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Abstract: For the anti-jamming purpose, high linear complex-
ity is desired for each frequency hopping sequence in an optimal set.
Using a proper power permutation, Wang has shown that an opti-
mal set of frequency hopping sequences with small linear complexity
can be transformed into a new optimal set of frequency hopping
sequences with large linear complexity.

This paper conains two results. First, we extend the result of
Wang. A power permutation is only suitable for a special construc-
tion of optimal set of frequency hopping sequences, see Wang (2011).
However, the power permutation chosen in this paper applies to the
general construction of optimal set of frequency hopping sequences.
Second, by using a binomial permutation polynomial P (x), which
is different from those permutations used before, we obtain a novel
optimal set of frequency hopping sequences with high linear com-
plexity from an optimal set of frequency hopping sequences with
small linear complexity. By counting the number of different roots
in the sequence representation, we determine the linear complexities
of the frequency hopping sequences in two optimal sets transformed
by the power permutation or binomial permutation.
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1. Introduction

In modern communication systems, the frequency hopping technique is widely
applied in code division multiple access and Bluetooth technology. An opti-
mal set of frequency hopping sequences (Section 2.1) plays an important role
in the frequency hopping communication. The construction of the optimal set
of frequency hopping sequences has been extensively investigated in the related
literatures, see Chu and Colbourn (2005), Ding et al. (2007), Wang (2011), Ding
et al. (2009), Udaya and Siddiqi (1998), Fujihara et al. (2004), Ge et al. (2006),
Zhou and Tang (2009), Wang (2010), Kumar (1988), Ding and Yin (2008), Ge et
al. (2009). In secure communication, the frequency hopping sequences have to
be strong enough to resist some common cryptanalytic techniques, such as the
Berlekamp-Massey algorithm, so that it is infeasible to reconstract them from
some short segments of the sequences, see Golomb and Gong (2005). Therefore,
besides long period, uniform symbol distribution, good Hamming correlation,
and computational practicality, the frequency hopping sequences in the optimal
set have to possess high complexity to prevent an eavesdropper from obtaining
all the frequency hopping patterns, and further stealing the secret information.
Linear complexity is the most important and most necessary security indicator.
For the frequency hopping sequences with small linear complexity, the eaves-
dropper can obtain all of the frequency hopping patterns by combining some
short sequence samples with the Berlekamp-Massey algorithm. So, high linear
complexity is desired for the frequency hopping sequences in order to resist the
eavesdropper in secure communication.

Ding and Yin mentioned that a new optimal set of frequency hopping se-
quences with large linear complexity could be obtained from an optimal set of
frequency hopping sequences with small linear complexity by using a proper
power permutation over the finite field Fq, see Ding and Yin (2008). The new
optimal set of frequency hopping sequences shares several parameters with the
original optimal set, such as the sequence length in the set, the number of the
sequences in the set, and the Hamming correlation, but each frequency hopping
sequence in the new optimal set has higher linear complexity than in the original
optimal set.

Ding et al. (2009) gave a general construction of optimal set and a special
case of the general construction. All of the frequency hopping sequences in the
two constructions have small linear complexity. Wang (2011) transformed the
special construction of optimal set (Example 2) into a new optimal set of fre-
quency hopping sequences with higher linear complexity by applying a power
permutation and determined the linear complexity of the frequency hopping
sequences in the transformed optimal set. However, it may be difficult to de-
rive the linear complexity of the transformed frequency hopping sequences in
the general construction by a power permutation. Furthermore, other types of
permutation polynomials over Fq may be employed in improving the linear com-
plexity of the frequency hopping sequences in an optimal set, but calculating
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the linear complexity of the transformed frequency hopping sequences may not
be easy, see Wang (2010).

This paper gives two contributions. Firstly, we transform the general con-
struction of optimal set into a novel optimal set of frequency hopping sequences
with high linear complexity by applying a properly chosen power permutation.
We derive the linear complexity of frequency hopping sequences in the trans-
formed general construction of the optimal set. Secondly, by using a binomial
permutation P (x), which is different from the power permutation, we trans-
form the special construction of optimal set of frequency hopping sequences
into a new optimal set, and we give the exact value of the linear complexity of
the transformed frequency hopping sequences. The linear complexities of the
transformed frequency hopping sequences in two new optimal sets are very high
compared to their lengths. This paper is organized as follows. In Section 2, we
recall some definitions and properties of the optimal set of frequency hopping se-
quences and linear complexity. In Section 3, we determine the linear complexity
of the transformed frequency hopping sequences in the general construction by
a power permutation. Section 4 gives the linear complexity of the transformed
frequency hopping sequences in the special construction by the binomial permu-
tation P (x), Section 5 gives an implementation of the optimal set of frequency
hopping sequences. Concluding remarks and comparisons are given in Section
6.

2. Preliminaries

2.1. Optimal set of frequency hopping sequences

Let F = {f0, f1, . . . , fγ−1} be a set of available frequencies with alphabet
size γ. Let F be a set of all frequency sequences of length L over F . For
any two sequences X,Y ∈ F , where X = (X(0), X(1), . . . , X(L − 1)), Y =
(Y (0), Y (1), . . . , Y (L− 1)), we can define their Hamming correlations HX,Y as
follows

HX,Y (τ) =
L−1
∑

i=0

h[X(i), Y (i+ τ)], 0 ≤ τ < L (1)

where h[X(i), Y (i + τ)] = 1 if X(i) = Y (i + τ), and 0 otherwise, and the
addition operations are performed modulo L. If X = Y , HX,X(·) is called
the autocorrelation function of the sequence X. HX,Y (·) is the crosscorrelation
function of X and Y if X 6= Y . For any distinct X,Y ∈ F , we define

H(X) = max1≤τ<L{HX,X(τ)}

H(X,Y ) = max0≤τ<L{HX,Y (τ)}

M(X,Y ) = max{H(X), H(Y ), H(X,Y )}.
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In a frequency hopping spread spectrum system, the interference occurs if two
distinct transmitters use the same frequency simultaneously. To reduce the
interference and maximize the throughput in the system, we hope to design
the set F with good Hamming correlation and a large number of the sequences.
Lempel and Greenberger (1974) developed the following lower bound for a single
frequency hopping sequence to determine whether it is good.

Lemma 1 For every frequency hopping sequence of length L over an alphabet F
of size γ, we have

H(X) ≥
⌈

(L− ε)(L+ ε− γ)

γ(L− 1)

⌉

(2)

where ε is the least nonnegative residue of L modulo γ.

Let F be a set containing N frequency hopping sequences. The maximum
nontrivial Hamming correlation of the frequency hopping sequence set F is
defined by

M(F) = max

{

maxX∈FH(X),maxX,Y ∈F,X 6=Y H(X,Y )

}

.

In this paper, we denote by (L,N, λ; γ) the set F of N frequency hopping
sequences of length L over an alphabet F , where λ = M(F). To measure the
quality of a set of frequency hopping sequence, Peng and Fan (2004) described
the following bounds on M(F).

Lemma 2 Let F be a set containing N frequency hopping sequences of length L
over an alphabet of size γ. Define I = ⌊LN/γ⌋, Then

M(F) ≥
⌈

(LN − γ)L

(LN − 1)γ

⌉

(3)

and

M(F) ≥
⌈

2ILN − (I + 1)Iγ

(LN − 1)N

⌉

. (4)

From Lemmas 1 and 2, we define an optimal sequence or an optimal set of
frequency hopping sequences as follows,

1. A sequence X ∈ F is called optimal if the Lempel-Greenberger bound in
Lemma 1 is met.

2. A set F is an optimal set if one of the bounds in Lemma 2 is met.
Relatively, it is easier to construct a single optimal frequency hopping sequence
than an optimal set of frequency hopping sequences. In general, there exist two
main methods to construct the optimal set of frequency hopping sequences, the
algebraic method and the combinatoric method.
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2.2. Linear complexity of a sequence

From the engineering point of view, the linear complexity of a sequence is the
length of the shortest linear feedback shift register (LFSR) which can produce
the sequence. Let S = (s0, s1, · · · ) be a sequence produced by the LFSR satis-
fying the following linear recurrence relation

sn+l = c1sn+l−1 + c2sn+l−2 + · · ·+ clsn

where n ≥ 0. c(x) = clx
l+cl−1x

l−1+· · ·+c1x+1 ∈ Fq[x] is called the connection
polynomial of the LFSR or a connection polynomial of sequence S. The connec-
tion polynomial of S with the least degree is called the minimal polynomial of
S. The linear complexity of a sequence S is defined as the degree of the minimal
polynomial of S, and can be derived by finding the root representation, or the
trace representation of the sequence S, see Golomb and Gong (2005). Currently,
there exist several optimal sets of frequency hopping sequences with large linear
complexity, see Kumar (1988), Udaya and Siddiqi (1998), Wang (2010, 2011).

High linear complexity is not a sufficient condition for the security of a
sequence, but a necessary one. For a sequence with small linear complexity it
can be easily reconstructed by combining some sequence segments and using the
Berlekamp-Massey algorithm. So, an optimal set of frequency hopping sequences
with small linear complexity can not be used in the secure communication,
otherwise, these sequences will easily be attacked by the Berlekamp-Massey
algorithm.

3. Linear complexity of the transformed frequency hop-

ping sequences in the general construction by a power

permutation

We begin this section by introducing some notations which will be used through-
out this paper.

• p is an odd prime, and q = ps is a power of p.
• m is a positive integer. N is a positive divisor of qm−1, and nN = qm−1.
• Fqm is a finite field with qm elements, which is an extension of Fq, and

F ∗
qm=Fqm − {0}.

• α is a generator of F ∗
qm , and β = αN .

• Trm1 (·) denotes the trace function from Fqm to Fq, that is, Trm1 (x) =
∑m−1

i=0 xqi for x ∈ Fqm .
• #A denotes the cardinality of the set A.

The linear complexity of a periodic sequence over Fq can be calculated by its root
representation, see Golomb and Gong (2005). Every sequence S = s0s1s2 . . .
over Fq of period qm − 1 can be uniquely expressed as

st =

qm−2
∑

i=0

ciα
it, for all 0 ≤ t ≤ qm − 2 (5)
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where ci ∈ Fqm for 0 ≤ i ≤ qm − 2 and α is a generator of F ∗
qm . Let I = {i|ci 6=

0, 0 ≤ i ≤ qm−2}, then the linear complexity of S is equal to #I. The minimal
polynomial of S is defined as

m(x) =
∏

i∈I

(x− αi).

For each 0 ≤ i ≤ N − 1, the sequence Si is defined by

Si(t) = Trm1 (αiβt), 0 ≤ t ≤ n− 1. (6)

Obviously, Si is a sequence of length n over the finite field Fq. The set of
frequency hopping sequences is defined as

S = {Si : 0 ≤ i ≤ N − 1}. (7)

Ding et al. (2009) showed that the sequence set S is an optimal set of frequency
hopping sequences, as noted in by Theorem 1 in this paper.

Theorem 1 If N is even, gcd(n,N)=1, gcd((qm − 1)/(q− 1)modN,N)=2 and
q − 1 ≡ N/2 modN , the set S of (3) consists of an optimal set of frequency
hopping sequences with parameters ((qm−1)/N , N , (qm−1− q+(q−1)

√
qm)/

(qN); q). Furthermore, if N > (q − 1)
√
qm/q, the set S is optimal with respect

to the Peng-Fan bound.

The optimal set in Theorem 1 is called the general construction of the opti-
mal set. Furthermore, Ding et al. (2009) gave a special case of the general
construction as follows,

Lemma 3 Let q ≡ 1mod 4, m = 2 and N = 2(q − 1). The set S of (7) is a
((q+1)/2, 2(q−1), 1; q) set of frequency hopping sequences over Fq, meeting the
bound of (4).

Wang was the first to show that the linear complexity of the frequency hopping
sequences in the optimal set S of Lemma 3 is equal to 2. Furthermore, Wang
improved the linear complexity by a proper power permutation over Fq in the
following Theorem 2, see Wang (2011).

Theorem 2 Let q ≡ 1(mod 4), m = 2, N = 2(q − 1) and n = (q + 1)/2. Let
σ =

∑w
j=1 σjp

ej be a positive integer with 0 < σ < q − 1 such that gcd(σ, q −
1) = 1, where 0 < σj ≤ p − 1, and 0 ≤ e1 < e2 . . . < ew < s. Define
Sσ = {Sσ

i : 0 ≤ i ≤ N − 1}, where Si is defined by (6). Then
(1) Sσ is ((q + 1)/2, 2(q − 1), 1; q) optimal set of frequency hopping sequences,

meeting the bound of (4).
(2) The linear complexity of the transformed frequency hopping sequences could

be large compared to their length n = (q+ 1)/2. In particular, if w < s or



Linear complexities of the frequency hopping sequences 323

there is at least one σj < (p − 1)/2 for 1 ≤ j ≤ w, the linear complexity
of the transformed frequency hopping sequences is

w
∏

j=1

(σj + 1).

Obviously, Theorem 2 is only suitable for the special construction of the optimal
set in Lemma 3. For the general construction in Theorem 1, Theorem 2 does not
work. In the following, we generalize the results of Theorem 2. We improve the
linear complexity of the frequency hopping sequences in the general construction
of the optimal set by choosing a proper power permutation. Our method is
suitable for all frequency hopping sequences in Theorem 1 with a large prime p.

Theorem 3 Let N be even, gcd(n,N)=1, gcd((qm−1)/(q−1)modN,N)=2 and
q−1 ≡ N/2 modN . Let σ =

∑w
j=1 σjp

ej be a positive integer with 0 < σ < q−1

such that gcd(σ, q−1) = 1, where 0 < σj ≤ [p−1
N

], and 0 ≤ e1 < e2 . . . < ew < s.
Define Sσ = {Sσ

i : 0 ≤ i ≤ N − 1}, where Si is defined by (6). Then
(1) Sσ is ((qm − 1)/N , N , (qm − 1− q + (q − 1)

√
qm)/(qN); q) optimal set of

frequency hopping sequences, meeting the bound of (4).
(2) The linear complexity of the transformed frequency hopping sequences can be

high compared to their length L = (qm−1)/N , that is, the linear complexity
of the transformed frequency hopping sequences is equal to

w
∏

j=1

(

m+σj−1
σj

)

.

Proof:
(1) Since gcd(σ, q − 1)=1, we know that Sσ

i is a permutation sequence of Si.
The Hamming correlations in Sσ are still optimal. Sσ is also ((qm−1)/N ,
N , (qm − 1− q + (q − 1)

√
qm)/(qN); q) optimal set of frequency hopping

sequences.
(2) According to the definition of Si, we have

Sσ
i (t) =

(

Trm1 (αiβt)
)σ

Since σ =
∑w

j=1 σjp
ej , we have

Sσ
i (t) =

w
∏

j=1

(

Trm1 (αip
ej

βtp
ej

)
)σj

.

Using the multinomial formula, see Bogart et al. (2005)
(g0 + g1 + . . .+ gm−1)

σj =
∑

ηj,0+ηj,1+...+ηj,m−1=σj

(

σj

ηj,0,ηj,1,...,ηj,m−1

)

g
ηj,0

0 g
ηj,1

1 . . . g
ηj,m−1

m−1
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where
(

σj

ηj,0, ηj,1, . . . , ηj,m−1

)

=
σj !

ηj,0!ηj,1! . . . ηj,m−1!

we can obtain that
(

Trm1 (αip
ej
βtp

ej
)
)σj

=
(

∑m−1
k=0 (αip

ej
βtp

ej
)q

k
)σj

=
∑

ηj,0+...+ηj,m−1=σj

(

σj

ηj,0,ηj,1,...,ηj,m−1

)

(αip
ej
βtp

ej
)
∑m−1

k=0
qkηj,k

and then

Sσ
i (t) =

w
∏

j=1

∑

ηj,0+...+ηj,m−1=σj

( σj

ηj,0, ηj,1, . . . , ηj,m−1

)

(αip
ej

βtp
ej

)
∑m−1

k=0
qkηj,k

=
∑

∑m−1

k=0
η1,k=σ1

. . .
∑

∑m−1

k=0
ηw,k=σw

w
∏

j=1

( σj

ηj,0, ηj,1, . . . , ηj,m−1

)

bβg(η,e)t.

where

g(η, e) =

m−1
∑

k=0

qk
w
∑

j=1

ηj,kp
ej , b = αig(η,e).

We firstly show that all the exponents of β are pairwise distinct mod
qm − 1, then we show that the exponents of α in Sσ

i are pairwise distinct
mod qm − 1 if we choose some proper σ. Let

g(η, e) ≡ g(η′, e)( mod qm − 1)

where η and η′ denote two different vectors. Since σ =
∑w

j=1 σjp
ej , 0 <

σ < q − 1, and 0 ≤ ηj,k ≤ σj , 0 ≤ η′j,k ≤ σj , for j = 1, 2, . . . , w, k =
0, 1, . . . ,m − 1, g(η, e) is less than qm − 1 and the modulo operation can
be omitted:

q0(η1,0p
e1 + η2,0p

e2 + . . .+ ηw,0p
ew)

+q1(η1,1p
e1 + η2,1p

e2 + . . .+ ηw,1p
ew)

...

qm−1(η1,m−1p
e1 + η2,m−1p

e2 + . . .+ ηw,m−1p
ew)

= q0(η′1,0p
e1 + η′2,0p

e2 + . . .+ η′w,0p
ew)

+q1(η′1,1p
e1 + η′2,1p

e2 + . . .+ η′w,1p
ew)

...

qm−1(η′1,m−1p
e1 + η′2,m−1p

e2 + . . .+ η′w,m−1p
ew).

We consecutively reduce the above equation modulo qk for k = 0, 1,
. . . ,m − 1, and we have ηj,k = η′j,k for j ∈ {1, 2, . . . , w} and k ∈ {0, 1,
. . . ,m − 1}. Therefore, we obtain that all of the exponents of β in Sσ

i (t)
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are pairwise distinct. In the following, we show that the exponents of α
in Sσ

i are pairwise distinct mod qm − 1 under some conditions.
Since β = αN , we suppose that there exist g(η, e) and g(η′, e) such that
σ ≤ g(η, e) < g(η′, e) ≤ σqm−1 and

αNg(η,e) = αNg(η′,e).

As the order of α is equal to qm − 1, it follows that
qm − 1|N(g(η′, e)− g(η, e)) (8)

that is,
qm − 1

N
|(g(η′, e)− g(η, e)).

Note that

g(η′, e)− g(η, e) =

m−1
∑

k=0

qk
w
∑

j=1

(ηj,k − η′j,k)p
ej

and 0 < σj ≤ [p−1
N

], 0 ≤ ηj,k, η
′
j,k ≤ σj for j=1, 2,. . . , w, k=0, 1,. . . ,m−1.

Therefore, we have

g(η′, e)− g(η, e) <
qm − 1

N

so that qm− 1 does not divide N(g(η′, e)− g(η, e)), which contradicts (8).
Therefore, the exponents of α are pairwise distinct.
The linear complexity of Sσ

i can be computed as follows. Note that there
are

(

m+ σj − 1

σj

)

possibilities to represent σj as

σj =

m−1
∑

k=0

ηj,k, for 0 ≤ ηj,k ≤ σ

and by applying this result to all σj ’s, the linear complexity is equal to

w
∏

j=1

(

m+ σj − 1

σj

)

as desired.

Example 1 Let p = 4r(2t+1)+1 be a prime, where t ≥ 1 is a positive integer,
and r is an odd with gcd(r, 2t+1) = 1. Let q = p, and N = 8r. It is obvious that

p− 1 ≡ N/2 mod N . If m = 2, then n = (p− 1)(p+1)/N = (p+1)
2

(p−1)
4r . Since

gcd( (p+1)
2 , (p−1)

2 ) = 1, we have gcd(n,N) = 1. gcd((p2 − 1)/(p− 1)modN,N) =
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gcd((p + 1)modN,N) = gcd(4r + 2, 8r) = 2. Therefore, S is a ((p2 − 1)/8r,
8r, (2p2 − 2p− 1)/(8pr); p) optimal set of frequency hopping sequences, meeting
the bound of (4). Now, we choose a σ ≤ [p−1

8r ] = t with gcd(σ, p − 1) = 1, and
construct the transformed set Sσ, then by theorem 3, the sequences in Sσ have
much larger linear complexity than the ones in S.

Remark 1 In Theorem 3, the power permutations meeting the 0 < σj ≤ [p−1
N

]
can be employed in improving the linear complexity of the frequency hopping
sequences in the general construction. Therefore, our method applies to the
general construction of the optimal set with relatively large prime p, but the
chosen power permutation can significantly improve the linear complexity of the
frequency hopping sequences in the general construction when a large prime p is
used.

4. The linear complexity of the frequency hopping se-

quences transformed by binomial permutation

In this section, we improve the linear complexity of the frequency hopping
sequences from Lemma 3 by using a binomial permutation P (x), see Laigle-
Chapuy (2007). The linear complexity of the transformed sequences could be
higher than that of the sequences in Theorem 2.

Lemma 4 Let l and d be two positive integers. Let k be the order of p in Z/dZ.
Take q = pkld, and r a positive integer coprime with q− 1. If a ∈ Fpkl , then the
binomial

P (x) = xr(x
q−1

d + a)

is a permutation polynomial over Fq if and only if (−a)d 6= 1.

Both xr+ q−1

d and axr in P (x) are power permutations, since two exponents are
coprime with q − 1 as shown in the following lemma, Laigle-Chapuy (2007).

Lemma 5 Let l,k be two positive integers. Let d be a divisor of pk − 1 and r be
coprime with pkld − 1. Then

gcd(pkld − 1,
pkld − 1

d
+ r) = 1.

We transform the optimal set of frequency hopping sequences from Lemma 3
into a novel optimal set by employing the binomial permutation P (x), and give
the exact value of the linear complexity of the transformed frequency hopping
sequences in the novel optimal set.

Theorem 4 Let l and d be two positive integers. Let k be the order of p in
Z/dZ. Take q = pkld ≡ 1(mod 4), m = 2, N = 2(q − 1) and n = (q + 1)/2. Let
r =

∑w
j=1 rjp

ej , r+ q−1
d

≡
∑w

j=1 θjp
ej mod (q− 1) be two positive integers with
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0 < r < q − 1 such that gcd(r, q − 1) = 1, where 0 ≤ rj ≤ p− 1, 0 ≤ θj ≤ p− 1,
and 0 ≤ e1 < e2 . . . < ew < kld. Define P (S) = {P (Si) : 0 ≤ i ≤ N − 1}, where
Si is defined by (6). Then

(1) P (S) is ((q+1)/2, 2(q−1), 1; q) optimal set of frequency hopping sequences,
meeting the bound of (4).

(2) The linear complexity of the transformed frequency hopping sequences can
be high compared to their length n = (q + 1)/2. In particular, if θj + rj <
(p− 1)/2 for j = 1, 2, . . . , w and there is at least one θj − rj 6= 2(lj − kj)
for j = 1, 2, . . . , w, then the linear complexity of the transformed frequency
hopping sequences is equal to

w
∏

j=1

(θj + 1) +
w
∏

j=1

(rj + 1).

Proof:

(1) Since P (x) = xr(x
q−1

d + a) is a binomial permutation over Fq, we know
that P (Si) is a permutation sequence of Si. The Hamming correlations in
P (S) are still optimal. P (S) is also a ((q+1)/2, 2(q− 1), 1; q) optimal set
of frequency hopping sequences.

(2) Note that Si(t) = Tr21(α
iβt) = αiβt + (αiβt)q. Then

P (Si) = (Tr21(α
i
β
t))r+

q−1

d + a(Tr21(α
i
β
t))r

= (αi
β
t + (αi

β
t)q)r+

q−1

d + a(αi
β
t + (αi

β
t)q)r

= (αi
β
t + (αi

β
t)q)

∑w
j=1

θjp
ej

+ a(αi
β
t + (αi

β
t)q)

∑w
j=1

rjp
ej

.

=

w∏

j=1

(αip
ej

β
tp

ej

+ (αip
ej

β
tp

ej

)q)θj + a

w∏

j=1

(αip
ej

β
tp

ej

+ (αip
ej

β
tp

ej

)q)rj

Here, we define

Sθ
i =

w
∏

j=1

(αip
ej

βtp
ej

+ (αip
ej

βtp
ej

)q)θj

and

Sr
i =

w
∏

j=1

(αip
ej

βtp
ej

+ (αip
ej

βtp
ej

)q)rj .

Therefore, P (Si) = Sθ
i + Sr

i . We first consider the exponents of α in Sr
i . Using

the binomial formula,

(x+ y)n =

n
∑

k=0

(

n

k

)

xkyn−k
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where we take
(

0
k

)

= 1, then

w
∏

j=1

(αip
ej

βtp
ej

+ (αip
ej

βtp
ej

)q)rj

=
w
∏

j=1

rj
∑

kj=0

(

rj
kj

)

(αip
ej

βtp
ej

)kj+q(rj−kj)

=

r1
∑

k1=0

r2
∑

k2=0

. . .

rw
∑

kw=0

w
∏

j=1

(

rj
kj

)

αig(k,e)αNtg(k,e)

where

g(k, e) =

w
∑

j=1

kjp
ej+q

w
∑

j=1

(rj−kj)p
ej , k = (k1, k2, . . . , kw), e = (e1, e2, . . . , ew).

(9)

We show that all the exponents g(k, e) of α in Sr
i are pairwise distinct modulo

q2 − 1. Assume that two different parameters k and k′ generate the same
exponent of α modulo q2 − 1, that is,

Ng(k, e) ≡ Ng(k′, e) mod (q2 − 1).

Since N = 2(q − 1), we obtain

g(k, e) ≡ g(k′, e) mod (
q + 1

2
). (10)

With the equations (9) and (10), we obtain that

w
∑

j=1

kjp
ej + q

w
∑

j=1

(rj − kj)p
ej ≡

w
∑

j=1

k′jp
ej + q

w
∑

j=1

(rj − k′j)p
ej mod (

q + 1

2
).

Note that q ≡ −1 mod ( q+1
2 ), and then it follows that

w
∑

j=1

2(kj − k′j)p
ej ≡ 0 mod (

q + 1

2
).

Since q ≡ 1 mod 4, we have gcd(2, q+1
2 ) = 1. It follows that

w
∑

j=1

(kj − k′j)p
ej ≡ 0 mod (

q + 1

2
). (11)
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Note that 0 ≤ kj ≤ rj ≤ p−1
2 , 0 ≤ k′j ≤ rj ≤ p−1

2 for j = 1, 2, . . . , w. This

implies that −p−1
2 ≤ kj − k′j ≤ p−1

2 for j = 1, 2, . . . , w. Since

q + 1

2
=

p− 1

2
(p+ p2 + · · ·+ ps−1) +

p+ 1

2

and 0 ≤ rj ≤ p−1
2 , we have that the equation (11) can not be satisfied unless

kj − k′j = 0 for j = 1, 2, . . . , w, which implies that the exponents of α in Sr
i are

pairwise distinct modulo q2 − 1. Similarly, we can show that the exponents of
α in Sθ

i are pairwise distinct modulo q2 − 1.
In the following, we show that the exponents of α in Sθ

i are pairwise distinct
with those of α in Sr

i . Note that

Sθ
i =

w
∏

j=1

(αip
ej

βtp
ej

+ (αip
ej

βtp
ej

)q)θj

=

w
∏

j=1

θj
∑

lj=0

(

θj
lj

)

(αip
ej

βtp
ej

)lj+q(θj−lj)

=

θ1
∑

l1=0

θ2
∑

l2=0

. . .

θw
∑

lw=0

w
∏

j=1

(

θj
lj

)

αig(l,e)αNtg(l,e)

where

g(l, e) =

w
∑

j=1

ljp
ej+q

w
∑

j=1

(θj−lj)p
ej , l = (l1, l2, . . . , lw), e = (e1, e2, . . . , ew). (12)

Assume that k and l generate the same exponents of α, that is,

Ng(l, e) ≡ Ng(k, e) mod (q2 − 1). (13)

Similarly, we have

w
∑

j=1

ljp
ej +q

w
∑

j=1

(θj − lj)p
ej ≡

w
∑

j=1

kjp
ej +q

w
∑

j=1

(rj −kj)p
ej mod (

q + 1

2
). (14)

Note that q ≡ −1 mod ( q+1
2 ), and so we have

w
∑

j=1

((θj − lj)− (rj − kj) + kj − lj)p
ej ≡ 0 mod (

q + 1

2
). (15)

Since 0 ≤ kj ≤ rj and 0 ≤ lj ≤ θj for j = 1, 2, . . . , w, we have

−(θj + rj) ≤ (θj − lj)− (rj − kj) + kj − lj ≤ θj + rj , for j = 1, 2, . . . , w.
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If θj + rj ≤ p−1
2 for j = 1, 2, . . . , w, then the equation (15) can not be satisfied

unless θj − rj = 2(lj − kj) for j = 1, 2, . . . , w. Therefore, if θj + rj ≤ p−1
2 for

j = 1, 2, . . . , w and there is at least one θj − rj 6= 2(lj − kj) for j = 1, 2, . . . , w,
then all the exponents of α in the representations of Sθ

i and Sr
i are pairwise

distinct modulo q2 − 1. By counting the number of the roots in the sequence
representation, we can know that the linear complexity of the frequency hopping
sequences in P (S) is equal to

w
∏

j=1

(θj + 1) +

w
∏

j=1

(rj + 1).

5. Implementations

+

Si(t+1)Si(t+n-1) Si(t)

+ +

c1 cn-1 cn

power

multiplier

Figure 1. Implementation of the transformed frequency hopping sequences

The transformed frequency hopping sequences with large linear complexity

can be easily implemented, as illustrated in Fig. 1. Symbol Si(t) in Fig. 1

denotes a storage element which holds one symbol in the field Fq. Si(t) holds

its symbol until a clock signal is applied. In Fig. 1, all of these Si(t) storages

are clocked simultaneously. The box containing the ’Power multiplier’ denotes
an implementation of the permutation polynomial by multiplications. The orig-
inal frequency hopping sequences are constructed by trace functions, which can
be implemented by linear feedback shift register, see Lidl and Harald (1983).
Since the transformed frequency hopping sequences are constructed by using
a permutation polynomial over the original sequences, we can implement the
transformed frequency hopping sequences by appending a permutation polyno-
mial to the linear feedback shift register, and the permutation polynomial can
be implemented by some simple power multiplications and additions. Therefore,
at a low cost (only adding a permutation polynomial), we obtain two optimal
sets of frequency hopping sequences with larger linear complexities than the
original optimal set.
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6. Comparisons and conclusions

We have determined the linear complexities of the frequency hopping sequences
in two new optimal sets, which are transformed by power permutation and
binomial permutation, respectively. Table 1 describes the parameters and their
linear complexities of the frequency hopping sequences in the related optimal
sets. From Table 1, we see that the frequency hopping sequences in two original
optimal sets have small linear complexities, however, the frequency hopping
sequences in two new optimal sets have higher linear complexities than the
original frequency hopping sequences. Our results have the advantages over the
existing results as follows:

1) The original power permutation, see Wang (2011) is only suitable for the op-
timal set of frequency hopping sequences of Lemma 3, which is an optimal
set with special parameters. Our permutation from Theorem 3 is suitable
for the optimal set of a general construction. Observing the sixth row in
Table 1, we see that the linear complexity of the transformed frequency
hopping sequences in the general construction can be high compared to
the sequence length. We have proven that some chosen power permuta-
tions apply to the optimal set of the general construction in Theorem 1
for improving the linear complexity.

2) Wang noted that besides the power permutation, other types of permuta-
tion polynomials could also be used for improving the linear complexity
of the frequency hopping sequences in the optimal set, but it could be
difficult to obtain the value of linear complexity, see Wang (2010). Here,
we use the binomial permutation P (x) to improve the linear complexity,
and obtain the exact value of the linear complexity of the transformed
frequency hopping sequences. Observing the third row and the fourth row
in Table 1, we see that the linear complexity of the frequency hopping
sequences transformed by binomial permutation can be higher than that
transformed by some chosen power permutations.

3) From Theorems 3 and 4, we know that both of the transformed optimal sets
of frequency hopping sequences are novel optimal sets. They are different
from the existing optimal sets. The frequency hopping sequences in the
transformed optimal sets (the fourth and the sixth row in Table 1) have
higher linear complexities than the frequency hopping sequences in the
original optimal sets (the second and the fifth row in Table 1). They
are stronger to resist the Berlekamp-Massey algorithm than the original
sequences.

The methodology used for calculating the linear complexity is to count the
number of the roots in the sequence representation. It is a traditional and ef-
ficient technique to derive the linear complexity of the sequence constructed
by trace function, see Golomb and Gong (2005). Our contributions focus on
two aspects. The first one is that we generalize one of the Wang’s conclusions
and find some power permutations which are suitable for the optimal set of the
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Table 1. Comparisons of several optimal sets
The Optimal Set Linear Complexity
((q + 1)/2, 2(q − 1), 1; q), see Wang (2011). 2
((q + 1)/2, 2(q − 1), 1; q)
transformed by power permutation, see Wang (2011).

∏w
j=1(σj + 1)

((q + 1)/2, 2(q − 1), 1; q)
transformed by binomial permutation.
This paper, Theorem 4.

∏w
j=1(θj + 1) +

∏w
j=1(rj + 1)

((qm − 1)/N , N , (qm − 1− q
+(q − 1)

√
qm)/(qN); q), see Wang (2011) m

((qm − 1)/N , N , (qm − 1− q
+(q − 1)

√
qm)/(qN); q)

transformed by power permutation.

This paper, Theorem 3.
∏w

j=1

(

m+σi−1
σi

)

.

general construction with a large prime p. The second one is that we employ
the binomial permutation in improving the linear complexity of the frequency
hopping sequences in an optimal set. The transformed optimal set is a novel
optimal set, which is different from the existing ones. All of the values of the
linear complexities of the transformed frequency hopping sequences in Theorem
3 or 4 depend on the chosen permutations, and may be high compared to the
sequence length if the permutations are properly chosen. In addition, the bino-
mial permutation can be suitable for other optimal sets of frequency hopping
sequences, but it could be complicated to obtain the exact value of the linear
complexity.

We have given two optimal sets of frequency hopping sequences with higher
linear complexity than the original optimal sets. The two optimal sets have bet-
ter ability to resist the Berlekamp-Massey algorithm than the original optimal
sets, however, large linear complexity does not imply that these sequences can
resist various cryptanalytic methods, such as correlation attack, see Meier and
Staffelbach (1998), algebraic attack, see Courtois and Meier (2003), etc., in that
large linear complexity is only a necessary condition to resist the Berlekamp-
Massey algorithm. Our future work will focus on the ability of these transformed
frequency hopping sequences to resist some definite cryptanalytic methods.
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