives
the first relation in (H6). By applying the chain rule on ∇(u ◦ T−1

t ), we obtain

∇(u ◦ T−1
t ) = DT−T

t ∇u ◦ T−1
t . (19)

This gives the second relation in (H6). The third relation in (H6) is satisfied by

At since lim
t→0

DT−T
t − I

t
= −DhT , and lim

t→0
DT−T

t = I.

In the next example, we consider the case where Cγ = C = div, i.e., γ = 0.
For this purpose, we derive the transformation of the divergence operator in the
following lemma.

Lemma 2.1 Suppose ut and ut are related by (15), then

(div ut) ◦ Tt = I−1
t (div ut) + tG, (20)

where

div ut = (∂xu
t
1+∂yu

t
2) and G = I−1

t (h2,y∂xu
t
1+h1,x∂yu

t
2−h2,x∂yu

t
1−h1,y∂xu

t
2).

(21)

Proof. By definition

(div u) ◦ Tt = (∂xu1 + ∂yu2) ◦ Tt = (∂xu1) ◦ Tt + (∂yu2) ◦ Tt.

Using (16) we have
(
∂xut,1 ∂xut,2
∂yut,1 ∂yut,2

)

◦Tt =
1

It

(
1 + th2,y −th2,x
−th1,y 1 + th1,x

)(
∂xu

t
1 ∂xu

t
2

∂yu
t
1 ∂yu

t
2

)

. (22)

From (22) we have for the diagonal components

It(∂xut,1) ◦ Tt = (1 + th2,y)∂xu
t
1 − th2,x∂yu

t
1,

It(∂yut,2) ◦ Tt = −th1,y∂xu
t
2 + (1 + th1,x)∂yu

t
2,
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from which upon addition of both terms on the right hand side, one obtains

It(div ut) ◦ Tt = (1 + th2,y)∂xu
t
1 − th2,x∂yu

t
1 − th1,y∂xu

t
2 + (1 + th1,x)∂yu

t
2

= div ut + t(h2,y∂xu
t
1 + h1,x∂yu

t
2 − h2,x∂yu

t
1 − h1,y∂xu

t
2).

From Lemma 2.1, we note that At from (H6) is given by At = I−1
t I. For u ∈ X ,

divu ∈ L2(Ω) by assumption, hence G given in (21) is in L2(Ω). Moreover by

(7), we have that lim
t→0

At − I = 0 and lim
t→0

At − I

t
= −div h holds in L∞(Ω).

Since ut = ut ◦ T−1
t , one obtains div (ut ◦ T−1

t ) =
(

I−1
t (div ut) + tG

)

◦ T−1
t

from Lemma 2.1. Thus, all conditions of assumption (H6) are satisfied by this
transformation.

We now provide a remark on assumption (H7).

Remark 2.1 If we suppose that either γ = 0 in (H6) and j1(t) = |t|2 or γ 6= 0
in (H6) and j1(t) = |t− γ|2, then

M(t) =

∫

Ω

It

[

|(AtCu
t+ tG)|2−|(AtCu+ tG|

2+ |Cu|2−|Cut|2
]

dx, M(0) = 0.

Using (a2 − b2) = (a+ b)(a− b), we can express M such that

M(t)

t
=

∫

Ω

It

[ (At − I)

t
(At + I)C(ut + u) + 2AtG

]

C(ut − u) dx.

Note that It and I−1
t can be expressed as

It = I + tdiv h+ t2detDh and I−1
t = I − tdiv h+ t2detDh,

respectively. Hence, for t ∈ J , It, At + I, and At−I
t

are bounded in L∞(Ω).
Moreover

∣
∣
∣
M(t)

t

∣
∣
∣ ≤

∫

Ω

∣
∣
∣It

(At − I)

t
(At + I)C(ut + u)C(ut − u)

∣
∣
∣ dx

︸ ︷︷ ︸

E1(t)

+ 2

∫

Ω

∣
∣
∣ItAtGC(u

t − u)
∣
∣
∣ dx

︸ ︷︷ ︸

E2(t)

,

and

E1(t) ≤ K1||It||L∞ ||
(At − I)

t
||L∞ ||(At + I)||L∞ ||ut + u||X ||ut − u||X ,

E2(t) ≤ K2||It||L∞ ||At||L∞ ||G||L2 ||ut − u||X ,

for some generic constants K1 and K2. Hence, by H2, we obtain limt→0 Ei(t) =
0, i = 1, 2 and this leads to (18).
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In what follows, the following lemmas shall be utilized.

Lemma 2.2 (Ito, Kunisch and Peichl, 2008)
(1) Let f ∈ C(J ,W 1,1(D)), and assume that ft(0) exists in L1(D). Then

d

dt

∫

Ωt

f(t, x) dxt|t=0 =

∫

Ω

∂f(0, x)

∂t
dx+

∫

Γ

f(0, x)h · n ds.

(2) Let f ∈ C(J ,W 2,1(D)), and assume that ∂f(0,x)
∂t

exists in W 1,1(D). Then

d

dt

∫

Γt

f(t, x) dxt|t=0 =

∫

Γ

∂f(0, x)

∂t
ds+

∫

Γ

(∂f(0, x)

∂n
+ κf(0, x)

)

h · n ds,

where κ stands for the mean curvature of Γ.

The assumptions of Lemma 2.2 can be verified using the following Lemma

Lemma 2.3 (Sokolowski and Zolésio, 1992, Chapter 2)
(1) If u ∈ Lp(D), then t 7→ u ◦ T−1

t ∈ C(J , Lp(D)), 1 ≤ p <∞.
(2) If u ∈ H2(D), then t 7→ u ◦ T−1

t ∈ C(J , H2(D)).
(3) If u ∈ H2(D), then d

dt
(u ◦ T−1

t )|t=0 exists in H1(D) and is given by

d

dt
(u ◦ T−1

t )|t=0 = −(Du)h.

Note 2.1 As a consequence of Lemma 2.3, we note that d
dt
∇(u◦T−1

t )
∣
∣
∣
t=0

exists

in L2(D) and is given by

d

dt
∇(u ◦ T−1

t )
∣
∣
∣
t=0

= −∇(Duh).

For the transformation of domain integrals, the following well known fact will
be used repeatedly.

Lemma 2.4 Let φt ∈ L1(Ωt), then φt ◦ Tt ∈ L1(Ω) and
∫

Ωt

φt dxt =

∫

Ω

φt ◦ Tt It dx.

As a main result, we now formulate the representation of the Eulerian derivative
of J in the following theorem.

Theorem 2.1 If (H1-H7) hold, and j1(Cγu) ∈ W 1,1(Ω), then the Eulerian
derivative of J in the direction h ∈ H exists and is given by the expression

dĴ(Ω)h =−
d

dt
〈Ẽ(u, t), p〉X∗×X |t=0 +

∫

∂Ω

j1(Cγu)h · n ds

−

∫

Ω

j′1(Cγu)Cγ(∇u
T · h) dx. (23)
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Proof. The Eulerian derivative of a cost functional J(u,Ω) is defined by (9).
Using Lemma 2.4 we obtain

J(ut,Ωt)− J(u,Ω) =

∫

Ω

j1((Cγut) ◦ Tt)It − j1(Cγu) dx,

and by (H6)

J(ut,Ωt)− J(u,Ω) =

∫

Ω

It

(

j1(AtCu
t + tG + γ)− j1(Cγu

t)
)

dx

+

∫

Ω

(

Itj1(Cγu
t)− j1(Cγu)

)

dx.

The following estimate is obtained along the lines of Ito, Kunisch and Peichl
(2008). We set

R(t) =

∫

Ω

(

Itj1(Cγu
t)− j1(Cγu)

)

dx, R(0) = 0,

S(t) =

∫

Ω

It

(

j1(AtCu
t + tG + γ)− j1(Cγu

t)
)

dx, S(0) = 0.

Since C is a bounded linear operator, we have

R(t) =

∫

Ω

It

[

j1(Cγu
t)− j1(Cγu)−

(

j′1(Cγu), C(u
t − u)

)]

dx+

∫

Ω

(It − 1)
(

j′1(Cγu), C(u
t − u)

)

dx+

∫

Ω

(

j′1(Cγu), C(u
t − u)

)

dx

+

∫

Ω

(It − 1)j1(Cγu) dx.

We express R(t) = R1(t)+R2(t)+R3(t)+R4(t). Using (H2) and (H5), we have

that lim
t→0

1

t
R1(t) = 0. Moreover, using H5 and similar arguments as in Remark

2.1, we have

∣
∣
∣
R2(t)

t

∣
∣
∣ ≤ ||

(It − I)

t
||L∞ ||j′1(Cγu)||L2 ||ut − u||X .

Therefore, by (H2) and (7), one obtains limt→0 | 1
t
R2(t)| = 0. Next observe that

using (14) with ψ = ut − u ∈ X , we have that

R3(t) = (j′1(Cγu), C(u
t − u)) = (C∗j′1(Cγu), (u

t − u))

= 〈Eu(u,Ω)(u
t − u), p〉X∗×X . (24)
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In order to bypass the computation of the shape derivative of u, we arrange
terms on the right hand side of (24) in an efficient manner to obtain

〈Eu(u,Ω)(u
t − u), p〉X∗×X = −〈Ẽ(u, t)− Ẽ(u, 0), p〉X∗×X

− 〈E(ut,Ω)− E(u,Ω)− Eu(u,Ω)(u
t − u), p〉X∗×X

− 〈Ẽ(ut, t)− Ẽ(u, t)− E(ut,Ω) + E(u,Ω), p〉X∗×X .

(25)

Note that the extra terms 〈Ẽ(u, 0), p〉X∗×X and 〈Ẽ(ut, t), p〉X∗×X introduced in
(25) vanish by (H1) and (13). By using assumptions (H2), (H3) and (H4), we
have that

− lim
t→0

1

t
〈E(ut,Ω)− E(u,Ω)− Eu(u,Ω)(u

t − u), p〉X∗×X = 0,

and

− lim
t→0

1

t
〈Ẽ(ut, t)− Ẽ(u, t)− E(ut,Ω) + E(u,Ω), p〉X∗×X = 0.

Consequently, utilizing (H1), we obtain

lim
t→0

R3(t)

t
= −

d

dt
〈Ẽ(u, t), p〉X∗×X |t=0. (26)

We shall turn our attention to R4(t) later. Now let us focus on

S(t) =

∫

Ω

It

(

j1(AtCu
t + tG + γ)− j1(Cγu

t)
)

dx,

and consider the expression

j1(AtCu
t + tG + γ)− j1(Cγu

t).

This can be written as

j1(AtCu
t + tG + γ)− j1(AtCu + tG + γ) + j1(Cγu)− j1(Cγu

t)+

j1(AtCu+ tG + γ)− j1(Cγu).

Observe that

S(t) =

∫

Ω

It

(

j1(AtCu + tG + γ)− j1(Cγu)
)

dx+M(t).
(27)

We can express S(t) = S1(t)+M(t), where S1(t) is the first term in (27). Using

(H7), we have that lim
t→0

M(t)

t
= 0. Therefore, collecting the remaining terms,

i.e., R4(t) and S1(t) into S5(t) := R4(t) + S1(t), we have that

S5(t) =

∫

Ω

Itj1(AtCu + tG + γ)− j1(Cγu) dx, S5(0) = 0.
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Using Lemma 2.4, we can express S5 as

S5(t) =

∫

Ωt

j1
(
[AtCu+ tG + γ] ◦ Tt

)
dxt −

∫

Ω

j1
(
Cγu

)
dx. (28)

By H6, (28) can further be expressed as

S5(t) =

∫

Ωt

j1
(
Cγ(u ◦ T−1

t )
)
dxt −

∫

Ω

j1(Cγu) dx. (29)

By definition of Eulerian derivative, we have that

lim
t→0

S5(t)

t
=

d

dt

∫

Ωt

j1
(
Cγ(u ◦ T−1

t )
)
dxt

∣
∣
∣
t=0

.

Since by assumption j1(Cγu) ∈W 1,1(Ω), d
dt

[

j1(Cγ(u◦T
−1
t ))

]

t=0
exists in L1(Ω),

therefore, using Lemma 2.2 and Lemma 2.3, we have that

lim
t→0

S5(t)

t
=

∫

Ω

d

dt

[

j1(Cγ(u ◦ T−1
t ))

]

t=0
dx+

∫

∂Ω

j1(Cγu)h · n ds

=

∫

∂Ω

j1(Cγu)h · n ds−

∫

Ω

j′1(Cγu)Cγ(∇u
T · h) dx.

Hence,

dJ(u,Ω)h = lim
t→0

R(t) + S(t)

t
=−

d

dt
〈Ẽ(u, t), p〉X∗×X |t=0

+

∫

∂Ω

j1(Cγu)h · n ds

−

∫

Ω

j′1(Cγu)Cγ(∇u
T · h) dx.

Remark 2.2 We point out that assumptions (H1)-(H4) are supposed to hold
for every ψ ∈ X . However, if they hold uniformly in ||ψ||X ≤ 1, then the
existence of the shape sensitivity of the state u can be obtained, see Lemma A.2
in the Appendix.

3. Examples

As an application of the general theory developed in the previous section, we
derive the shape derivatives of cost functionals used for vortex reduction in fluid
dynamics. Here we restrict ourselves to the 2D case. Typical cost functionals
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used for this purpose, are based on minimization of the curl of the velocity field
or tracking-type functionals, Abergel and Temam (1990), i.e.,

J1(u,Ω) =
1

2

∫

Ω

|curl u(x)|2 dx,

J2(u,Ω) =
1

2

∫

Ω

|Au(x)− ud(x)|
2 dx, A ∈ R

2×2,
(30)

where ud stands for a given desired flow field which contains some of the expected
features of the controlled flow field without the undesired vortices. Furthermore,

J3(u,Ω) =

∫

Ω

g3(det ∇u) dx, (31)

where

g3(t) =

{
0 t ≤ 0,
t3

t2+1 t > 0,

penalizes the complex eigenvalues of ∇u which are responsible for the swirling
motion in a given flow (see, e.g., Hintermüller et al., 2004, and references
therein). In (30-31), u represents the state variable that solves the Navier-
Stokes equations







−η∆u+ (u · ∇)u+∇p = f in Ω,
div u = 0 in Ω,
u = 0 on ∂Ω.

(32)

Here η > 0, denotes the kinematic viscosity of the fluid, f ∈ L2(Ω) is the external
body force, p the pressure, and with reference to Fig. 1, Ω = S with Γ = ∂Ω.

The rigorous characterization of shape derivatives of cost functionals J1 and
J2 with the Navier-Stokes equations as a constraint can be found in litera-
ture, see e.g., Gao, Ma and Zhuang (2008). In Gao, Ma and Zhuang (2008),
this characterization is based on the state derivative approach, function space
parameterization and embedding methods. On the other hand, the rigorous
characterization of the shape derivative of cost functional J3 has not been con-
sidered before. Moreover, we reconsider the shape differentiability of J1 and J2
to demonstrate the power of the axiomatic framework.

Using the notation of the previous section, we observe that E(u,Ω) = 0 is
given by system (32). We define the following functional spaces for velocity and
pressure, respectively:

H1
0(Ω) = {ψ ∈ H1(Ω) | ψ = 0 on Γ},

L2
0(Ω) = {q ∈ L2(Ω) |

∫

Ω

q dx = 0}.
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The variational formulation of (32) is given by: Find (u, p) ∈ X ≡ H1
0(Ω) ×

L2
0(Ω) such that

〈E((u, p),Ω), (ψ, ξ)〉X∗×X ≡ η(∇u,∇ψ)Ω + ((u · ∇)u,ψ)Ω − (p, div ψ)Ω

−(f ,ψ)Ω − (div u, ξ)Ω = 0, (33)

holds for all (ψ, ξ) ∈ X . It is well known that for sufficiently large values of η or
for small values of f , there exists a unique solution (u, p) to (33) in X . Moreover,
since ∂Ω ∈ C2, (u, p) ∈

(
H2(Ω) ∩H1

0(Ω)
)
×

(
H1(Ω) ∩ L2

0(Ω)
)
, Temam (1977).

On Ωt the perturbed weak formulation of (32) reads:
Find (ut, pt) ∈ Xt ≡ H1

0(Ωt)× L2
0(Ωt) such that

〈E((ut, pt),Ωt), (ψt, ξt)〉X∗

t
×Xt

≡ η(∇ut,∇ψt)Ωt
+ ((ut · ∇)ut,ψt)Ωt

−(pt, div ψt)Ωt
− (ft,ψt)Ωt

− (div ut, ξt)Ωt
= 0, (34)

holds for all (ψt, ξt) ∈ Xt. Using the summation convention, the transformation
of the divergence (Ito, Kunisch and Peichl, 2008) is given by

(div ψt) ◦ Tt = DψtiB
T
t ei = (Bt)i∇ψ

t
i ,

where ei stands for the i-th canonical basis vector in R
d and (Bt)i denotes the

i-th row of Bt = (DTt)
−T . Thus, using (16) the transformation of (34) back to

Ω becomes,

〈Ẽ((ut, pt), t), (ψ, ξ)〉X∗×X ≡ η(ItBt∇ut, Bt∇ψ)Ω + ((ut · Bt∇)ut, Itψ)Ω

−(pt, It(Bt)k∇ψ
t
k)Ω − (f tIt,ψ)Ω − (It(Bt)k∇u

t
k, ξ)Ω = 0 for all (ψ, ξ) ∈ X.

(35)

3.1. The Eulerian derivative of cost functional J1

For this cost functional, the operator Cγ = C = (curl, 0) and C∗
γ = (curl, 0)

with γ = 0. Moreover, it is easy to check that C ∈ L(X,L2). Furthermore,
since u ∈ H1

0(Ω) we have that curl u ∈ L2(Ω,R) and therefore,

u ∈ H(curl,Ω) :=
{
u ∈ L2(Ω,R2) : curl u ∈ L2(Ω,R)

}
.

Hence, the cost functional J1(u,Ω) is well defined. The adjoint state (λ, q) ∈ X
is given as a solution to

〈E′((u, p),Ω)(ψ, ξ), (λ, q)〉X∗×X = (curl(curl u),ψ)Ω,

with right hand side curl(curl u) = −∆u, which amounts to

η(∇ψ,∇λ)Ω + ((ψ · ∇)u+ (u · ∇)ψ,λ)Ω − (ξ, div λ)Ω − (div ψ, q)Ω

= (−∆u,ψ)Ω. (36)
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Integrating
(
(u · ∇)ψ,λ

)

Ω
by parts, one obtains the strong form of the adjoint

equation in (36), that we express as






−η∆λ+ (∇u) · λ− (u · ∇)λ +∇q = −∆u in Ω,
div λ = 0 in Ω,
λ = 0 on ∂Ω,

(37)

where the first equation holds in L2(Ω) and the second one in L2(Ω). It is well
known that there exists a unique solution (λ, q) ∈ X . Moreover, since ∂Ω ∈ C2,
(λ, q) ∈

(
H2(Ω) ∩H1

0(Ω)
)
×
(
H1(Ω) ∩ L2

0(Ω)
)

(see e.g. Ito, Kunisch and Peichl,
2008, and references therein). In view of Theorem 2.1 we have to compute
d
dt
〈Ẽ((u, p), t), (λ, q) 〉X∗×X |t=0, for which we use the representation on Ωt of

(35). This writes

〈Ẽ((u, p), t), (λ, q)〉X∗×X ≡ η(∇u ◦ T−1
t ,∇λ ◦ T−1

t )Ωt
+

((u ◦ T−1
t · ∇)u ◦ T−1

t ,λ ◦ T−1
t )Ωt

−(p ◦ T−1
t , div λ ◦ T−1

t )Ωt
− (f ,λ ◦ T−1

t )Ωt

−(div u ◦ T−1
t , q ◦ T−1

t )Ωt
= 0, (38)

where (u, p), (λ, q) ∈ X are solutions of (32) and (36), respectively. The com-
putation of d

dt
〈Ẽ((u, p), t), (λ, q)〉X∗×X |t=0, results in

d

dt
〈Ẽ((u, p), t), (λ, q)〉X∗×X |t=0 = (−η∆u+ (u · ∇)u+∇p− f ,ψλ)Ω+

η(∇u · n,ψλ)∂Ω − (pψλ,n)∂Ω + (−η∆λ+ (∇u)λ − (u · ∇)λ +∇q,ψu)Ω

+η
(
ψu,∇λ · n

)

∂Ω
− (q · n,ψu)∂Ω + η

∫

∂Ω

(∇u,∇λ)h · n ds, (39)

where ψu = −∇uT · h ∈ H1(Ω) and ψλ = −∇λT · h ∈ H1(Ω), with h ∈ H. By
using (37), the expression on the right hand side of (39) can further be simplified
to obtain (40) (see Ito, Kunisch and Peichl, 2008, for more details).

d

dt
〈Ẽ((u, p), t), (λ, q)〉X∗×X |t=0 = −

∫

∂Ω

[

η
∂u

∂n

∂λ

∂n

]

h · n ds

+

∫

∂Ω

(

p(
∂λ

∂n
,n) + q(

∂u

∂n
,n)

)

h · n ds+

∫

Ω

(∆u)∇uT · h dx. (40)

Using the definition of tangential divergence (8), we have that:

p(
∂λ

∂n
,n) = p(∇λT · n) · n = p div λ|∂Ω − p div∂Ω λ. (41)

Since λ = 0 on ∂Ω, the last term in (41) vanishes (see Sokolowski and Zolésio,
1992, p. 82 for details). Furthermore, div λ = 0, which renders this expression
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to be zero. Analogously, q(∂u
∂n
,n) = 0. Thus

d

dt
〈Ẽ((u, p), t), (λ, q)〉X∗×X |t=0 = −

∫

∂Ω

η
∂u

∂n

∂λ

∂n
h · n ds+

∫

Ω

(∆u)∇uT · h dx.

(42)

In view of Theorem 2.1, we further need to show that assumptions (H1-H7) hold,
and, moreover, that |curl u|2 ∈ W 1,1(Ω). Assumptions (H1-H4) were verified in
Ito, Kunisch and Peichl (2008). To check (H5), note that

1

2
|curl ut|2 −

1

2
|curl u|2 −

(
curl u, curl(ut − u)

)
=

1

2
(curl(ut − u))2.

Hence,
∫

Ω

It

[1

2
|curl ut|2 −

1

2
|curl u|2 −

(
curl u, curl(ut − u)

)]

dx

=

∫

Ω

It
2
(curl(ut − u))2 dx.

Consequently, by Young’s inequality, we have
∣
∣
∣

∫

Ω

It
2
(curl(ut − u))2 dx

∣
∣
∣ ≤ max

t∈[0,τ0]
||It||L∞ ||ut − u||2X ,

for τ0 sufficiently small. Hence, (H5) is satisfied with K = max
t∈[0,τ0]

||It||L∞ .

Condition (H6) is checked next. It illustrates the choice of Cγ for the present
example.

Lemma 3.1 Suppose ut and ut are related by (15), then

(curl ut) ◦ Tt = I−1
t (curl ut) + tG, (43)

where

G = I−1
t (h2,y∂xu

t
2 − h2,x∂yu

t
2 + h1,y∂xu

t
1 − h1,x∂yu

t
1). (44)

Proof. By definition

(curl u) ◦ Tt = (∂xu2 − ∂yu1) ◦ Tt = (∂xu2) ◦ Tt − (∂yu1) ◦ Tt.

From (22) we have for the non-diagonal components

It(∂xut,2) ◦ Tt = (1 + th2,y)∂xu
t
2 − th2,x∂yu

t
2,

It(∂yut,1) ◦ Tt = −th1,y∂xu
t
1 + (1 + th1,x)∂yu

t
1,

from which we obtain that

It(curl ut) ◦ Tt = (1 + th2,y)∂xu
t
2 − th2,x∂yu

t
2 + th1,y∂xu

t
1 − (1 + th1,x)∂yu

t
1

= curl ut + t(h2,y∂xu
t
2 − h2,x∂yu

t
2 + h1,y∂xu

t
1 − h1,x∂yu

t
1).

Thus, (curl ut) ◦ Tt = I−1
t (curl ut) + tG.
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From Lemma 3.1, we observe that At from (H6) is given by At = I−1
t I. Since

u ∈ H1
0(Ω), G given in (44) belongs to the Sobolev space L2(Ω). Moreover by

(7), we have that lim
t→0

At− I = 0 and lim
t→0

At − I

t
= −div h. Since ut = ut ◦T−1

t ,

one obtains curl (ut ◦T−1
t ) =

(

I−1
t (curl ut)+ tG

)

◦T−1
t from Lemma 3.1. Thus,

all conditions of assumption (H6) are satisfied by this transformation.
Cost functional J1 satisfies the conditions of Remark 2.1 and therefore, (H7)
holds. In addition, since u ∈ H2(Ω), it follows that ∇curl u ∈ L2(Ω). Therefore,
we infer that ∇|curl u|2 = 2curl u ∇curl u ∈ L1(Ω). Consequently |curl u|2 ∈
W 1,1(Ω). Since all assumptions of Theorem 2.1 are satisfied, using (23) and
(42), we can express the Eulerian derivative of J1 as

dJ1(u,Ω)h =

∫

∂Ω

[

η
∂u

∂n

∂λ

∂n

]

h · n ds−

∫

Ω

(∆u)∇uT · h dx+

1

2

∫

∂Ω

|curl u|2 h · n ds−

∫

Ω

curl u curl (∇uT · h) dx. (45)

We want to express (45) in the form required by the Zolesio-Hadamard structure
theorem (11). With this in mind, sufficient regularity of u together with Green’s
formula for the curl, i.e.,

∫

Ω

[

curl u curl (∇uT · h)− (∆u)∇uT · h
]

dx =

∫

∂Ω

(curl u)τ · (∇uT · h) ds,

see, e.g., Monk (2003, p. 58), leads to

dJ1(u,Ω)h =

∫

∂Ω

[

η
∂u

∂n

∂λ

∂n
+

1

2
|curl u|2 − (curl u)τ ·

∂u

∂n

]

h · n ds. (46)

3.2. The Eulerian derivative of cost functional J2

In this example we define the operator Cγ : u(x) 7→ Au − ud ∈ L2(Ω) with
γ = −ud ∈ L2(D). The linear operator C ∈ L(X,L2(Ω)) is such that C :
u(·) 7→ Au(·). Furthermore, since u ∈ H1

0(Ω) we have that Au − ud ∈ L2(Ω).
Hence, the cost functional J2(u,Ω) is well defined. For this case the adjoint
state (λ, q) ∈ X , is given as a solution to

〈E′((u, p),Ω)(ψ, ξ), (λ, q)〉X∗×X = (Au− ud,ψ)Ω ,

which amounts to






−η∆λ+ (∇u) · λ− (u · ∇)λ +∇q = (Au− ud), in Ω,
div λ = 0 in Ω,
λ = 0 on ∂Ω,

(47)

where the first equation in (47) holds in L2(Ω) and the second one in L2(Ω).
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Theorem 3.1 The shape derivative of the cost functional J2(u,Ω) can be ex-
pressed as

dJ2(u,Ω)h =

∫

∂Ω

[

η
∂u

∂n

∂λ

∂n
+

1

2
(Au− ud)

2

]

h · n ds. (48)

Proof. We want to make use of Theorem 2.1 to derive (48). For this purpose,
we remark that by using (39), (41) and (47) , one obtains

d

dt
〈Ẽ, (λ, q)〉X∗×X |t=0 = −

∫

∂Ω

η
∂u

∂n

∂λ

∂n
ds−

∫

Ω

(Au− ud)A
T (∇uT )h dx,

where (λ, q) solves (47). Furthermore, we need to show that assumptions (H1-
H7) of Theorem 2.1 hold, and moreover that |Au − ud|

2 ∈ W 1,1(Ω). As stated
earlier, assumptions (H1-H4) were verified in Ito, Kunisch and Peichl (2008).
To check (H5), note that

1

2
|Aut − ud|

2 −
1

2
|Au− ud|

2 −
(
Au− ud, A(u

t − u)
)
=

1

2
(A(ut − u))2.

Consequently by Young’s inequality, we have

∣
∣
∣

∫

Ω

It
2
(A(ut − u))2 dx

∣
∣
∣ ≤ 4ã max

t∈[0,τ0]
||It||L∞ ||ut − u||2X , ã = max

i,j
|ai,j |,

i, j = 1, 2.

Hence, (H5) is satisfied with K = 4ã max
t∈[0,τ0]

||It||L∞ , for τ0 sufficiently small.

Note that the transformation (Cγut) ◦ Tt = Cut − ud implies that G = 0 in

(H6). Furthermore, At is given by At = I and lim
t→0

At − I

t
= 0. Moreover,

Cγ(u
t ◦ T−1

t ) = (Cut − ud) ◦ T
−1
t . Hence, all conditions of (H6) are satisfied.

Note that J2 satisfies conditions of Remark 2.1 and hence (H7) holds. It is also
clear that |Au−ud|

2 ∈ W 1,1 since u ∈ H2(Ω). The preceding discussion shows
that assumptions (H1-H7) are satisfied. Therefore, using Theorem 2.1 together
with the fact that (j′1(Cu), C(∇uTh))Ω = (Au−ud, A

T (∇uT )h)Ω, one obtains

dJ2(u,Ω)h =

∫

∂Ω

[

η
∂u

∂n

∂λ

∂n
+

1

2
(Au− ud)

2

]

h · n ds. (49)

3.3. The Eulerian derivative of cost functional J3

First note that J3(u,Ω) is well defined. In fact, for u ∈ H1
0(Ω), we have

det ∇u ∈ L1(Ω). Moreover 0 ≤ t3

t2+1 ≤ t for t ≥ 0, hence g3(det ∇u) is
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integrable. Furthermore, for δu ∈ H1
0(Ω), there exists the directional derivative

J ′
3(u,Ω)(δu) given by

J ′
3(u,Ω)(δu) =

∫

Ω

g′3(det ∇u)(det ∇u)′δu dx, (50)

where
(det ∇u)′δu = (u1xδu

2
y + δu1xu

2
y − u2xδu

1
y − u1yδu

2
x) and

g′3(t) =

{
0 t ≤ 0,
t4+3t2

t4+2t2+1 t > 0.

Where appropriate, we shall use the short form notation g′3 to represent
g′3(det ∇u) in what follows.

Lemma 3.2 The directional derivative J ′
3(u,Ω)(δu) can be expressed in the form

J ′
3(u,Ω)(δu) =

∫

Ω

T (u)(δu) dx+

∫

∂Ω

P (u)(δu) ds,

where

T (u) =

(
−curl

(
g′3∇u2

)

curl
(
g′3∇u1

)

)

and P (u) =




g′3(det ∇u)

(
∂u2

∂y
nx −

∂u2

∂x
ny

)

g′3(det ∇u)
(
∂u1

∂x
ny −

∂u1

∂y
nx

)



 .

Proof. Integrating each term in (50) by parts, we obtain
∫

Ω

g′3
∂u1
∂x

∂(δu2)

∂y
dx =

∫

∂Ω

g′3
∂u1
∂x

(δu2)ny ds−

∫

Ω

∂

∂y

(

g′3
∂u1
∂x

)

δu2 dx,

∫

Ω

g′3
∂(δu1)

∂x

∂u2
∂y

dx =

∫

∂Ω

g′3
∂u2
∂y

(δu1)nx ds−

∫

Ω

∂

∂x

(

g′3
∂u2
∂y

)

δu1 dx,

∫

Ω

−g′3
∂(δu2)

∂x

∂u1
∂y

dx = −

∫

∂Ω

g′3
∂u1
∂y

(δu2)nx ds+

∫

Ω

∂

∂x

(

g′3
∂u1
∂y

)

δu2 dx,

∫

Ω

−g′3
∂(δu1)

∂y

∂u2
∂x

dx = −

∫

∂Ω

g′3
∂u2
∂x

(δu1)ny ds+

∫

Ω

∂

∂y

(

g′3
∂u2
∂x

)

δu1 dx.

Summation of the right hand sides of the terms in the above expressions gives
the desired result.

The adjoint state (λ, q) ∈ X is given as a solution to

〈E′((u, p),Ω)(ψ, ξ), (λ, q)〉X∗×X = (g′3(det ∇u), (det ∇u)′ψ)Ω, (51)

which by Lemma 3.2 amounts to






−η∆λ+ (∇u) · λ− (u · ∇)λ +∇q = T (u), in Ω,
div λ = 0, in Ω,
λ = 0, on ∂Ω,

(52)
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where the first equation in (52) holds in L2(Ω) and the second one in L2(Ω).
Moreover, since ∂Ω ∈ C2, (λ, q) ∈

(
H2(Ω) ∩H1

0(Ω)
)
×

(
H1(Ω) ∩ L2

0(Ω)
)
. Let

us note that Theorem 2.1 is not directly applicable to computing the shape
derivative of J3, since the operator “ det ∇ ” in the functional J3 in (31) is not
affine. We therefore give an independent proof following the lines of proof of
Theorem 2.1. Firstly, we state and prove the following lemma that will become
important in what follows.

Lemma 3.3 Suppose ut and ut are related by (15). Then

(det ∇ut) ◦ Tt = I−1
t (det ∇ut) + tG1 + t2G2, (53)

where

det ∇ut = (∂xu
t
1∂yu

t
2 − ∂xu

t
2∂yu

t
1),

G1 = I−1
t (E2∂xu

t
1 + E1∂yu

t
2 − E4∂xu

t
2 − E3∂yu

t
1) ∈ L1(Ω),

G2 = I−1
t (E1E2 − E3E4) ∈ L1(Ω),

and E1 = h2,y∂xu
t
2 − h2,x∂yu

t
2, E2 = h1,x∂yu

t
1 − h1,y∂xu

t
1, E3 = h2,y∂xu

t
1 −

h2,x∂yu
t
1, and E4 = h1,x∂yu

t
2 − h1,y∂xu

t
2.

Proof. By definition

(det ∇u) ◦ Tt = (∂xu1∂yu2 − ∂xu2∂yu1) ◦ Tt.

From (22) we have

(∂xut,2) ◦ Tt = I−1
t ∂xu

t
2 + tI−1

t E1, (∂yut,1) ◦ Tt = I−1
t ∂yu

t
1 + tI−1

t E2,

(∂xut,1) ◦ Tt = I−1
t ∂xu

t
1 + tI−1

t E3, (∂yut,2) ◦ Tt = I−1
t ∂yu

t
2 + tI−1

t E4.

From the above equations, we obtain

(det ∇ut) ◦ Tt = I−1
t (det ∇ut) + tG1 + t2G2.

Note that for u ∈ X , G1,G2,∈ L1(Ω), and this concludes the proof.

Proposition 3.1 Assume that f ∈ Lp(Ω), p > 2. If (H1-H4) hold, and
g3(det ∇u) ∈ W 1,1(Ω), then the Eulerian derivative of J3(u,Ω) exists and is
given by the expression

dJ3(u,Ω)h =

∫

∂Ω

(

η
∂u

∂n

∂λ

∂n
+ g3(det ∇u)− P (u)

∂u

∂n

)

h · n ds. (54)

Proof. As stated earlier, assumptions (H1-H4) were verified in Ito, Kunisch and
Peichl. Using (9), we have

J3(ut,Ωt)− J3(u,Ω) =

∫

Ωt

g3(det ∇ut) dx−

∫

Ω

g3(det ∇u) dx,

=

∫

Ω

Itg3((det ∇ut) ◦ Tt) dx−

∫

Ω

g3(det ∇u) dx. (55)



1010 H. KASUMBA, K. KUNISCH

Let G3 = G1 + tG2. Using equation (53), we can express (55) as

J3(ut,Ωt)− J3(u,Ω) =

∫

Ω

Itg3(I
−1
t (det ∇ut) + tG3) dx−

∫

Ω

g3(det ∇u) dx.

(56)

The right hand side of (56) can be written as R(t) + S(t), where

R(t) =

∫

Ω

Itg3(det ∇ut)− g3(det ∇u) dx, R(0) = 0,

S(t) =

∫

Ω

It

(

g3(I
−1
t (det ∇ut) + tG3)− g3(det ∇ut)

)

dx, S(0) = 0.

R(t) can be re-written as

R(t) =

∫

Ω

It

(

g3(det ∇ut)

− g3(det ∇u)

− g′3(det ∇u)(det ∇u)′(ut − u)
)

dx

+

∫

Ω

(It − 1)g′3(det ∇u)(det ∇u)′(ut − u) dx

+

∫

Ω

g′3(det ∇u)(det ∇u)′(ut − u) dx

+

∫

Ω

(It − 1)g3(det ∇u) dx.

We express R(t) as R1(t) + R2(t) + R3(t) + R4(t). From Lemma A.1 (see
Appendix), we have

(det ∇u)′(ut − u) = det ∇ut − det ∇u− det ∇(ut − u).

Consequently, R1(t) can be rewritten as

R1(t) =

∫

Ω

It

(

g3(det ∇ut)− g3(det ∇u)− (g′3(det ∇u), det ∇ut

− det ∇u)
)

dx+

∫

Ω

Itg
′
3(det ∇u)det ∇(ut − u) dx.

Let s = det ∇u and q = det ∇ut. Then, R1(t) can further be rewritten as

R1(t) =

∫

Ω

It

{∫ 1

0

[
g′3(s+ γ(q − s))− g′3(s)

]
(q − s) dγ

}

dx

+

∫

Ω

Itg
′
3(det ∇u)det ∇(ut − u) dx. (57)
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Note that the functions g3(t) and g′3(t) are globally Lipschitz with constant 3/2,
i.e.,

|g3(t)− g3(s)| ≤
3

2
|t− s|,

|g′3(t)− g′3(s)| ≤
3

2
|t− s|, 0 ≤ t, s ∈ R. (58)

Furthermore, Young’s inequality implies that

|det ∇ u| ≤
1

2

[(∂u1
∂x1

)2

+
(∂u2
∂x2

)2

+
(∂u2
∂x1

)2

+
(∂u1
∂x2

)2]

=
1

2
(∇u : ∇u).

Hence, the second term R1,2(t) in (57) can be estimated as follows

|R1,2(t)| =
∣
∣
∣

∫

Ω

Itg
′
3(det ∇u)det ∇(ut − u) dx

∣
∣
∣

≤
3

4
max
t∈[0,τ0]

||It||L∞

∫

Ω

|∇(ut − u)|2 dx,

for τ0 sufficiently small.

Consequently, lim
t→0

|R1,2(t)|

t
≤

3

4
max
t∈[0,τ0]

||It||L∞ lim
t→0

||ut − u||2H1

t
= 0, by (H2).

Similarly, the first term can be estimated as

∣
∣
∣

∫

Ω

It

{∫ 1

0

[
g′3(s+ γ(q − s))− g′3(s)

]
(q − s) dγ

}

dx
∣
∣
∣ ≤ ℜ

∫

Ω

|(q − s)|2 dx

where ℜ:= 3
2 maxt∈[0,τ0] ||It||L∞ .

Note that
∫

Ω |(q − s)|2 dx =
∫

Ω |A+B|2 dx ≤
∫

Ω |A|2 +2|AB|+ |B|2 dx, where

A =
∂ut

1

∂x1

∂ut

2

∂x2
− ∂u1

∂x1

∂u2

∂x2
and B = ∂u2

∂x1

∂u1

∂x2
−
∂ut

2

∂x1

∂ut

1

∂x2
. Furthermore, let a = ∂u1

∂x1
, b =

∂u2

∂x2

, c = ∂u2

∂x1

, and d = ∂u1

∂x2

. Then A = atbt − ab = at(bt − b) + b(at − a), and

B = cd− ctdt = d(c− ct) + ct(d− dt). Since ∂Ω ∈ C2 and f ∈ Lp(Ω) for p > 2,
u ∈ W 2,p(Ω), p > 2. Consequently, a, at, b, bt, c, ct, d, dt ∈W 1,p(Ω) →֒ C(Ω)
for p > 2, and

∫

Ω

|A|2 dx =

∫

Ω

(at)2(bt − b)2 + 2atb(bt − b)(at − a) + b2(at − a) dx

≤ ||at||2L∞

∫

Ω

(bt − b)2 dx

+ ||at||L∞ ||b||L∞

∫

Ω

(at − a)2 + (bt − b)2 dx

+ ||b||2L∞

∫

Ω

(at − a)2 dx.
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Hence, since (H2) is satisfied, limt→0

∫

Ω
|A|2

t
dx = 0 follows. Analogously we

can show that limt→0

∫

Ω
|AB|
t

dx = 0 and limt→0

∫

Ω
|B|2

t
dx = 0. Therefore,

limt→0
|R1(t)|
t

= 0.

Furthermore, lim
t→0

R2(t)

t
≤ lim

t→0

3

2
||
It − 1

t
||L∞

∫

Ω

|(det ∇u)′(ut − u)| dx = 0, by

(H2).
Using (51) with ψ = ut − u ∈ H1

0(Ω), ξ ∈ L2(Ω), we obtain

R3(t) =

∫

Ω

(g′3(det ∇u), (det ∇u)′ψ) dx = 〈E′((u, p),Ω)(ψ, ξ), (λ, q)〉X∗×X .

(59)

Proceeding as in the proof of Theorem 2.1, the term on the right hand side of
(59) is arranged in an efficient manner so that (26) holds. Consequently, by
using the computation that led to (42), we get

lim
t→0

R3(t)

t
= −

d

dt
〈Ẽ((u, p), t), (λ, q)〉X∗×X |t=0 =

∫

∂Ω

η
∂u

∂n

∂λ

∂n
h · n ds+

∫

Ω

T (u)∇uT · h dx, (60)

where (λ, q) solves (52). We shall turn our attention to the last term R4(t)
later. Let us now look at

S(t) =

∫

Ω

It

(

g3(I
−1
t (det ∇ut) + tG3)− g3(det ∇ut)

)

dx.

The expression g3(I
−1
t (det ∇ut) + tG3)− g3(det ∇ut), can be written as

g3(I
−1
t (det ∇ut) + tG3)− g3(I

−1
t (det ∇u)

+ tG3) + g3(det ∇u)

− g3(det ∇ut)

+ g3(I
−1
t (det ∇u) + tG3)

− g3(det ∇u).

Observe that the function g3(r) can be expressed as g3(r) = r −
r

r2 + 1
. Let

s = det ∇u, q = det ∇ut, and A = g3(I
−1
t q+tG3)−g3(I

−1
t s+tG3)+g3(s)−g3(q).

Then

S(t) = S1(t)+S2(t) =

∫

Ω

ItA dx+

∫

Ω

It

(

g3(I
−1
t (det ∇u)+tG3)−g3(det ∇u)

)

dx.

(61)
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Note that A can be expressed as

A = (I−1
t − 1)(q − s) +W(q)−W(s), (62)

where W(r) = r
r2+1 −

I
−1

t
r+tG3

(I−1

t
r+tG3)2+1

. The difference D = W(q) −W(s) can be

expressed as

D =
(tG3 + (I−1

t − 1)q)
(
I−1
t q2 + qtG3 − 1

)

(q2 + 1)
(
(I−1
t q + tG3)2 + 1

)

−
(tG3 + (I−1

t − 1)s)
(
I−1
t s2 + stG3 − 1

)

(s2 + 1)
(
(I−1
t s+ tG3)2 + 1

) .

Let ϑ1 = tG3 + (I−1
t − 1)q, ϑ2 = tG3 + (I−1

t − 1)s, r1 = I−1
t q2 + qtG3 − 1,

r2 = I−1
t s2 + qtG3 − 1, n1 =

(
q2 + 1

) (
(I−1
t q + tG3)

2 + 1
)
,

n2 =
(
s2 + 1

) (
(I−1
t q + tG3)

2 + 1
)
, β := n2r1

n1n2
, and ρ := n1r2

n2r1
. Then

D =
ϑ1r1
n1

−
ϑ2r2
n2

=
n2r1

(

ϑ1 −
n1

n2

r2
r1
ϑ2

)

n1n2
= β[(1− ρ)ϑ1 + ρ(ϑ1 − ϑ2)].

Note that (ϑ1 − ϑ2) = (I−1
t − 1) (q − s) and

A

t
=

(I−1
t − 1)

t
(q − s) + β[(1 − ρ)

ϑ1
t

+ ρ
(I−1
t − 1)

t
(q − s)].

Consequently, the estimate for S1(t)/t reads

|S1(t)/t| ≤ max
t∈[0,τ0]

||It||L∞ ||
I−1
t − 1

t
||L∞ (1 + ||ρ||L∞ ||β||L∞) ||det ∇ut

− det ∇u)||L1

+ max
t∈[0,τ0]

||It||L∞ ||β||L∞ ||1− ρ||L1 ||
ϑ1
t
||L∞ ,

for τ0 sufficiently small. Note that since u ∈ W 2,p, p > 2, β, ρ and ϑ1

t
are

bounded in L∞(Ω). Furthermore, n1

n2
→ 1 in L1(Ω), r2

r1
→ 1 in L1(Ω), and

ρ → 1 in L1(Ω). By (H2) it follows that lim
t→0

|S1(t)|

t
= 0. Therefore, collecting

the remaining terms into S5(t) := R4(t) + S2(t), we have that

S5(t) =

∫

Ω

Itg3(I
−1
t det ∇u+ tG3))− g3(det ∇u) dx.

Observe that g′3(det ∇u) ∈ L∞(Ω) and since u ∈ H2(Ω), we have ∇(det ∇u) ∈
L1(Ω) and ∇(g3(det ∇u)) = g′3(det ∇u)∇(det ∇u) ∈ L1(Ω). Consequently,

g3(det ∇u) ∈ W 1,1(Ω). This implies that d
dt

[

g3(det ∇(u ◦ T−1
t ))

]

t=0
exists in
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L1(Ω), Sokolowski and Zolésio (1992). Hence, using (53) and Lemma 2.2, we
have that

lim
t→0

S5(t)

t
= lim
t→0

∫

Ω
Itg3(I

−1
t det ∇u+ tG3))− g3(det ∇u) dx

t
,

= lim
t→0

∫

Ωt

g3([I
−1
t det ∇u+ tG3] ◦ T

−1
t )−

∫

Ω
g3(det ∇u) dx

t
,

=
limt→0

∫

Ωt

g3(det ∇(u ◦ T−1
t ))−

∫

Ω
g3(det ∇u) dx

t
,

=
d

dt

∫

Ωt

g3(det ∇(u ◦ T−1
t ))

∣
∣
∣
t=0

dxt,

=

∫

∂Ω

g3(det ∇u))h · n ds

+

∫

Ω

g′3(det ∇u)
d

dt
(det ∇(u ◦ T−1

t )
∣
∣
∣
t=0

dx. (63)

The second term on the right hand side in (63) can be simplified using Lemma
2.3 and integration by parts leading to
∫

Ω

g′3
d

dt
(det ∇(u ◦ T−1

t ))
∣
∣
t=0

dx = −

∫

Ω

T (u)Du · h dx−

∫

∂Ω

P (u)Du · h ds.

Therefore,

lim
t→0

S5(t)

t
=

∫

∂Ω

(

g3(det ∇u)− P (u)
∂u

∂n

)

h · n ds−

∫

Ω

T (u)Du · h dx. (64)

Finally, using (60) and (64), we obtain

dJ3(u,Ω)h =

∫

∂Ω

(

η
∂u

∂n

∂λ

∂n
+ g3(det ∇u)− P (u)

∂u

∂n

)

h · n ds. (65)

Expressions for dJi(u,Ω)h in (46), (49), and (65) are linear and continuous in
h, and hence the cost functionals J1, J2, and J3 are shape differentiable.
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A. Appendix

Lemma A.1 Let ψ = ut−u, then for a 2D vector field u, the following relation
holds

det ∇ut − det ∇u− det ∇ψ = (det ∇u)′(ut − u),
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where

(det ∇u)′(ψ) =
∂u1
∂x

∂(ut2 − u2)

∂y
+
∂u2
∂y

∂(ut1 − u1)

∂x
−
∂u1
∂y

∂(ut2 − u2)

∂x

−
∂u2
∂x

∂(ut1 − u1)

∂y
.

Proof. Using (6), we have

det ∇ψ =
∂(ut1 − u1)

∂x

∂(ut2 − u2)

∂y
−
∂(ut2 − u2)

∂x

∂(ut1 − u1)

∂y
.

Expansion of the differential terms leads to

det ∇ψ =
∂ut1
∂x

∂(ut2 − u2)

∂y
−
∂u1
∂x

∂(ut2 − u2)

∂y
−
∂ut2
∂x

∂(ut1 − u1)

∂y
+
∂u2
∂x

∂(ut1 − u1)

∂y
.

On the other hand

det ∇ut − det ∇u =
(∂ut1
∂x

∂ut2
∂y

−
∂u1
∂x

∂u2
∂y

)

−
(∂ut2
∂x

∂ut1
∂y

−
∂u2
∂x

∂u1
∂y

)

=
∂ut1
∂x

∂(ut2 − u2)

∂y
+
∂u2
∂y

∂(ut1 − u1)

∂x
−
∂ut2
∂x

∂(ut1 − u1)

∂y

−
∂u1
∂y

∂(ut2 − u2)

∂x
.

Thus

det ∇ut − det ∇u− det ∇ψ =
∂u1
∂x

∂(ut2 − u2)

∂y
+
∂u2
∂y

∂(ut1 − u1)

∂x

−
∂u1
∂y

∂(ut2 − u2)

∂x
−
∂u2
∂x

∂(ut1 − u1)

∂y
.

Lemma A.2 If (H1-H4) hold uniformly in ||ψ||X ≤ 1, and Eu(u,Ω) : X 7→ X∗

is an isomorphism, then we have the existence of the shape sensitivity of the
state u.

Proof. Observe that

0 =〈Ẽ(ut, t)− Ẽ(u, 0), ψ〉X∗×X

=〈Ẽ(ut, t)− Ẽ(u, t) + Ẽ(u, t)− Ẽ(u, 0), ψ〉X∗×X

=〈Ẽ(ut, t)− Ẽ(u, t)− (E(ut,Ω)− E(u,Ω))

+ E(ut,Ω)− E(u,Ω) + Ẽ(u, t)− Ẽ(u, 0), ψ〉X∗×X

0
(H4)
= 〈E(ut,Ω)− E(u,Ω) + Ẽ(u, t)− Ẽ(u, 0), ψ〉X∗×X + o(t)

(H1)−(H3)
= 〈Eu(u,Ω)(u

t − u) + Ẽt(u, p)t, ψ〉X∗×X + o(t). (66)
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By assumption, the linearized equation

Eu(u,Ω)δu+ Ẽt(u, p) = 0

has a solution δu and one obtains with the above equation

0 = 〈Eu(u,Ω)(u
t − u− tδu), ψ〉X∗×X + o(t).

Since the estimates are assumed to be uniform in ||ψ||X ≤ 1, one obtains

lim
t→0

||
ut − u

t
− δu||X = lim

t→0
sup

||ψ||X≤1

〈ut − u− tδu, E∗
u(u,Ω)ψ〉X∗×X = 0.
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