
Control and Cybernetics

vol. 42 (2012) No. 2

Homomorphic linear authentication schemes from ǫ-ASU2

functions for proofs of retrievability 12

by

Shengli Liu1,2, Kefei Chen1

1Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai 200240, China

2State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences

Abstract: Proof of Retrievability (POR) refers to interactive
auditing protocols executed between a storage server and clients, so
that clients can be convinced that their data is available at the stor-
age server, ready to be retrieved when needed. In an interactive POR
protocol, clients initiate challenges to the server, and the server feed-
backs responses to clients with the help of the stored data. Retriev-
ability means that it should be possible for a client to extract his/her
data from the server’s valid responses. An essential step leading to
retrievability is the server’s unforgeability of valid responses, i.e, any
server coming up with valid responses to a client’s challenges is ac-
tually storing the client’s data with overwhelming probability. Un-
forgeability can be achieved with authentication schemes like MAC,
Digital Signature, etc. With Homomorphic Linear Authentication
(HLA) schemes, the server’s several responses can be aggregated into
one, hence reducing the communication complexity. In this paper,
we explore some new constructions of ǫ-almost strong universal hash-
ing functions (ǫ-ASU2), which are used to build homomorphic linear
authenticator schemes in POR to provide unforgeability. We show
the HLA scheme involved in Shacham and Waters’ POR scheme (see
Shacham and Waters, 2008) is just an employment of a class ǫ-ASU2

functions. Using another class of ǫ-ASU2 for authentication in POR
results in a new HLA scheme, which enjoys unforgability, the same
shortest responses as the SW scheme, but reduces the local storage
from O(n+ s) to O(n) for information soundness, and from O(s) to
O(1) for knowledge-soundness.

Keywords: authentication code, proof of retrievability

1Submitted: November 2011; Accepted: April 2012
2Funded by NSFC (Nos. 61170229, 60970111, 61133014), Innovation Project (No.

12ZZ021) of Shanghai Municipal Education Commission, and Specialized Research Fund (No.
20110073110016) for the Doctoral Program of Higher Education.

336 S. LIU, K. CHEN

1. Introduction

Nowadays “cloud storage” is able to provide storage services at both personal
and business level. However, outsourced storage puts clients’ data totally in the
control of the storage center. Hence, storing data in a remote and unreliable
server is of full risk and clients may worry about the availability of their data at
the storage center. Hence it is of great importance for the storage center to be
able to convince its clients that their data is right there, ready to be retrieved
when needed.

The ability of a storage system to generate proofs of possession of client’s
files, without having to retrieve the whole file, is the so-called “proofs of data
possession”(PDP). If the client’s data can be extracted from proofs of data
procession, then the PDP scheme is developed to be a “Proof of Retrievability”
(POR) scheme. A POR scheme involves an interactive POR protocol between
a storage server (prover) and a client (verifier). The client issues a series of
queries and the storage provider feedbacks the corresponding responses. The
client checks whether the responses are valid or not. Proof of retrievability
requires that the server who passes verification checks is actually storing clients’
data, and there exists an extraction algorithm which can extract the stored data
via valid responses from the server.

The POR schemes fall into two categories, one with public verification and
the other with private verification. Public verification means that everyone can
perform the role of verifier in the POR protocol, while private verification means
that only the client who owns the data is able to play the role of verifier.

1.1. Related work

There are many studies devoted to POR, among which Naor and Rothblum
(2005) and Juels and Kaliski (2007) are the first to consider the security model.
Dodis, Vadhan and Wichs (2009) identified POR problems with different vari-
ants, like bounded-use vs. unbounded-use, knowledge-soundness vs. information-
soundness. They abstracted a notion of POR codes and applied POR codes in
various constructions. Most of the constructions of POR, like the constructions
of Ateniese et al. (2007), Shacham and Waters (2008), or Schwarz and Miller
(2006), are combinations of erasure codes and an authentication scheme. When
authentication is achieved with a digital signature scheme, one gets a POR
scheme with public verification.

To decrease both the computational and communication complexity of the
interacitve POR protocol, Ateniese et al. (2007) proposed to use homomorphic
verifiable tags and constructed a RSA-based POR scheme with public verifi-
cation. Because of the homomorphic property, tags computed for multiple file
blocks can be combined into a single value.

The first POR schemes with full proofs of security against arbitrary adver-
saries were given by Shacham and Waters (2008). The POR schemes proposed

Homomorphic linear authentication from ǫ-ASU2 for proofs of retrievability 337

by Shacham and Waters (2008) also used homomorphic tags, one with private
verification and the other with public verification.

The POR schemes with homomorphic tags, proposed by Ateniese et al.
(2007) and Shacham and Waters (2008), result in short responses among avail-
able POR schemes. These schemes were identified as homomorphic linear au-
thenticator schemes (HLA schemes for short) by Dodis, Vadhan and Wichs
(2009). The idea is first to use an erasure code to expand the original file M ′ to
an encoded version M , such that the retrieval of ρ fraction of M is able to ex-
tract the whole file M . Then the authentication scheme is applied to the blocks
{M1,M2, · · · ,Mn} of the coded file M to get tags ~σ = (σ1, σ2, · · · , σn) with an
authentication key K. The final file M∗, which is M attached with the tags ~σ,
is stored in a storage server. The client can issue some indices of the blocks of
M , and the server responds with the corresponding block-tag pairs. The client
then verifies the validity of those block-tag pairs with K, and accepts the blocks
if those pairs pass verification. The valid blocks can be fed to an extraction
algorithm, which is a decoder of erasure codes, to extract the whole file M . Let
(v1, v2, · · · , vn) be the challenge vector, the prover (server) can generate an ag-
gregated pair of message and tag i.e., (µ =

∑n

i=1
viMi, σ =

∑n

i=1
viσi). Given

the prover’s response (µ′, σ′), the verifier (client) is able to use the authentica-
tion key K to check whether µ′ =

∑n

i=1
viMi with overwhelming probability.

Homomorphic linear authenticator (HLA) schemes enable the prover (server) to
provide correct response with only one block-tag pair (µ, σ). In fact, the two
POR schemes proposed by Shacham and Waters (2008) are just homomorphic
linear authenticator schemes and enjoy the shortest responses from the server
among all the available POR schemes.

In this paper, we study POR with private verification. We will bench
Shacham and Waters’ POR scheme with private verification, named the SW
scheme hereafter. The SW scheme based on an erasure code, a Pseudo-Random
Function (PRF) and a homomorphic linear authenticator (HLA) scheme to pro-
duce homomorphic tags.

• An erasure code is used to encode some redundancy to the original file M ′

to get M , so that the data owner is able to extract the whole file M from
some verified blocks obtained from interactions in the POR protocol.

• A Pseudo-Random Function (PRF) uses a seed kprf to generate keys:
fkprf

(i), i = 1, 2, · · · .
• A homomorphic linear authenticator (HLA) scheme is employed to create

homomorphic tags. The encoded file M is divided into n blocks of same
sizes, M1,M2, · · · ,Mn and each block Mi is further divided into s sectors
of same sizes, (mi1,mi2, · · · ,mis) ∈ GF (q)s. A systematic authentica-
tion code is applied to M , block by block, to obtain tags (σ1, σ2, · · · , σn)
with (α1, α2, · · · , αs, fkprf

(1), fkprf
(2), · · · , fkprf

(n)) being the authentica-

338 S. LIU, K. CHEN

tion keys,

σi ← fkprf
(i) +

s∑

j=1

αjmij , i = 1, 2, · · · , n,

and all the operations are over GF (q).

– The authentication key for block i is (α1, α2, · · · , αs, fkprf
(i)). Hence

all the blocks share the same key (α1, α2, · · · , αs), but each one has
its individual key fkprf

(i) for authentication.

– Each tag σi is attached to its block Mi for storage. The tags are ho-
momorphic verifiable with respect to the blocks. For queries (v1, v2,
· · · , vn), the storage server is able to aggregate the sectors of the
blocks with a linear combination µj =

∑n

i=1
vimij , j = 1, 2, · · · , s,

and feedbacks the responding block (µ1, µ2, · · · , µs), together with
an aggregated tag computed by σ =

∑n

i=1
viσi.

– Thanks to the homomorphic properties of the tags, the file owner
is able to verify the validity of the aggregated block and tag with
his/her own secret key by testing whether the following holds or not

σ =

n∑

i=1

vifkprf
(i) +

s∑

j=1

αjµj .

In the SW scheme, the client will store (s + 1)⌈log2 q⌉ bits locally, and the
storage server will store (n+1)(s+1)⌈log2 q⌉ bits. The use of Pseudo-Random
Function makes the POR scheme only computationally secure, hence “knowledge
soundness” according to Dodis, Vadhan and Wichs (2009).

1.2. Authentication codes and ǫ-ASU2

The goal of authentication is to investigate a coding method such that the re-
ceiver will detect the opponent’s active attack. Authentication codes (A-codes)
work as follows: the transmitter and receiver first agree on an authentication key
k, taken from a finite set K. Each authentication key k determines an encoding
rule Ek(·), which encodes a piece of plaintext m, to a message c = Ek(m). If
c = Ek(m) = (m,σ) with σ = ek(m), we call σ the tag or the authenticator,
and these codes are called system authentication-codes.

The active attacks by the opponent can be classified into two categories
according to his cheating strategies. The first is call impersonation attack in
which the opponent introduces a fraudulent message to the channel, hoping
it to be accepted by the receiver. The other is called substitution attack, in
which the opponent intercepts a message-tag pair (m,σ) and modifies it to a
different one (m′, σ′), hoping it to be accepted by the receiver. Let PI and PS be

Homomorphic linear authentication from ǫ-ASU2 for proofs of retrievability 339

the probabilities of a successful impersonation attack, respectively substitution
attack.

Stinson (1992) considered how to construct authentication codes from ǫ-
almost strongly universal2 (see Section 2 for the definition). Given an ǫ-ASU2:
H : A → B, let A be the set of messages to be authenticated, B be the set
of tags, and the index of hash functions H ∈ H uniquely determined by the
authentication key. Then an ǫ-ASU2 determines a systematic authentication
code with PI = 1/|B| and PS ≤ ǫ (see Stinson, 1992).

The essential part of a POR system is the design of a homomorphic lin-
ear authentication (HLA) scheme with short homomorphic tags and negligible
probability of successful active attacks. Short tags results in small storage ex-
pansion. Homomorphic tags make the server’s response short by aggregating
multiple tags to a single one, reducing the communication complexity of POR.
The resistance to active attacks ensures that it is impossible for a cheating stor-
age server to forge any valid aggregated tag without the knowledge of the file
and its tags. We will show in this paper that some ǫ-ASU2 imply HLA scheme
for POR.

1.3. Our contribution

In this paper, we make two contributions.
1. We give two new constructions for ǫ-Almost Strong Universal (ǫ-ASU2)

family of hash functions, one is a 1/q-ASU2 family and the other an s/q-
ASU2, each ǫ-ASU2 implying an HLA scheme with information-theoretic
security. The HLA scheme from 1/q-ASU2 requires that clients store an
authentication key of length (n + s)⌈log2 q⌉, and the HLA scheme from
s/q-ASU2 needs an authentication key of length (n+ 1)⌈log2 q⌉, where n
is the number of blocks in a file and s the number of sectors in each block.

2. We show that the SW scheme by Shacham and Waters (2008) is just a
homomorphic linear authenticator scheme instantiated with the 1/q-ASU2

family, with a Pseudo-Random Function (PRF) generating authentication
keys for each block. The use of a PRF reduces the local storage of clients to
(1+s)⌈log2 q⌉ with price of computational security. We substitute the s/q-
ASU2 family for the 1/q-ASU2 used in the SW scheme to obtain another
HLA scheme with computational security. The new scheme enjoys the
shortest responses and the same security just as the SW scheme. However,
the HLA scheme from s/q-ASU2 needs a shorter authentication key, hence
the local storage of clients, which is mainly used to store the authentication
key, is reduced to 2⌈log2 q⌉, compared to (1+s)⌈log2 q⌉ of the SW scheme,
with s the number of sectors in each block.

The rest of paper is organized as follows. In Section 2, we will investigate ǫ-
Almost Strong Universal (ǫ-ASU2) hash functions, and give some constructions.
In Section 3, we apply the ǫ-ASU2 obtained in Section 2 to HLA schemes and
give analysis. Section 4 concludes the paper.

340 S. LIU, K. CHEN

2. ǫ-Almost strong universal hash functions and construc-

tions

Universal classes of hash functions were first introduced by Carter and Wegman
(1979) for storage and retrieval on keys. Later, Wegman and Carter (1981) stud-
ied the applications of those hash functions in authentication. Stinson (1994)
extended universal hash functions to ǫ-almost strongly universal2 (ǫ-ASU2) hash
functions and showed how to construct authentication codes from ǫ-ASU2.

Let A and B be finite sets. For a hash function h : A → B, for a1, a2 ∈
A, a1 6= a2, define

δh(a1, a2) =

{
1, if h(a1) = h(a2),
0, otherwise.

For a finite set H of hash functions, all from A to B, define

δH(a1, a2) =
∑

h∈H

δh(a1, a2).

Then, δH(a1, a2) counts the number of hash functions, for which a1 and a2
collide.

Definition 1 Let ǫ > 0. H : A → B is ǫ-almost strongly-universal2 (or ǫ-
ASU2) if
(a) for every a ∈ A and for every b ∈ B, |{h ∈ H : h(a) = b}| = |H|/|B|;
(b) for every a1, a2 ∈ A (a1 6= a2) and for every b1, b2 ∈ B, |{h ∈ H : h(a1) =

b1, h(a2) = b2}| ≤ ǫ|H|/|B|.

Definition 2 If H is ǫ-ASU2 with ǫ = 1/|B|, then H is called strongly universal2
(or strongly universal, SU2 for short).

Here we show some well-known constructions for ǫ-ASU2.

Construction 1 (Stinson, 1994) For some positive integer s, let A = {~aaa =
(a1, a2, . . . , as) ∈ GF (q)s}, B = GF (q). Let H = {(h1, h2, . . . , hs+1) ∈ GF (q)s+1}.
Then H : A → B defines an SU2 with

H(~aaa) = h1 · a1 + h2 · a2 + · · ·+ hs · as + hs+1,

where (h1, h2, . . . , hs+1) ∈ H, (a1, a2, . . . , as) ∈ A, H(~aaa) ∈ B, and all operations
are over GF (q).

Construction 2 (den Boer, 1993) Let A = {~aaa = (a1, a2, . . . , as) ∈ GF (q)s}.
For any ~aaa = (a1, a2, . . . , as) ∈ A, define a polynomial ~aaa(x) = a1x+ a2x

2 + · · ·+
asx

s. It is a mapping from GF (q) to itself. Let H = {(h1, h2) ∈ GF (q)2}. Then
H : A → B defines an ǫ-ASU2 with ǫ = s/q, and

H(~aaa) = h1 + ~aaa(h2) = h1 + a1 · h2 + a2 · (h2)
2 + · · ·+ as · (h2)

s,

where (h1, h2) ∈ H and ~aaa ∈ A.

Homomorphic linear authentication from ǫ-ASU2 for proofs of retrievability 341

Now we extend the inputs of SU2 in Construction 1 and s/q-ASU2 in Con-
struction 2 to matrices, and obtain new constructions of ǫ-ASU2.

Construction 3 For some positive integers n, s, let

A =

An×s =

a11 a12 · · · a1s
a21 a22 · · · a2s
...

... · · ·
...

an1 an2 · · · ans

 ∈ GF (q)n×s

,

B = {~bbb = (b1, b2, · · · , bn)T ∈ GF (q)n}. Let H = {(~hhh, ~h′h′h′) | ~hhh = (h1, h2, . . . , hs)
T

∈ GF (q)s, ~h′h′h′ = (h′
1, h

′
2, · · · , h′

n)
T ∈ GF (q)n}. Then H : A → B defines a family

of functions with

H(An×s) = An×s · ~hhh+ ~h′h′h′.

Lemma 1 The family of the hash functions H : A → B in Construction 3 is a
1

q
-ASU2.

Proof. . Given An×s and the hash value ~bbb = (b1, b2, · · · , bn)T , for each ~hhh =

(h1, h2, · · · , hs)
T , there exists a unique ~h′h′h′ = (h′

1, h
′
2, · · · , h′

n)
T such that

b1
b2
...
bn

 = An×s ·

h1

h2

...
hs

+

h′
1

h′
2

...
h′
n

 . (1)

There are in total qs choices for ~hhh, hence there are totally qs hash functions

mapping An×s to ~bbb, and qs = |H|/|B| = qn+s/qn.

Given An×s, Ãn×s, with An×s 6= Ãn×s, ~bbb = (b1, b2, · · · , bn)T , and ~̃bbb = (b̃1, b̃2,

· · · , b̃n)T , we count how many hash functions in H satisfy both (1) and (2).

b̃1
b̃2
...

b̃n

= Ãn×s ·

h1

h2

...
hs

+

h′
1

h′
2

...
h′
n

 . (2)

Define ∆~bbb = ~bbb− ~̃bbb, and (∆A)n×s = An×s − Ãn×s. Subtracting (2) from (1)
gives

∆~bbb = (∆A)n×s ·

h1

h2

...
hs

 . (3)

342 S. LIU, K. CHEN

We only have to determine the number of hash functions in H satisfying
both (1) and (3).

Let r be the rank of matrix (∆A)n×s, then the null space of (∆A)n×s has
dimension s− r. (∆A)n×s 6= 0 implies that r ≥ 1.

Among all the qs free choices of (h1, h2, · · · , hs) (each choice determines a
unique (h′

1, h
′
2, · · · , h′

n)) satisfying (1), only qs−r of them also satisfy (3). Hence
the total number of hash functions in H for both (1) and (3) is qs−r, which is
upper-bounded by

qs−1 =
1

q
· |H||B| .

Consequently, Construction 3 results in a 1

q
-ASU2 family.

Construction 4 For some positive integers n, s, let

A =

An×s =

a11 a12 · · · a1s
a21 a22 · · · a2s
...

an1 an2 · · · ans

 ∈ GF (q)n×s

,

B = {~bbb = (b1, b2, · · · , bn)T ∈ GF (q)n}. Let H = {(h, ~h′h′h′) | h ∈ GF (q), ~h′h′h′ =
(h′

1, h
′
2, · · · , h′

n)
T ∈ GF (q)n}. Then H : A → B defines a family of functions

with

H(An×s) = An×s ·

h
h2

...
hs

+

h′
1

h′
2

...
h′
n

 .

Lemma 2 The family of the hash functions H : A → B in Construction 4 is an
s
q
-ASU2.

Proof. . Given An×s and the hash value ~bbb = (b1, b2, · · · , bn)T , for each h ∈
GF (q), there exists a unique ~h′h′h′ = (h′

1, h
′
2, · · · , h′

n)
T such that

b1
b2
...
bn

 = An×s ·

h
h2

...
hs

+

h′
1

h′
2

...
h′
n

 . (4)

Hence there are totally q hash functions mapping An×s to ~bbb, and q = |H|/|B| =
qn+1/qn.

Homomorphic linear authentication from ǫ-ASU2 for proofs of retrievability 343

Given An×s, Ãn×s, with An×s 6= Ãn×s, ~bbb = (b1, b2, · · · , bn)T , and ~̃bbb =

(b̃1, b̃2, · · · , b̃n)T , we count the number of hash functions in H satisfying both
(4) and (5).

b̃1
b̃2
...

b̃n

= Ãn×s ·

h
h2

...
hs

+

h′
1

h′
2

...
h′
n

 . (5)

Define ∆~bbb = ~bbb − ~̃bbb, and (∆A)n×s = An×s − Ãn×s. Subtraction of (5) from
(4) gives

∆~bbb = (∆A)n×s ·

h
h2

...
hs

 . (6)

Let (∆A)n×s = (aij)n×s
. (6) is equivalent to

bi − b̃i =

s∑

j=1

aijh
j , i = 1, 2, · · · , n. (7)

Since (∆A)n×s 6= 0, there exists at least one non-zero row, say ~ak~ak~ak
T =

(ak1, ak2, · · · , aks), 1 ≤ k ≤ n, in (∆A)n×s, resulting in a nonzero (bk − b̃k),

i.e., bk − b̃k =
∑s

j=1
akjh

j . Equation

(bk − b̃k) = ak1x+ ak2x
2 + · · ·+ aksx

s (8)

has at most s roots in GF (q).

Consequently, among the q free choices of h (which uniquely determine the
value of (h′

1, h
′
2, · · · , h′

n)), satisfying (4), at most s of them also satisfy (7).
Hence, the total number of hash functions in H for both (4) and (7) is at most
s.

Since

s =
s

q
· q =

s

q
· |H||B| ,

Construction 4 is an s
q
-ASU2 family.

344 S. LIU, K. CHEN

3. Proof of retrievability scheme

3.1. Homomorphic linear authentication schemes

We recall the definition of Homomorphic Linear Authentication Schemes, which
is used to achieve POR, and the corresponding security model in the work of
Dodis, Vadhan and Wichs (2009).

A homomorphic linear authentication scheme consists of four randomized
algorithms as follows.
Kg(1λ). The key generation algorithm takes as input the security parameter λ,

and generates an authentication key sk.
~σσσ ← LinTag(sk,M). The algorithm takes as input the file M to be stored and

the secret key sk, divides the M into n blocks (M1,M2, · · · ,Mn), then
computes a tag σi for each block Mi with the authentication key sk. It
outputs a vector-tag ~σσσ = (σ1, · · · , σn).

(µ, σ)← LinAuth(M,~σσσ,~vvv). The algorithm takes as input the file M and the
vector-tag ~σσσ, which is the output of algorithm LinTag, and a challenge
vector ~vvv = (v1, v2, · · · , vn). It computes µ =

∑n

i=1
viMi and a tag σ, then

outputs (µ, σ).
b← LinVer(sk,~vvv, (µ′, σ′)). The LinVer algorithm takes as input the authentica-

tion key sk, a challenger vector ~vvv, a block-tag pair (µ′, σ′). It computes a
bit b ∈ {0, 1}, indicating whether it accepts or rejects.

The correctness of the HLA scheme requires that for all secret key sk out-
putted by Kg, for all file M ∈ {0, 1}∗, for all ~σσσ output by LinTag(sk,M), and
all (µ, σ) output by LinAuth(M,~σσσ,~vvv), the algorithm LinVer(sk,~vvv, (µ, σ)) always
outputs 1.

The unforgeability game between an adversary A and a challenger is defined
below.

1. The adversary A chooses a message M .
2. The challenger computes an authentication key sk ←Kg(1λ), and com-

putes a vector-tag ~σσσ ← LinTag(sk,M). It sends ~σσσ to A.
3. A produces a non-zero vector-challenge ~vvv = (v1, v2, · · · , vn) and a tuple

(µ′, σ′).
4. If LinVer(sk,~vvv, (µ′, σ′)) = 1 and µ′ 6= ∑n

i=1
viMi, the adversary A wins.

Definition 3 If there exists no adversary A, who wins the above game with
non-negligible probability, then the HLA scheme is unforgeable with “information
theoretic security”. If adversaries are limited to be of probabilistic-polynomial-
time (ppt), the scheme is unforgeable with “computationally security”.

3.2. POR scheme from Homomorphic Linear Authentication scheme

A homomorphic linear authentication (HLA) scheme can be used to construct
a POR scheme in the following ways.

Key Generation. The client generates an authentication key by Kg(1λ).

Homomorphic linear authentication from ǫ-ASU2 for proofs of retrievability 345

File coding. The client encodes the original file F for storage.

• Erasure Correctoin Coding: The original file F is encoded to M with
an erasure correction code, which ensures that ρ fraction of M suffices
to recover M .

• Authentication Coding: ~σσσ ← LinTag(sk,M). The encoded file is
M∗ = M ||~σσσ.

The client submits M∗ to the server for storage.
Auditing: The server (prover) P and the client (verifier) V define an interactive

POR protocol together for the file retrievability.

1. ~vvv ← V. The verifier V outputs a randomized challenge vector ~vvv =
(v1, v2, · · · , vn).

2. The prover P uses LinAuth(M,~σσσ,~vvv) algorithm to obtain the aggre-
gated block-tag pair (µ, σ). P sends the block-tag pair (µ, σ) to V.

3. Let (µ′, σ′) be the pair received by the verifier V. V computes b ←
LinVer(sk,~vvv, (µ′, σ′)). If b = 1, V outputs 1, convinced that µ = µ′,
otherwise outputs 0.

File Extraction. An extraction algorithm Extr(sk,P) takes as input the secret
key sk, is given non-black-box access to P, and outputs file M .

The soundness of the POR scheme requires that any cheating prover who
convinces the verification algorithm that it is storing a file M actually has the
file. And there exists an extraction algorithm Extr(sk,P ′), which takes as input
the secret key sk, is given non-black-box access to P ′, and outputs the file M .
The soundness of the POR scheme is guaranteed by the unforgeability of the
involved HLA scheme. As long as the output (µ′, σ′) of P ′ passes verification in
the auditing protocol, the unforgeability of the authentication scheme ensures
the correctness of µ′ with overwhelming probability. Executions of the POR
protocol during auditing output correct µs, which can be used to recover a
fraction of M . As long as ρ fraction of M is obtained, the extractor Extr(sk,P ′)
can recover the whole M with erasure decoding.

The full security proof of a POR scheme is in three parts (see Shacham and
Waters, 2008). The first part involves the proof of unforgeability of the HLA
scheme, the second part is the proof of ǫ-soundness, which uses combinatoric
techniques, and the last part is the existence of an extraction algorithm to
reconstruct the original file M with ρ fraction of it, which uses erasure correction
technique.

An HLA scheme with “information-theoretic security” results in a POR
scheme with “information” soundness, while a HLA scheme with “computational
security” results in a POR scheme with “knowlege” soundness (see Dodis, Vad-
han and Wichs, 2009). We will focus on how to implement an efficient HLA
scheme in the POR scheme and prove its unforgeability.

346 S. LIU, K. CHEN

3.3. HLA Scheme 1 from the s
q
-ASU2 of Construction 4

We present a new HLA scheme for POR, which employs the s
q
-ASU2 of Con-

struction 4 to generate homomorphic tags. We call the scheme HLA Scheme 1
hereafter. All operations are over GF (q). Below we describes our proposal for
a homomorphic linear authenticator scheme.

Kg(1λ) . Randomly choose α, ki ∈ GF (q) with i = 1, 2, · · · , n. Output sk =
(α, k1, k2, · · · , kn).

~σσσ ← LinTag(sk,M). M is divided into n blocks and s sectors in each block, i.e.,

M =

m11 m12 · · · m1s

m21 m22 · · · m2s

...
mn1 mn2 · · · mns

 , mij ∈ GF (q).

Compute the tags ~σσσ with

~σσσ =

σ1

σ2

...
σn

 = M ·

α1

α2

...
αs

+

k1
k2
...
kn

 . (9)

The final file to be stored is M∗ = M ||~σσσ.
(~µµµ, σ)← LinAuth(M,~σσσ,Q). Parse M∗ as

M∗ = M ||~σσσ =

m11 m12 · · · m1s σ1

m21 m22 · · · m2s σ2

...
mn1 mn2 · · · mns σn

 .

The vector challenge is obtained in this way: randomly pick up some
block indices to obtain the index-subset I ⊆ {1, 2, · · · , n}. For each i ∈ I,
randomly choose vi from GF (q). Let Q = {(i, vi) | i ∈ I}, and let ~v~v~v =
(v1, v2, · · · , vn)T be a vector with vi = 0 for i /∈ I. Compute

(µ1, µ2, · · · , µs, σ) = ~vvv
T
·M

∗ = (v1, v2, · · · , vn)·

m11 m12 · · · m1s σ1

m21 m22 · · · m2s σ2

...
mn1 mn2 · · · mns σn

.

(10)

Return ~µµµ = (µ1, µ2, · · · , µn) and σ.
b← LinVer(sk,~vvv, (µ′, σ′)). Parse ~µµµ as (µ1, µ2, · · · , µs)

T
∈ GF (q)s and σ ∈ GF (q).

Homomorphic linear authentication from ǫ-ASU2 for proofs of retrievability 347

Check whether the following relation holds or not.

σ = (v1, v2, · · · , vn) ·

k1
k2
...
kn

+ (µ1, µ2, · · · , µs) ·

α

α2

...
αs

. (11)

If so, output 1, otherwise output 0.

3.4. Correctness

The correctness of the protocol is given as follows. (10) implies ~µµµT ||σ = ~vvvT ·
(M ||~σσσ), hence ~µµµT = ~vvvT ·M and σ = ~vvvT · ~σσσ. According to (9), we know that

σ = ~vvv
T
·

M ·

α1

α2

...
αs

+

k1
k2
...
kn

=
(

~vvv
T
·M

)

·

α1

α2

...
αs

+ ~vvv
T
·

k1
k2
...
kn

= (µ1, µ2, · · · , µs) ·

α1

α2

...
αs

+ (v1, v2, · · · , vn) ·

k1
k2
...
kn

,

which means that (11) holds, given that the prover and the verifier behave
according to the POR protocol.

3.5. Security

Here, we show that the HLA scheme 1 from the s/q-ASU2 of Construction 4 is
unforgeable in an information-theoretic sense. The POR scheme with the HLA
scheme (see Subsection 3.2) is unforgeable too.

Theorem 1 The HLA scheme 1 from the s/q-ASU2 of Construction 4 and
the POR scheme obtained from the HLA scheme 1 are both unforgeable with
information-theoretic security.

Proof. If the adversary gives a response for the challenge Q = {(i, vi)} that
passes the verification algorithm but is not what would have been computed by
an honest prover, then the adversary wins. We will analyze the probability that
the adversary wins.

Let

M∗ =

m11 m12 · · · m1s σ1

m21 m22 · · · m2s σ2

...
mn1 mn2 · · · mns σn

 = M ||~σσσ

348 S. LIU, K. CHEN

be the stored file M together with block signatures ~σσσ = (σ1, σ2, · · · , σn)
T , issued

by the challenger.
Suppose the challenge Q = {(i, vi) | i ∈ I} determines the query vector

~vvv = (v1, v2, · · · , vn)T with vi = 0 for i /∈ I.
Let (µ1, µ2, · · · , µs, σ) be the expected response from an honest prover, i.e.,

(µ1, µ2, · · · , µs, σ) = ~vvv
T
·M

∗ = (v1, v2, · · · , vn) ·

m11 m12 · · · m1s σ1

m21 m22 · · · m2s σ2

...
mn1 mn2 · · · mns σn

,

(12)

where

σ1

σ2

...
σn

= M ·

α1

α2

...
αs

+

k1
k2
...
kn

. (13)

It follows that σ =
∑

i∈I viki +
∑s

j=1
αjµj . Hence this is exactly an s/q-ASU2

with (α, k1, k2, · · · , kn) as the hash index, i.e., the authentication key for the
corresponding authentication code.

Let (µ̃1, µ̃2, · · · , µ̃s, σ̃) be the adversary’s forgery that passes the verification.
Then we have

σ̃ =
∑

i∈I

viki +

s∑

j=1

αj µ̃j . (14)

Let ∆σ = σ̃ − σ and ∆µj = µ̃j − µj , we have that

∆σ = (∆µ1,∆µ2, · · · ,∆µn) ·

α1

α2

...
αs

 . (15)

Since (µ̃1, µ̃2, · · · , µ̃s, σ̃) 6= (µ1, µ2, · · · , µs, σ), it follows that there exists at
least one j such that µj 6= µ̃j , indicating that (∆µ1,∆µ2, · · · ,∆µn) is a matrix
of rank 1.

According to Lemma 1 and the properties of s/q-ASU2, among the q possible
choices of (α, k1, k2, · · · , kn) satisfying (13), at most s choices also satisfy (15).

Due to the randomness of (α, k1, k2, · · · , kn), we know that the probability
that the adversary forges a valid response (µ̃1, µ̃2, · · · , µ̃s, σ̃) is s/q.

As to the POR scheme constructed from the HLA scheme, the auditing pro-
cess may involve many executions of the interactive protocol between Prover P ′

Homomorphic linear authentication from ǫ-ASU2 for proofs of retrievability 349

(played by the adversary) and Verifier V (who will call b← LinVer(sk,~vvv, (µ′, σ′))
for each execution).

The first execution of the interactive protocol with failure verification will
eliminate s choices from the total of q choices. Hence, the adversary succeeds in
forgery during the second execution of the interactive protocol with probability
s/(q − s).

Similarly the adversary’s success probability during k + 1-th execution is at
most s/(q − ks).

Suppose that there are totally qe executions, and the adversary’s success
probability in POR is at most

1− (1− s

q
) · (1− s

q − s
) · · · (1− s

q − (qe − 1)s
) ≈ qes

q − qes
.

Here q is the size of the finite field, which is exponential to the security pa-
rameter λ, and qe is the number of of interactions between Prover P ′ and Verifier
V, which is polynomial to λ. Obviously, the probability qes

q−qes
is negligible.

3.6. HLA Scheme 2 from the 1

q
-ASU2 of Construction 3

Similarly, the 1

q
-ASU2 of Construction 3 results in another HLA scheme, namely,

HLA scheme 2. HLA scheme 2 is obtained with the following modifications in
HLA scheme 1 in Subsection 3.3.

• Kg(1λ) is modified to output (α1, α2, · · · , αs, k1, k2, · · · , kn), with αi ran-
domly chosen from GF (q) for i = 1, 2, . . . , s. The local storage of clients
is (n+ s)⌈log2 q⌉ bits.

• The vector (α, α2, · · · , αs)T in (9) and (11) should be replaced by (α1, α2,
· · · , αs)

T .

3.7. HLA schemes with computational security

As to the HLA scheme 1 from Construction 4, if the authentication key is
generated by a Pseudo-Random Function (PRF) f : {0, 1}∗ ×GF (q)→ GF (q),
the local storage of clients can be reduced. But the price is that the information-
theoretic security is reduced to computational security. With the following
modifications, HLA scheme 1 with information-theoretic security is transformed
into HLA scheme 1’ with computational security.

• Kg(1λ): Randomly choose α, kprf ∈ GF (q). Return (α, kprf).
• The authentication keys (k1, k2, · · · , kn) used in (9) and (11) are computed

by ki ← fkprf
(i) for i = 1, 2, · · · , n.

This reduces the local storage of clients of HLA Scheme 1 from (n+1)⌈log2 q⌉
bits to 2⌈log2 q⌉ bits.

350 S. LIU, K. CHEN

Scheme Local storage(bits) I.T.S. C.S.

HLA scheme 1 (n+ 1)⌈log2 q⌉
√ √

HLA scheme 2 (n+ s)⌈log2 q⌉
√ √

HLA scheme 1’ 2⌈log2 q⌉ × √

HLA scheme 2’ (s+ 1)⌈log2 q⌉ × √

Table 1: Comparison of the SW scheme and ours.

The above modifications apply to HLA scheme 2 to result in HLA scheme
2’ with computational security. And the local storage of clients is reduced to
(s+ 1)⌈log2 q⌉ bits.

Note that HLA scheme 2’ is exactly the HLA scheme used in the SW scheme
(see Shacham and Waters, 2008).

The comparison of HLA schemes is given in Table 1, where I.T.S. denotes
Information-Theoretic Security and C.S. denotes Computational Security.

4. Conclusion

The essence of the POR scheme is an authentication scheme, which ensures that
the storage server succeeds in cheating any client by forging a valid response
without the client’s data at hand with negligible probability. If an HLA scheme
gives homomorphic verifiable tags, the server is able to give aggregated re-
sponses, thus reducing the computational and communication complexity. This
paper exploits the application of some ǫ-ASU2 to HLA scheme in POR. We
give two constructions of ǫ-ASU2, one being 1/q-ASU2 and the other s/q-ASU2.
Both of the two ASU2 give homomorphic linear authenticator schemes with
information-theoretic security, where the s/q-ASU2 results in a shorter authen-
tication key than the 1/q-ASU2. To further reduce the local storage of au-
thentication key, a Pseudo-Random Function(PRF) can be applied to generate
authentication keys. But the HLA schemes from ASU2s turn out to be com-
putationally secure. The HLA scheme constructed from the 1/q-ASU2 and a
PRF turns out to be the SW scheme (see Shacham and Waters, 2008), the local
storage of clients being O(s). The HLA scheme constructed from the s/q-ASU2

and a PRF needs local storage O(1). Both schemes enjoy shortest responses
from the server. Our future work will explore the HLA constructions to deal
with adaptive adversaries.

5. References

Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Pe-
terson, Z. and Song, D. (2007) Provable data possession at untrusted
stores. In: De Capitani di Vimercati, S., Syverson, P., eds., CCS ’07 Pro-

Homomorphic linear authentication from ǫ-ASU2 for proofs of retrievability 351

ceedings of the 14th ACM Conference on Computer and Communications
Security, ACM Press, New York, 598-609.

Carter, J.L. and Wegman, M.N. (1979) Universal classes of hash functions.
Journal of Computer and System Sciences 18(2), 143-154.

Deswarte, Y., Quisquater, J.-J. and Sal̈dane, A. (2004) Remote inte-
grity checking. In: S. Jajodia, L. Strous, eds., Proceedings of IICIS 2003,
IFIP140, 1-11. Kluwer Academic, Dordrecht.

den Boer, B. (1993) A simple and key-economical unconditional authentica-
tion scheme. Journal of Computer Security 2(1), 65-71.

Dodis, Y., Vadhan S. and Wichs, D. (2009) Proofs of retrievability via har-
dness amplification. Theory of Cryptography, LNCS 5444, 109-127.

Filho, D. and Barreto, P. (2006) Demonstrating data possession and un-
cheatable data transfer. Cryptology ePrint Archive, Report 2006/150,
http://eprint.iacr.org/

Gilbert, E., MacWilliams, F.J. and Sloane, N. (1974) Codes which de-
tect deception. The Bell System Technical Journal 53(3), 405-424.

Juels, A. and Kaliski, B. (2007) PORs: proofs of retrievability for large
files. In: De Capitani di Vimercati, S., Syverson, P. , eds., Proceedings of
CCS 2007. ACM Press, New York, 584-597.

Naor, M. and Rothblum, G. (2005) The complexity of online memory check-
ing. In: E. Tardos, ed., Proceedings of FOCS 2005. IEEE Computer
Society, Los Alamitos, 573-584.

Schwarz, T. and Miller, E. (2006) Store, forget, and check: Using alge-
braic signatures to check remotely administered storage. In: M. Ahamad,
L. Rodrigues, eds., Proceedings of ICDCS 2006. IEEE Computer Society,
Los Alamitos, 12-12.

Shacham, H. and Waters, B. (2008) Compact proofs of retrievability. In:
Proceedings of Asiacrypt 2008, LNCS 5350, Springer-Verlag, 90-107.

Sommons, G.J. (1984) Authentication theory/coding theory. Advances in
Cryptology, Proc. Crypto’84, LNCS 196, Springer-Verlag, New York,
411-431.

Sommons, G.J. (1992) A game theory model of digital message Authentica-
tion. Congr. Numer. 34, 413-424.

Stinson, D.R. (1992) Universal hashing and authentication codes. Advances
in Cryptology-CRYPTO’91, LNCS 576, 74-85.

Stinson, D.R. (1994) Combinatorial techniques for universal hashing. Jour-
nal of Computer and System Sciences 48(2), 337-346.

Stinson, D.R. (1994) Universal hashing and authentication codes. Designs,
Codes and Cryptography 4(4), 369-380.

Wegman, M.N. and Carter, J.L. (1998) New hash functions and their use
in authentication and set equality. J. Computer and System Sci. 22,
265-279.

