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Abstract: A strong multiple designated verifiers signature (SM-
DVS) enables a signer to convince a set of verifiers by generating one
signature, of which the verification needs a private key of a verifier.
After a brief survey of current SMDVS schemes, we find no schemes
suitable to a broadcast propagation, where the simulation needs only
one verifier’s private key. Motivated by this discovery, we propose a
broadcast SMDVS scheme. The new scheme is proven secure in the
random oracle model.
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1. Introduction

1.1. The background

Jakobsson et al. (1996) proposed the designated verifier signature (DVS). It is a
privacy protection method. A DVS consists of a proof that either “the signer has
signed on a message” or “the signer has the verifier’s secret key”. If a designated
verifier is confident that her/his private key is kept in secret, the verifier makes
sure that a signer has signed on a message. No other parties can be convinced
by a DVS since the designated verifier can generate it with her/his private key.
It is useful in various commercial cryptographic applications, such as e-voting,
copyright protection, etc.

There are some extensions to the DVS concept, including at least strong DVS
(SDVS), multiple DVS (MDVS), universal DVS (UDVS) and their combinations.
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• In the appendix, Jakobsson et al. (1996) gave a definition of SDVS. It
means that a verifier needs to use her/his private key to verify a signature.
This concerns the situation where the signature is captured before reaching
the verifier. In this case, an adversary can know who is the real signer as
there are only two possibilities. Laguillaumie and Vergnaud (2004), and
Saeednia (2004) both formalized the notion.

• In the section six, Jakobsson et al. (1996) extended a DVS to an MDVS.
It is a convenience for a signer to convince a set of verifiers, and only
this set, by generating one signature. It is helpful in multi-party activities
like distributed contract signing. Desmedt (2003) proposed the MDVS
notion at the rump session of the Crypto conference in 2003. Laguillaumie
and Vergnaud (2004) formalized the notion. The concept is suitable for
collaborative systems to provide privacy-enabled services.

• Steinfield et al. (2004) proposed the primitive UDVS. There are three
players in the setting, namely a trusted certification authority (CA), a
user and a verifier. The CA signs a certificate and gives it to the user.
The user uses the verifier’s public key to transform the CA’s signature into
a DVS. In user certification systems, the UDVS makes that the verifier
cannot convince a third-party verifier about the truth of the statements
in a certificate.

• One can combine the above extensions. For example, SMDVS combines
the SDVS and MDVS, and UMDVS combines the UDVS and MDVS, and
USMDVS combines the UDVS, SDVS and MDVS.

In the field of MDVS, there is a practical issue, namely the propagation of a
signature among all verifiers. There are two modes defined by Li et al. (2007):
a sequential mode and a broadcast mode.

• In the sequential mode, a signer delivers a signature from verifier V1 to
Vn in a step-by-step manner. A simulation algorithm should be executed
by a coalition of all verifiers. Otherwise, a successor Vj cannot distinguish
whether a signature was generated by the signer or simulated by its pre-
decessor Vi (i ≤ j). The bad aspect is that if a verifier Vi is corrupted
or captured/controlled by a hostile third party and hence becomes un-
available, the simulation cannot be accomplished. Then the source of a
signature can be revealed.

• In the broadcast mode, a signer broadcasts a signature to all verifiers
simultaneously. A simulation algorithm can be executed by each verifier
independently.

In this paper, we focus on the broadcast SMDVS (B-SMDVS). The features
of a B-SMDVS scheme include one-verifier simulation, private verification, and
one signature for multiple verifiers. We briefly survey current SMDVS schemes,
and then give a new scheme.
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1.2. Related works

Laguillaumie and Vergnaud (2004) proposed an MDVS scheme based on ring
signatures. They claimed that one could transform it to an SMDVS by adding
an encryption layer. It needs an n-party key agreement protocol to enable
the encryption layer. Using the similar method, one can transform MDVS
schemes, such as those in Jakobsson et al. (1996), Li et al. (2007), and Chow
(2008), into SMDVS schemes. Chow (2006) proposed an identity based SMDVS
scheme. Laguillaumie and Vergnaud (2007) proposed an SMDVS without using
the encryption layer.

A UDVS simply implies a DVS if we take the CA and the user as one en-
tity. So we survey some works about UMDVS and USMDVS. Ng et al. (2005)
proposed two USMDVS schemes based on the UDVS scheme proposed by Ste-
infield et al. (2004). Ming and Wang (2008) and Shailaja et al. (2006) proposed
an USMDVS scheme based on the Gap Bilinear Diffie-Hellman assumption and
q-Strong Diffie-Hellman assumption, respectively. They proved their schemes in
the standard model. Vergnaud (2008) proposed an UMDVS and an USMDVS
scheme extended from paring-based signatures. Seo et al. (2008) proposed an
identity based USMDVS scheme with constant signature size. Chang (2011)
proposed an identity based USMDVS scheme in the multi-signers setting.

None of the above schemes are designed for the broadcast mode. In fact,
it is an open problem in Li et al. (2007) to design a scheme suitable to the
broadcast mode. The main difficulty may be the simulation of an SMDVS by a
verifier independently. From our comparison, only our scheme needs one verifier
to simulate a signature. It should be added, though, that we have changed the
concept of B-SMDVS by adding an agent entity in its definition.

1.3. Contributions

First of all, we give a possible application scenario, the load balancing in the
network field. Assume a single Internet service provided by multiple servers.
There is a load balancer who receives client’s requests and forwards them to one
of the back-end servers. An example of this kind of load balancer is shown in
Fig. 1. A client can send a B-SMDVS to the load balancer for authentication
about its access rights to the back-end servers and for the protection of its
privacy. The load balancer then forwards the B-SMDVS to a back-end server
which is one of the designated verifiers. The server can verify the B-SMDVS
by using its private key and give access rights to the client. At the same time,
the server can simulate a B-SMDVS by using its private key so that there is no
evidence of the client’s visiting.

Secondly, we describe a general B-SMDVS by modifying the traditional
MDVS definitions. Especially, we model the “load balancer” as an individual en-
tity in the B-SMDVS scheme. We call it an agent since a client directly connects
to it and the servers receive client’s requests from it. The agent is important in
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Figure 1. A kind of network load balancer

our design as it receives registrations from servers and publishes public keys to
clients. It is assumed to be in the same (virtual) local area network (LAN) as all
servers. The agent can also be an application gateway which provides general
information to clients.

It seems that there is a trivial solution to design a B-SMDVS. One can simply
run a group key agreement protocol among all the verifiers and the agent to share
a secret, say γ. Then the agent uses the value γ as a private key, and publishes
a public key, say g′γ for a group generator g′. Then an SDVS scheme can be
used to produce a signature where the designated public key is g′γ . Any verifier
with the secret γ can verify the signature and simulate a signature.

However, there is a drawback about the solution. Since the public key g′γ

should not be changed frequently, the protection about the shared secret is
important. In the above solution, the shared secret is stored in many servers,
which increases the security risk. And if a server loses its shared secret, a new
running of the key agreement protocol is needed among all servers. That is, an
error in one server will affect other servers.

We provide the first non-trivial version of B-SMDVS. We introduce the asym-
metric group key agreement (ASGKA) protocol in Wu et al. (2009). It enables
a group of verifiers to share a public key from scratch. If one verifier loses
its private key, the verifier recomputes its key pairs and republishes the pub-
lic key, and then the agent updates its public key. Considering a comment on
(S)MDVS schemes by Ushida et al. (2010), we use the well-known scheme in
Schnorr (1990) as a basic building block. And we use a new approach, adding
a temporal value to the hashing output, to make a signature be simulated by a
designated verifier.

One limitation of our scheme is that the set of verifiers should not be changed
frequently. Verifiers need to reset their public keys if the group of verifiers
changes. The scheme is suitable to multiple servers to provide a single privacy-
enabled service.
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1.4. Organization

Section 2 contains the preliminaries on some hard problems. Section 3 defines
a general B-SMDVS and its security model. Section 4 provides the B-SMDVS
scheme. The proofs of properties are in Section 5. Section 6 compares our
scheme with other related schemes. The last section contains a conclusion.

2. Preliminaries

2.1. Hard problems

Let PairGen be an algorithm that, on inputting a security parameter k, outputs
a tuple (p,G,GT, e), where G and GT have the same prime order p, and e :
G × G → GT is an efficient non-degenerate bilinear map such that e(g, g) 6= 1
for any generator g in G, and ∀u, v ∈ Z, it holds that e(gu, gv) = e(g, g)uv.

• Computational Diffie-Hellman (CDH) Given big primes p′, q′ such
that q′|p′−1, let G′ = 〈g′〉 with order q′. Given random elements (g′a, g′b)
∈R G

′2, a CDH problem is to find g′c = g′ab mod p′.
• Decisional Diffie-Hellman (DDH) Given big primes p′, q′ such that

q′|p′ − 1, let G
′ = 〈g′〉 with order q′. Given random elements (g′a, g′b, g′c)

∈R G
′3, a DDH problem is to decide whether c = ab mod q′.

• n-Bilinear Diffie-Hellman Exponent (n-BDHE) Let (p,G,GT, e)←
PairGen(k). Let g and h be two independent generators of G. Denote

~yg,α,n = (g1, . . . , gn, gn+2, . . . , g2n) ∈ G
2n−1, where gi = gα

i

for some
unknown α ∈ Z

∗
p. Given a tuple (g, h, ~yg,α,n, Z ∈R GT), an n-BDHE

problem is to decide whether Z = e(gn+1, h).

The assumption is that there are no polynomial algorithms to solve the CDH
(DDH, n-BDHE) problem with a non-negligible advantage ǫ in time t.

3. B-SMDVS

3.1. The scheme

A B-SMDVS scheme consists of six algorithms (Setup, SKeyGen, VKeyGen,
AKeyGen, Sign and Verify).

• Setup is a probabilistic algorithm which takes a security parameter k as
input and outputs a public parameter sp.

• SKeyGen is a probabilistic algorithm which takes sp as input and outputs
a pair of secret and public keys (skS , pkS) for a signer S.

• VKeyGen is a probabilistic algorithm which takes the sp as input and
outputs a pair of secret and public keys (ski, pki) for a verifier Vi.

• AKeyGen is a probabilistic algorithm which takes the sp and public keys
pk1, . . . , pkn as input and outputs an agent public key pkA.
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• Sign is a probabilistic algorithm which takes a message m, the signer’s
secret key skS , the agent’s public key pkA and the public parameter sp as
input, and outputs a (V1, . . . , Vn)-designated verifiers signature δ on m.

• Verify is a deterministic algorithm which takes a message m, a (V1, . . . ,
Vn) - designated verifiers signature δ on m, the signer’s public key pkS ,
the public keys of all verifiers (pk1, . . . , pkn), the private key ski for the
verifier Vi, i ∈ {1, . . . , n}, and the public parameter sp as input, and
outputs ‘True’ or ‘False’ by each verifier independently.

A B-SMDVS scheme enjoys four properties, including correctness, unforge-
ability, source hiding, and privacy of signer’s identity (PSI).
• Correctness: A properly formed (V1, . . . , Vn)-designated verifiers signa-

ture must be accepted by the Verify algorithm. Moreover, a putative
signature is accepted by one verifier if and only if the signature is ac-
cepted by all verifiers;

• Unforgeability: It is computationally infeasible, without the knowledge
of the secret key of either the signer S or one of the (V1, . . . , Vn) verifiers
to produce a (V1, . . . , Vn)-designated verifiers signature that is accepted
by the Verify algorithm of all verifiers.

• Source hiding: Given a message m and a (V1, . . . , Vn)-designated veri-
fiers signature δ of this message, it is infeasible to determine who of the
original signer or one of the designated verifiers performed this signature,
even if all secrets are known.

• PSI: Given a message m and a (V1, . . . , Vn)-designated verifiers signature
δ of m, it is computationally infeasible, without the knowledge of the
secret key of any Vi for i ∈ {1, . . . , n}, to determine which signing key out
of two possibilities was used to generate δ.

Remark 1 The source hiding property is to hide the source of a signature from
n+ 1 possible sources. One source is a real signer. The other n sources are the
n-designated verifiers. It is not meant to hide the possible identities of signers
and verifiers to achieve total anonymity. A signature does not reveal its true
source, even if a set of public keys are bound to the signature.

3.2. The security model

Unforgeability
We adapt the model defined in Laguillaumie and Vergnaud (2004). However,

there is no corruption oracle. Instead, a verification oracle is provided. The
unforgeability is defined as follows.

Definition 1 Let (V1, . . . , Vn) be n entities, k and t be integers and ǫ be a real
in [0, 1]. Let k be the security parameter of a B-SMDVS scheme. Let A be
an adversary who tries to existentially forge a signature under chosen message
attack (EF-CMA). The random experiment, Exp

ef−cma
B−SMDV S,A(k), is defined as:

1. sp←Setup(k);
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2. For i = 1, . . . , n, do (pki, ski) ←VKeyGen(sp) for each designated veri-
fier Vi;

3. pkA ←AKeyGen(sp, pk1, . . . , pkn);
4. (pkS , skS)←SKeyGen(sp) for a signer S;
5. (m∗, δ∗)← AH,Σ,Υ(sp, pk1, . . . , pkn, pkA, pkS), where H is the hashing or-

acle, Σ is the signing oracle, and Υ is the verifying oracle;
6. Return

n∨

i=1

Verify(sp,m∗, δ∗, pkS , pk1, . . . , pkn, ski) . (1)

The success probability of the adversary A is defined as:

Suc
ef−cma
B−SMDV S,A(k) = Pr[Exp

ef−cma
B−SMDV S,A(k) = True] . (2)

A B-SMDVS scheme is said to be (k, t, ǫ)-EF-CMA secure, if no adversary A

running in time t has a success probability Suc
ef−cma
B−SMDV S,A(k) ≥ ǫ.

Source hiding
The source hiding property is referred to Rivest et al. (2001) by Laguillaumie

and Vergnaud (2004). We modify it to the B-SMDVS setting.

Definition 2 Even an infinitely powerful adversary with access to an unboun-
ded number of chosen-message signatures produced by the same signer or one
of the n-designated verifiers cannot guess the source of a signature with any
advantage, and cannot link additional signatures to the same source.

PSI

Definition 3 Let (V1, . . . , Vn) be n entities, k and t be integers and ǫ be a real
in [0, 1]. Let k be the security parameter of a B-SMDVS scheme. Let A be
an PSI-CMA-adversary against a B-SMDVS scheme. The random experiment,
Exp

psi−cma
B−SMDV S,A(k), is defined as:

1. sp←Setup(k);
2. For i = 1, . . . , n, do (pki, ski) ←VKeyGen(sp) for each designated veri-

fier Vi;
3. pkA ←AKeyGen(sp, pk1, . . . , pkn);
4. (pkS0, skS0)←SKeyGen(sp) for a signer S0;
5. (pkS1, skS1)←SKeyGen(sp) for a signer S1;
6. (m∗, I∗)← AH,Σ0,Σ1,Υ(find, sp, pkA, pkS0, pkS1, pk1, . . . , pkn), where H is

the hashing oracle, Σ0 and Σ1 are signing oracles, and Υ is a verifying
oracle;

7. Flip a fair coin b ∈R {0, 1} and generate δ∗ ← Sign(sp,m∗, skSb, pkA);
8. Compute b′ ← AH,Σ0,Σ1,Υ(guess, sp, m∗, I∗, δ∗, pk1, . . . , pkn, pkA, pkS0,

pkS1).
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9. Return b′.
The advantage of A is defined as:

Adv
psi−cma
B−SMDV S,A(k) = |Pr(b′ = b)− 1/2| . (3)

A B-SMDVS is said to be (k, t, ǫ)-PSI-CMA secure, if no adversary A running
in time t has an advantage Adv

psi−cma
B−SMDV S,A(k) ≥ ǫ.

4. The B-SMDVS Scheme

The scheme is derived from the ASGKA protocol in Wu et al. (2009) and the
signature scheme in Schnorr (1990).

• Setup: Let (p,G,GT, e)←PairGen(k), G = 〈g〉. Let p′, q′ be big primes
such that p′ = 2q′ + 1. Let G

′ be a group of order q′ and G
′ = 〈g′〉. Let

H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → Z
∗
q′ , and H3 : GT → Z

∗
q′ be secure hash

functions. The system parameter sp is (p,G,GT, e, p
′, q′,G′, H1, H2, H3).

• SKeyGen: A signer S randomly selects xS ∈R Z
∗
q′ and computes yS =

g′xS . The public key is yS and the private key is xS .
• VKeyGen: For i ∈ {1, . . . , n}, a verifier Vi selects ri ∈R Z

∗
p and Xi ∈R G.

The verifier computes Ai = e(g,Xi), Ri = g−ri , δij = XiH1(Vj)
ri for j ∈

{1, . . . , n}. The verifier publishes (Ai, Ri, δi1, . . . , δi(i−1), δi(i+1), . . . , δin)
as the public key pki. The secret key ski is δii.

• AKeyGen: An agent P randomly selects t ∈R Z
∗
p, computes c1 = gt, c2 =

(
∏n

i=1(Ri))
t, γ = H3(

∏n
i=1(Ai)

t), yA = g′γ .The public key pkA is (c1, c2,
yA).

• Sign: On inputting a message m, the system parameters sp, the signer’s
private key xS , the public key of the agent pkA, the signer computes a
signature δ as follows.

1. Randomly select α, β ∈R Z
∗
q′ and compute Θ = g′α and Λ = g′β .

2. Compute se = H2(m||Θ) + Λ mod q′ and ss = α− xSse mod q′.

3. Compute c3 = yβA and set δ = (c1, c2, c3, se, ss)

• Verify: On inputting a message m, the signature δ on m, the public key
of the signer yS , the private key ski of a verifier Vi, and the public keys
of all verifiers pkj , j ∈ {1, . . . , n}, the verifier Vi verifies the signature δ as
follows:

1. Compute kd =
∏n

j=1 δji, and γ′ = H3(e(kd, c1)e(H1(Vi), c2)).

2. Compute Θ = g′ssyseS , Λ = c3
γ′−1

and s′e = H2(m||Θ) + Λ mod q′.

3. If s′e 6= se, produce ‘False’. Otherwise, produce ‘True’.

Remark 2 The simulation algorithm is provided in the proof of the source
hiding property.
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5. Security proof

Source hiding property

Proposition 1 There is a simulation algorithm for each of the n-designated
verifiers so that nobody can distinguish the source of a signature between a real
signer and one of the n-designated verifiers.

Proof. The simulation algorithm takes as input the system parameter sp, a
message m, the public keys of verifiers pk1, . . . , pkn, the public key of the agent
pkA, the public key of the signer pkS , and the private key of one verifier Vi,
i ∈ {1, . . . , n}. It produces an output δv. It is specified as follows.

1. Randomly select ss, se ∈R Z
∗
q′ .

2. Compute Θ = g′
ssyseS .

3. Compute Λp = se −H2(m||Θ).
4. If Λp,Λp + q′,Λp + 2q′ /∈ G

′, return to step 1 and reselect se. Else set
Λ = Λp + τq′ ∈ G

′, τ ∈ {0, 1, 2}, and continue.
5. Compute kd =

∏n
j=1 δji, and γ = H3(e(kd, c1)e(H1(Vi), c2)).

6. Compute c3 = Λγ .
7. Set δv = (c1, c2, c3, se, ss).

The tuple (c1, c2, c3) in δv appears with the same probability as in δ produced by
a real signer for a fixed value Λ. This is simply because e(kd, c1)e(H1(Vi), c2) =∏n

i=1(Ai)
t, which is the basic equation from Wu et al. (2009).

We next consider the probability of (se, ss,Λ) appearing in a simulation and
in a real running. Suppose a possible tuple (ŝe, ŝs, Λ̂) from the samples of all
valid signatures. Consider the probability of the tuple being produced by a
signer. Since ŝe = H2(m||g

′α) + g′β mod q′, ŝs = α− xSse mod q′ and Λ̂ = g′β ,
the randomness is over the variables α, β ∈R Zq′ for the fixed private key xS ,
message m and system parameters sp. The probability is about 1/q′ ·1/(ω0q

′) =
1/ω0q

′2, where ω0 = #Ω0/q
′, and Ω0 = {se|se = H2(m||g

′α) + g′β mod q′ ∧ β ∈
Z
∗
q′} for fixed α, which is the set of se when β goes through the group Z

∗
q′ .

Consider that the tuple is produced by one of the n-designated verifiers.
Since ŝe = se, ŝs = ss and Λ̂ = se − H2(m||g

′ssyseS ) + τq′, τ ∈ {0, 1, 2}, the
randomness is over the variables ss, se ∈R Z

∗
q′ and the reselecting of se for fixed

public key yS , message m and system parameters sp. The probability is about
1/q′ ·1/ω1q

′ = 1/ω1q
′2 where ω1 = #Ω1/q

′, and Ω1 = {se|se−H2(m||g
′ssyseS )+

τq′ ∈ G
′∧τ ∈ {0, 1, 2}}, which is the set of se such that there is a group element

in G
′ for fixed ss.

If se ∈ Ω0, there is a value β such that g′β = se+τp′−H2(m||g
′α). Since 0 <

se < q′ and 0 < H2(m||g
′α) < q′ and p′ = 2q′+1, 0 < se+τp′−H2(m||g

′α) < p′

for τ ∈ {0, 1, 2}. This is the condition in the set Ω1 for se ∈ Ω1.
If se ∈ Ω1, there is a value β ∈ Z

∗
q′ such that g′β+H2(m||g

′ssyseS )+τq′ = se.
This implies se ∈ Ω0.

So, the two sets, Ω0 and Ω1, are equivalent, and #Ω0 = #Ω1. Hence, a
signature may be produced by a signer or by one of the n designated verifiers
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with an equal probability. This conclusion does not depend on any complexity-
theoretic assumptions or on the randomness of an oracle.

Unforgeability property

Proposition 2 Suppose the hash function H2 is a random oracle, and qh is
the number of hashing queries. Suppose the CDH problem is (t′, ǫ′) unsolvable,
and the n-BDHE problem is (t′′, ǫ′′) unsolvable. Then, the B-SMDVS scheme is
(k, t, ǫ)-EF-CMA secure with qs signing queries and qv verifying queries.

Proof. Suppose a CDH problem instance (g′, g′α, g′β) and an n-BDHE prob-
lem instance (g, h, ~yg,α,n, Z). Suppose a simulator S who tries to solve a CDH
problem or an n-BDHE problem. Suppose an adversary A who claims to (k, t, ǫ)
forge a new signature of the B-SMDVS scheme, where ǫ is non-negligible in time
t with security parameter k. Let P denote the time for the pairing evaluation
cost and τ denote the time for exponentiation.
S runs a series of games with A as follows:
• Game 0:

1. S runs Setup to get the parameter sp and sends it to A.

2. S sets pkS = g′α as the public key of a signer and sends it to A.

3. S runs VKeyGen to generate key pairs (ski, pki) for all i ∈ {1, . . . ,
n}. S sends all public keys to A.

4. S runs AKeyGen to produce pkA = (c1, c2, yA) and sends it to A.

5. S answers the signing, verifying, and hashing queries by oracles Σ,Υ,
H.

(a) Signing queries S installs a private key of one verifier on Σ or-
acle. A sends a message m to Σ. Σ uses the simulation algorithm
to generate a signature δ as a reply. During the simulation, to
compute the step 3, Σ queriesH with (m,Θ) for the computation
of H2. Considering Proposition 1, the reply is totally qualified.

(b) Verifying queries S installs private keys of all verifiers on Υ
oracle. Υ runs the Verify algorithm for each verifier. If there
is a ‘True’ output, Υ returns ‘True’. During the verification, to
compute the step 2, Υ queriesH with (m,Θ) for the computation
of H2.

(c) Hashing queries H maintains a list Hlist, empty at the begin-
ning. When A or Σ sends a query (m,Θ), H checks whether
the pair is in the Hlist. If it is, H replies to A or Σ with the
recorded value, ran, of the matching entry. If it is not, an new
entry (m,Θ, ran ∈R Z

∗
q′) is recorded in the Hlist. The value ran

is the reply to A or Σ. When Υ sends a query (m,Θ), H finds
the pair in the Hlist and replies to Υ with the recorded value,
ran, of the matching entry.
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The game is the same as the experiment Expeuf−cma
MDV S,A(k) for adversary

A. According to A‘s claim, a forged signature δ∗ = (c1, c2, c
∗
3, s

∗
e, s

∗
s) on a

message m∗ can be produced in time t with a non-negligible probability ǫ.
By the general forking lemma in Bellare and Neven (2006), A can forge
another signature δ′ = (c1, c2, c

′
3, s

′
e, s

′
s) on the same message m∗ with a

non-negligible probability ǫ(ǫ/qh − 1/q′).
Suppose a probability ξ with which (s∗e, s

∗
s) 6= (s′e, s

′
s). S can extract the

private key α and compute g′βα as a CDH answer. The success probability
of S in this case is ǫ′ = ξǫ(ǫ/qh − 1/q). The runtime of C is t′ < t+ 2(2qs
(P + τ) + 2qvn(P + τ)).
The event of (s∗e, s

∗
s) = (s′e, s

′
s) with probability 1−ξ leads to the following

games:
• Game 1 This game is intended to show that the value yA can just be a

random value.

1. S runs Setup to get the parameter sp and sends it to A.

2. S runs SKeyGen to produce a signer’s key pair (skS , pkS) and sends
pkS to A.

3. With the n-BDHE problem instance (g, h, ~yg,α,n, Z), S produces pub-
lic keys of verifiers and the agent according to the method in Wu et
al. (2009).

– For a verifier Vj , S randomly selects vj ∈ Zp and computes
hj = gjg

vj . Then S randomly selects i∗ ∈ {1, . . . , n},ai, ri ∈ Z
∗
p.

Let Si∗ = {1, . . . , n} \ {i∗}. Compute

Ri∗ = gri∗ (
∏

k∈Si∗

gn+1−k), δi∗,j

= gai∗ g−ri∗
j (

k 6=j∏

k∈Si∗

g−1
n+1−k+j)R

−vj

i∗ (j 6= i∗). (4)

For i 6= i∗, compute

Ri = grig−1
n+1−i, δi,j

= gaig−ri
j gn+1−i+jR

−vj

i for j 6= i. (5)

Then ∀i ∈ {1, . . . , n}, the following is defined

Ai = e(δi,j , g)e(hj , Ri) for j 6= i. (6)

– For the agent, S computes

(c1 = h, c2 = h
∑n

i=1
ri , γ = H3(Ze(g, h)

∑n
i=1

ai), yA = g′γ). (7)

S then sends all public keys to A.
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4. S answers the signing, verifying, and hashing queries by oracles Σ,Υ,
H.

(a) Signing queries S installs the private key skS of the signer on Σ
oracle. A sends a message m to Σ. Σ uses the Sign algorithm to
generate a signature δ as a reply. At the step 2 of the algorithm,
Σ queries H with (m,Θ) for the computation of H2.

(b) Verifying queries S installs the value γ on Υ oracle. Υ runs
the steps 2 and 3 of the Verify algorithm. Υ replies to A with
the output of the algorithm. During the verification, to compute
the step 2, Υ queries H with (m,Θ) for the computation of H2.

(c) Hashing queries proceeds as in Game 0.

According to the conclusion in Wu et al. (2009), if Z = e(gn+1, h),
the Game 1 is identical to Game 0. Otherwise, the value yA is just a
random value. If the adversary can distinguish Game 1 from Game
0, it helps S to answer the n-BDHE problem directly. S has an
advantage, ǫ′′, which is the same advantage as A to distinguish Game
1 from Game 0. The runtime of C is t′′ < t+ 3qsτ + 2qvτ .

• Game 2 In this game, yA is directly set as a random value and the
verifying oracle only checks the signing list.

1. S runs Setup to get the parameter sp and sends it to A.

2. S runs SKeyGen to produce a signer’s key pair (skS , pkS) and sends
pkS to A.

3. S runs VKeyGen to produce verifiers’ key pairs and sends public
keys to A.

4. S randomly selects t ∈R Z
∗
p, computes c1 = gt, c2 = (

∏n
i=1(Ri))

t,

and sets yA = g′β , and sends them to A.

5. S answers the signing, verifying, and hashing queries by oracles Σ,Υ,
H.

(a) Signing queries S does the same thing as in Game 1. However,
S maintains a Slist that stores each signature produced by the
oracle Σ.

(b) Verifying queries The Υ oracle uses the Slist. If the query is
in the Slist, it replies to A with ‘True’. Otherwise, it replies with
‘False’.

(c) Hashing queries It is the same as in Game 0.

If A can successfully forge a signature, it can distinguish Game 2
from Game 1 using the verifying oracle Υ.

Reduction of the forgery: Suppose the forged signature is (c1,c2,

c∗3,s
∗
e, s

∗
s) on m∗. If the signature is valid, S computes Θ∗ = g′s

∗

sy
s∗e
S ,

finds out the hash value ran∗ of the pair (m∗,Θ∗) in the Hlist.
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Then, S runs A again with a fixed random tape. When A queries
(m∗,Θ∗) for hashing, H replies to A with the value ran′ = s∗e −
g′α mod q′. By the general forking lemma in Bellare and Neven
(2006), A has a non-negligible probability, ǫ(ǫ/qh − 1/q′), of pro-
ducing another forged signature (c1, c2, c

′
3, s

′
e, s

′
s) on m∗.

If s∗e = s′e, then Λ′ = s′e − ran′ = s∗e − ran′ = g′α mod q′. It is
expected that c3 = g′βα as the value yA = g′β . S takes c3 as a reply
to the CDH problem.

There is a bad event turning the CDH solution wrong. Since |q′| <
|p′|, even if c 6= ab mod q′, it is possible that g′ab = g′c mod q′. For-
tunately, for the value g′c and another random selected value g′c

′

, the
probability of g′c = g′c

′

mod q′ is q′/p′.

The event s∗e = s′e has the probability 1− ξ. The success probability
of S is ǫ′ = (1 − ξ)(1 − q′/p′)ǫ(ǫ/qh − 1/q′). The runtime of S is
t′ < t+ 3qsτ .

Then we can conclude that A cannot distinguish Game 2 from Game 1
with a non-negligible advantage. A should produce a forged signature
with a non-negligible probability ǫ. Then the ‘reduction of the forgery’
can be applied again.
The success event of S is a product of the events that A cannot distinguish
Game 2 from Game 1, and Game 1 from Game 0, and that A forges
successfully, and that the rewinding is successful, and that s∗e = s′e, and
Λ′ = g′α mod p′. So ǫ′ = (1− ǫ)(1− ǫ′′)ǫ(ǫ/qh − 1/q′)(1− ξ)(1− q′/p′).
The runtime in this case is also t′ < t+ 3qsτ .

PSI property

Proposition 3 Suppose the hash function H2 is a random oracle, the DDH
problem is hard, the n-BDHE problem is hard, then the B-SMDVS scheme is
(k, t, ε)-PSI-CMA secure.

Proof. Suppose a DDH problem instance (g′, g′a, g′b, g′c) and an n-BDHE prob-
lem instance (g, h, ~yg,α,n, Z). Suppose a simulator S who tries to solve a DDH
problem or an n-BDHE problem. Suppose an adversary A who claims to (k, t, ǫ)
distinguish the real signer of a signature of the B-SMDVS scheme, where ǫ is
non-negligible in time t with security parameter k. Let P denote the time for a
pairing evaluation cost and τ denote the time for exponentiation.
S runs a series of games with A as follows:
• Game 0:

1. S runs Setup, VKeyGen, AKeyGen in the same way as in Game
0 in the unforgeability proof.

2. S runs SKeyGen for signers S0 and S1. The key pair of S0 is
(xS0, yS0), and of S1: (xS1, yS1). The public keys are given to A.
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3. S answers the signing, verifying, and hashing queries by oracles
Σ0,Σ1,
Υ,H.

(a) Signing queries S installs the private key skS0 on the oracle
Σ0, and skS1 on Σ1. A sends a message m to Σ0 or Σ1. The
signing oracles use the Sign algorithm to generate a signature
δ as a reply. They query H with (m,Θ) for the computation of
H2.

(b) Verifying queries and Hashing queries They are the same
as in the Game 0 of the unforgeability proof.

4. A outputs a message m∗ and a state information I∗ after a sufficient
number of queries. A gives the message m∗ to S.

5. S flips a fair coin b ∈R {0, 1} and uses the oracle Σb to sign the
message m∗. The signature δ∗ is given to A.

6. A takes as input the state information I∗, the message-signature pair
(m∗, δ∗), and all public parameters, outputs a guess b′ ∈ {0, 1}. Be-
fore the final output, A continues to use all oracles with a restriction
of not querying the pair (m∗, δ∗) for verification.

The game is the same as the experiment Exppsi−cma
B−SMDV S,A(k). Ac-

cording to the claim of A, the advantage of A, Advpsi−cma
B−SMDV S,A, is

ǫ in time t.

• Game 1 This game is intended to show that the value yA can just be a
random value.

1. S runs Setup, SKeyGen in the same way as in Game 0.

2. S produces public keys of verifiers and the agent in the same way as
in the Game 1 in the unforgeability proof.

3. S answers the signing, verifying, and hashing queries by oracles
Σ0,Σ1,
Υ,H.

(a) Signing queries and Hashing queries They are the same as
in the Game 0.

(b) Verifying queries It is the same as in the Game 1 in unforge-
ability proof.

4. Other steps are kept unchanged.

According to the conclusion in Wu et al. (2009), if Z = e(gn+1, h),
the Game 1 is identical to Game 0. Otherwise, the value yA is just a
random value. If the adversary can distinguish Game 1 from Game
0, it helps S to answer the n-BDHE problem directly.

• Game 2 S tries to solve a DDH problem in this game.
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1. S runs Setup, SKeyGen, VKeyGen in the same way as in Game
0.

2. S randomly selects t ∈R Z
∗
p, computes c1 = gt, c2 = (

∏n
i=1(Ri))

t,

and sets yA = g′b, and sends them to A.

3. S answers the signing, verifying, and hashing queries by oracles
Σ0,Σ1,
Υ,H.

(a) Signing queries S does the same thing as in Game 1. However,
S maintains a Slist that stores each signature produced by the
oracles ΣS0 and ΣS1.

(b) Verifying queries The Υ oracle uses the Slist. If the query is
in the Slist, it replies to A with ‘True’. Otherwise, it replies with
‘False’.

(c) Hashing queries It is the same as in the Game 1.

4. A outputs a message m∗ and a state information I∗ after a sufficient
number of queries. A gives the message m∗ to S.

5. S flips a fair coin b ∈R {0, 1} and computes the δ∗ as follows.

(a) Randomly select α ∈R Z
∗
q′ and compute Θ = g′α. And set

Λ = g′a.

(b) Compute se = H2(m||Θ)+Λ mod q′ and ss = α−xSskSb mod q′.

(c) Set c3 = g′c and δ = (c1, c2, c3, se, ss)

6. A takes as input the state information I∗, the message-signature pair
(m∗, δ∗), and all public parameters, outputs a guess b′ ∈ {0, 1}. Be-
fore the final output, A continues to use all oracles with a restriction
of not querying the pair (m∗, δ∗) for verification.

At first, A cannot distinguish Game 2 from Game 1 by the verifying oracle
Υ. This is simply because the Proposition 2 tell us that the probability of
successful forgery is negligible. If all valid signatures queried to the oracle
Υ are produced by signing oracles, the behaviors of Υ are the same as in
the Game 1. Note that the challenging signature is not allowed to query
Υ.
Secondly, if the tuple (g′, ga, g′b, g′c) is a DDH tuple, the signature (m∗, δ∗)
is a ‘valid’ signature in Game 1. Otherwise, it is not a signature produced
by the Game 1. So, if A can distinguish Game 1 from Game 0, S solves
the DDH problem.

• Game 3: Now, the challenging signature is produced without using any
private keys.

1. S produces the challenging signature as follows.

(a) Randomly select ss, se ∈R Z
∗
q′ .

(b) Compute Θ = g′
ssyseS .
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(c) Compute Λp = se −H2(m||Θ).

(d) If Λp,Λp+q′,Λp+2q′ /∈ G
′, return to step 1 and reselect se. Else

set Λ = Λp + τq′ ∈ G
′, τ ∈ {0, 1, 2}, and continue.

(e) Set c3 = g′c and set δ = (c1, c2, c3, se, ss).

2. Other steps are kept unchanged.

A cannot distinguish Game 3 from Game 2 due to the source hiding prop-
erty.
However, it is meaningless for A to claim who is the signer in Game 3 since
anybody can generate the challenging signature. So there is no advantage
in this game.
This gives us the conclusion that A has only a negligible advantage to
distinguish the signer of a signature.

6. Comparisons

We compare our scheme with other related schemes in Table 1. The table
includes (U)MDVS and (U)SMDVS schemes. If there are more than one related
scheme in one reference, we give each scheme one row.

If the size of a signature does not rely on the number of verifiers, we write
‘Fixed’ in the ‘Sig. size’ column. The ‘Variable’ denotes the opposite situation.
If the verification does not need private keys, we write ‘No’ in the ‘Ver.’ column.
If it needs one private key, we write ‘One’. The ‘All’ means that the Verify
algorithm claims all verifiers’ private keys as input. The ‘Protocol’ means that
all verifiers need to execute a protocol with group communications to verify a
signature.

If the simulation algorithm needs all private keys of verifiers, we write ‘All’
in the ‘Sim.’ column. If it needs one private key, we write ‘One’. If there is no
formal proof, we write ‘-’ in the column of ‘Model’. The ‘KEA’ denotes a non-
black box assumption, Knowledge-of-Exponent Assumption. The ‘RO’ denotes
the random oracle model. The ‘Std.’ denotes the standard model.

From the Table 1, we observe the following points:

• Our scheme is the only one that needs one verifier’s private key at the
simulation algorithm.

• Among all the SMDVS schemes in the table, there are four schemes in
Chow (2006), Shailaja et al. (2006), Laguillaumie and Vergnaud (2007),
and Vergnaud (2008), where the Verify algorithm only needs one verifier’s
private key. All of them have a variable signature size.

The above observations make our scheme unique. Our scheme has a fixed
signature size, and only needs one verifier’s private key in the verification and
simulation algorithm.



Strong multiple designated verifiers signature 313

Table 1. Comparisons with related schemes
Schemes Type Sig. size Ver. Sim. Model

Jakobsson et al. (1996) MDVS Fixed No All -

Laguillaumie and Vergnaud (2004) MDVS Fixed No All -

Li et al. (2007) MDVS Fixed No All KEA

Chow (2008) MDVS Fixed No All -

Chow (2006) ID-SMDVS Variable One∗ All RO

Laguillaumie and Vergnaud (2007) SMDVS Variable One All RO

Ng et al. (2005) USMDVS Variable All All -

Ng et al. (2005) USMDVS Fixed Protocol All RO

Ming and Wang (2008) USMDVS Fixed All All Std.

Shailaja et al. (2006) USMDVS Variable One All Std.

Vergnaud (2008) UMDVS Fixed No All Std.

Vergnaud (2008) USMDVS Variable One∗ All RO

Seo et al. (2008) ID-USMDVS Fixed Protocol All RO

Chang (2011) ID-USMDVS Fixed All All RO

Our Scheme B-SMDVS Fixed One One RO

∗ Each verifier needs two times paring evaluations with all other verifiers

7. Conclusion

This paper proposed a strong multiple designated verifiers signature for broad-
cast mode. It is suitable to application scenarios where multiple servers collab-
oratively provide a privacy-enabled service with a common application gateway
for clients.
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