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Abstract: The control of a planar elbow manipulator driven by
a squirrel-cage induction motor using sliding mode control (SMC)
is presented in this paper. The modeling of the manipulator me-
chanical coupling as a load applied to the induction motor shaft is
developed. This has direct influence on both dq currents, which are
chosen as the sliding manifold instead of controlling both mechanical
and electrical parts as individual processes like most industrial ma-
nipulators do. Conventional proportional-integral (PI) controllers
are used for each loop, implying easy design procedure and imple-
mentation with low computational effort. The system can then be
implemented by using a digital signal processor (DSP) and applied in
industrial environments. Simulation and experimental results on a
real manipulator are shown to validate the proposed control scheme.
The results show that there is low steady-state error for the manip-
ulator position.

Keywords: sliding mode control, induction motor drives, ma-
nipulators, digital signal processor, PI controllers.

1. Introduction

Most robots use direct current (DC) or permanent magnet synchronous motors,
making the manipulator’s maintenance more expensive compared to the induc-
tion motor counterparts, due to the relatively high cost of the rare-earth magnets
used in permanent magnet synchronous machines (Jussi, 2006) or complexity
of the DC motor. This is the main reason for replacing them with squirrel-cage
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induction motors whenever possible. In this case, Sliding Mode Control (SMC)
becomes a nonlinear approach to control induction motors at high performance.

Since DC motors require maintenance more often than their AC counter-
parts, the adoption of induction motors is of great interest. However, many
applications are dominated by DC drives and do not present good performance
when using induction motor drives with constant volt/hertz (v/f) scheme. In
order to overcome such problem, vector control has been used for the last two
decades in the control of AC motors (Novotny and Lipo, 1996; Trzynadlowski,
1982; Blaschke, 1971; Casadei, 2002).

The complexity related to field orientation on manipulators comes from
the plant modeling for application of adaptive control (Camara et al., 2003).
It also concerns the nonlinear mechanical coupling between links (Spong and
Vidyasagar, 2004), which is the specific scope of this work. Hence to ensure
good dynamic performance, various robust control strategies for induction mo-
tor drives have been reported in literature (Gadoue, Giaouris and Finch, 2009;
Szabat, Orlowska-Kowalska and Dybkowski, 2009). One particular scheme has
drawn special attention of researchers i.e. SMC, mainly due to simple design
procedure, fast dynamic response, easy implementation, and good robustness in
face of parameter variations and also load disturbances (Shiau and Lin, 2001;
Chan and Wang, 1996), thus showing improved performance over the vector con-
trol scheme (Eber et al., 2010a). However, all of the aforementioned schemes
have only been used to control a stand-alone induction motor.

The main complexity regarding the control of robot manipulators lies in
determining the time history of joint inputs required to cause the end effector
to execute a commanded motion. The joint inputs could be joint forces and
torques, or they could be inputs to the actuators, as in the case of induction
motors. Therefore, one must develop a control scheme able to compensate
the mechanical coupling influence on joints and consider this in the control
action. There are many applications that use induction motors nowadays, e.g.
elevators (Osama and Abdul-Azim, 2008) robots and servo drives (Huh and Bien
2007; Lin, Huang and Chou, 2007; Kumar, Gupta and Bhangale, 2009), where
fast control over the torque and position of the motor is mandatory. However,
reports on manipulators with two or more degrees of freedom (DOF) using
induction motors are basically restricted to simulation results only (Casadei et
al., 2002; Camara et al., 2003; Gadoue et al., 2009). Within context, this paper
proposes a simplified control of an elbow planar manipulator using squirrel-cage
induction motors by modeling the disturbance load and developing an SMC
scheme for current tracking to compensate the mechanical coupling. For this
purpose, the mechanical coupling has been determined for the specific case of the
manipulator and then interpreted as a mechanical load at the induction motor
shaft in the system modeling. A conventional PI controller was used for position
and speed loop using modified Ziegler-Nichols method for tuning (Astrom et
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al., 1995). DSP TMS320F2812 is used in the experimental evaluation, thus
enabling enhanced performance of the real-time algorithm and cost-effective
design of intelligent controllers for induction motors. This implementation has
also shown improved results if compared to the same case study using vector
control in an induction motor drive (Diniz et al., 2010b).

2. Dynamic modeling of the induction motor

The block diagram of the indirect field-oriented induction motor drive is shown
in Fig. 1. The arrangement consists of an induction servo motor; a current ramp
for comparison to drive the Space Vector Pulse Width Modulation (SVPWM)
inverter, which has better performance than hysteresis based inverter (Holtz,
1994); a field orientation mechanism; a coordinate translator; an inner speed
control loop; and an outer position control loop.

Figure 1. Block diagram representing field-oriented induction motor drive

The state equations of the induction motor in the synchronously rotating
reference frame, considered here, can be described by the following relations
(Bose, Knoxville, 2001):
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Te =
3PLm

4Lr

(iqsλdr − idsλqr) (2)

where:

Te - electromagnetic torque;
Rs - stator resistance per phase;
Ls - stator magnetizing inductance per phase;
Rr - rotor resistance per phase referred to the stator;
Lr - rotor magnetizing inductance per phase referred to the stator;
Lm - magnetizing inductance per phase;
P - number of poles;
ωe - electrical angular speed;
ωr - slip angular speed;
vds - d-axis stator voltage;
vqs - q-axis stator voltage;
ids - d-axis stator current;
iqs - q-axis stator current.

and

σ = 1−
L2
m

LsLr

;

λqr = Lmiqs + Lridr;

λdr = Lmids + Lriqr.

In an ideal field-orientated induction motor, decoupling between d and q-axis
can be achieved, while the total rotor flux linkage is forced to align with the
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d-axis (Novotny and Lipo, 1996). Accordingly, the flux linkage and its derivative
in the q-axis are set to zero as:

λqr = 0 and
dλqr

dt
= 0. (3)

The rotor flux linkage can be found from the third row in (1) and by using
(3) as:

λdr =
Lmids

1 + sLr

Rr

(4)

Compared with the time constant of the mechanical system, the time con-
stant in (4) is assumed to be negligible and ids is constant ( ids = i∗ds ) for the
desired constant rated rotor flux. Then, expression (4) becomes:

λdr = Lmi∗ds. (5)

From (3) and (5), the torque (2) is simplified to:

Te =
3PL2

m

4Lr

i∗dsi
∗

qs, (6)

where i∗qs denotes the torque current command generated from the torque con-
troller Gc(s). When using indirect field orientation, the slip angular speed is
necessary to calculate the unit vector for coordinate translation. By employ-
ing the fourth row of (1) and also (3), the slip angular frequency ωsl can be
estimated as:

ωsl =
LmRrI

∗

qs

Lrλdr

=
Rri

∗

qs

Lri∗ds
. (7)

The generated torque, rotor speed ωr , and rotor angular position θr are related
by:

ωr = sθr =
1/J

s+ (B/J)
[Te(s)− TL(s)] (8)

where:
B - viscous damping frequency;

J - inertia constant;

TL - load torque applied to the shaft.

The main problem when vector control algorithms are implemented in DSPs
lies in the conversion of the current command represented in (5) and (6) into
voltage command (Novotny and Lipo, 1996). To accomplish this task, it is
necessary to decouple the voltage equation enabling independent control of the
two stator current components in dq0 frame (Trzynadlowski, 1982).
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This procedure is detailed in Chan and Wang (1996), giving:

veqs = (rs + L
′

ss)i
e
qs + ωeLsi

e
ds (9)

veds = rsi
e
ds − ωeL

′

si
e
qs (10)

where:

L
′

s = Ls −
L2
m

Lr

(11)

while the superscript e refers to the electrical reference.

3. Modeling the nonlinear mechanical coupling as a dis-

turbance

For applications that do not involve very fast motion, especially in robots with
large gear reduction among the actuators and the links, the independent position
control for each joint works satisfactorily.

For the following discussion, let us assume for simplicity that:

qk = θsk = rθmk (12)

where:

θsk - shaft angular position;

rθmk - link angular position with r being the gear ratio.
Then the motion equations for the manipulator, known as Euler-Lagrange

equations, can be written as (Spong and Vidyasagar, 2004):

n
∑

j=1

dkj(q)q̈j +
n
∑

i,j=1

cikj(q)q̇iq̇j + gk(q) = τk, k = 1, . . . , n (13)

where τk is the torque for link k. Equation (13) represents nonlinear inertial,
centripetal, Coriolis, and gravitational coupling effects due to the motion of
the manipulator. For the manipulator shown in Fig. 2, only the second and
third joints are of interest, represented by systems O1X1Y1Z1 and O2X2Y2Z2,
respectively, because the first one is not affected by coupling effects (Spong and
Vidyasagar, 2004).

For a situation where the generalized coordinates are not the joint variables,
one must consider a different calculation for the Lagrangian equations (Spong
and Vidyasagar, 2004). In the case of the proposed study, one must choose the
generalized coordinates as shown in Fig. 3 because angle θ2 is determined by
driving the motor of the second DOF, which is not affected by angle θ1.

The dynamical equations for this configuration, according to Fig. 3, show
that some simplifications are necessary. The following expression then results
(Spong and Vidyasagar, 2004):
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Figure 2. 3-DOF manipulator driven by squirrel-cage induction motors

Figure 3. Generalized coordinates for the robot represented in Fig. 2
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vc1 =





−lc1 sin θ1 0
lc1 cos θ1 0

0 0





[
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(14)

vc2 =





l1 sin θ1 −lc2 sin θ2
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0 0





[

θ̇1
θ̇2

]

where:
lcn - center of mass for link n;
ln - link size;
k - unit vector in z direction;
vci - center of mass speed for link i.

The inertial D(θ) matrix is given by:

[

m1l
2
c1 +m2l

2
1 +m1lc1 m1l1lc2 cos(theta2 − theta1)

m2l1lc2 cos(θ2 − θ1) m2l
2
c2 +m2lc2

]

(15)

while the Christoffel symbols are defined by (Spong and Vidyasagar, 2004):

cijk =
1

2

{

∂djk
∂qi

+
∂dki
∂qi

−
∂dij
∂qk

}

. (16)

From expression (16) and considering only the last two DOFs, six coefficients
can be obtained:
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(17)

The potential energy of the manipulator P in terms of θ1 and θ2 is:

P = m1glc1 sin θ1 +m2g(l1 sin θ1 + lc2 sin θ2) (18)

and the gravitational forces are:

g1 = (m1lc1 +m2l1)g cos θ1 (19)

g1 = m2lc2g cos θ2. (20)

Finally, the dynamic equations are:

d11θ̈1 + d12θ̈2 + c221θ̇2
2
+ g1 = τL1 (21)

d21θ̈1 + d22θ̈2 + c112θ̇1
2
+ g2 = τL2. (22)
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4. Sliding mode current control design

The main difficulty in the control of induction motor drives comes from the
multiplicative nonlinearity of the developed electromagnetic torque. However,
if the current control problem is overcome, speed and position regulation can
be easily achieved by outer-loop controllers. For this purpose, the SMC scheme
is first applied to the inner-loop current control.

From the SMC point of view, the system trajectories must be required to
approach the specified manifold form to any initial state in the state plane. Then
the system behavior is governed by the dynamics of the manifold in which the
system trajectories remain. Using a proportional controller for position control
and a PI for speed control (Shiau and Lin, 2001), as presented in Fig. 4, the
reference electromagnetic torque can be described by:

Figure 4. Single induction motor position drive using SMC

ω∗

r (t) = Kp1 [θref (t)− θm(t)] (23)

T ∗ = Kp2(ω
∗

r − ωr) +Ki2(ω
∗

r − ωr) = (24)

PKp2kT
J

iqsTLλdr −

(

Kp2 −Kp1

P
+Ki2

)

ωr −

Kp1Ki2θm +
PKp2

J
TL +Kp1

Kp2θref +Kp1Ki2θref

where:

kT =
3P

4

Lm

Lr

. (25)

The load torque given in (25) can be replaced by the dynamic equations
of both links for joint control i.e. (21) and (22). Also, by using (1) and (7),
a twelfth-order state variable dynamic equation for the whole system can be
obtained, as seen in Fig. 5.

The torque command is influenced by both quadrature and direct stator
currents, according to (4) and (9). It is then reasonable to adopt such currents
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Figure 5. 2-DOF manipulator with induction motor position drive using SMC

as the sliding manifold for the proposed study. The switching function vector
for the 2- DOF robot is defined as:

s =









s1
s2
s3
s4









=









ids1 − i∗ds1
iqs1 − i∗qs1
ids2 − i∗ds2
iqs2 − i∗qs2









. (26)

From Spong and Vidyasagar (2004), it can be established that the sliding
manifold s = 0 is globally attractive and an invariant set. The symbol “*"
denotes the reference signal, while it is the direct current of the i-th DOF and
the quadrature current of the i-th DOF in dq0 reference frame. Keeping the
rotoric flux at a constant rate, and using equations (5) and (9), the reference
signals are given by:
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By using expressions (1), (21), (22), (25), (26), and (27), this gives:
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Based on Gao’s reaching law design method (Gao and Hung, 1993), a control
law for the inner-loop sliding-mode current tracking is proposed as follows:
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where:

L1 = |b11(d11θ̈max1 + d12θ̈max2 + c221θ̇
2
max2 + g1)| (31)

L2 = |b12(d21θ̈max1 + d22θ̈max2 + c112θ̇
2
max2 + g1)| (32)

aij denotes the estimation of aij and q1 > |â11 − a11| , q2 > |â21 − a21| ,

q3 > |â12 − a12| , q4 > |â22 − a22| , k1 > 0 , k2 > 0 , k3 > 0, k4 > 0, θ̈maxi and
θ̇2maxi are the restrictions for joint acceleration and speed, respectively. With
this control law, the sliding manifold s = 0 is satisfied. It is important to
notice that the derivation of equation (30) comes directly from equations (21)
and (22). It ensures that the dynamic behavior of manipulator’s torque in each
DOF influences the calculation of current commands in the control law stated
by equation (30).

The proof of the aforementioned statement is given as follows. Let us con-
sider a scalar Lyapunov function candidate as:

V (s) =
1

2
sT s =

1

2
(s21 + s22 + s23 + s24). (33)

The derivative of V (s) with the system trajectories based on (33) is given
by:

V̇ (s) = s1(a11 − â11)− s1q1sgn(s1)− k1s
2
1 + (34)

s2(a21 − â21)− s2b11TL1 − s2
[

(q2 − L1)sgn(s2)− k2s
2
2

]

+

s3(a12 − â12)− s3q3sgn(s3)− k3s
2
3 + s4(a22 − â22)−

s4b21TL2 − s4
[

(q4 − L2)sgn(s4)− k4s
2
4

]

≤

|s1||a11 − â11| − |s1|q1 − k1s
2
1 + |s2||a21 − â21| − |s2|q2 − k2s

2
2 +

|s3||a12 − â12| − |s3|q3 − k3s
2
3 + |s4||a22 − â22| − |s4|q4 − k4s

2
4

= −|s1|(q1 − |a11 − â11| − |s2|(q2 − |a12 − â12|)−

|s3|(q3 − |a21 − â21|)− |s4|(q4 − |a22 − â22|)−

(k1s
2
1 + k2s

2
2 + k3s

2
3 + k4s

2
4).

For the aforementioned conditions, a negative derivative results. Therefore,
the system trajectories are guaranteed to approach the sliding manifold from
any initial state in the state plan (Gao and Hung, 1993). When the system
is far from the sliding manifold, this inequality shows that V̇ (s) is dominated
by −(k1s

2
1 + k2s

2
2 + k3s

2
3 + k4s

2
4) , because s2i represents the difference between

currents, and therefore increments in ki values cause the reaching time to be
reduced. On the other hand, V̇ (s) is dominated by −|s1|(q1 − |a11 − â11|) −
|s2|(q2−|a12− â12|)−|s3|(q3−|a21− â21|)−|s4|(q4−|a22− â22|) when the current
trajectories are close to the sliding manifold, and small values of (qi−|aij− âij |)
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Table 1. Motor parameters

Parameters Value

Rated power 0.25 HP
Rated speed 1725 rpm

Rated voltage 220 V
Rated current 1.26 A

Number of poles 4
Rotor resistance referred to the stator 87.44 Ω

Stator resistance 35.58 Ω
Rotor inductance referred to the stator 0.16 H

Stator inductance 0.16 H
Mutual inductance 0.884 H

Inertia moment 5 · 10−4 kg ·m2

Viscous friction coefficient 5.65 · 10−3 kg ·m2/s

Table 2. Manipulator parameters

Parameters Value

Link II mass 12.45 kg
Link II size 53 cm

Link II distance from center of mass 14.9 cm
Link II moment of inertia 0.43 kg ·m2

Link II rotation angle 225o

Link III mass 5.5 kg
Link III size 37.5 cm

Link III distance from center of mass 10.6 cm
Link III moment of inertia 0.28 kg ·m2

Link III rotation angle 300o

reduce the chattering. As aij and âij are defined by system parameters and their
values do not differ so much from each other, chattering is basically only driven
by qi values.

5. Experimental results

Experimental results on the elbow planar manipulator shown in Fig. 12 are
presented giving a low error at steady-state for manipulator position. The in-
duction servo motor used in the drive system is a three-phase deltaconnected,
squirrel-cage machine, whose parameters are given in Table 1. The manipulator
parameters are shown in Table 2.

In the SMC scheme, the main goal of the proposed controller is fast settling
time instead of reduced chattering. The values used for the SMC algorithm
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are: k1 = 8500, k2 = 5500, k3 = 4500, k4 = 1500, q1 = 300, q2 = 300,
q3 = 300 and q4 = 300. For the position proportional controller and speed
PI controller, the calculated parameters observing the desired Nyquist points
mentioned in Diniz et al. (2010b) are Kp11 = 10.3, Kp21 = 15.5, Ki21 =
5.7 and Kp12 = 7.3, Kp22 = 40.3, Ki22 = 40.0. The SMC algorithm was
implemented on a DSP TMS320F2812 from Texas Instrumentsr with sample
frequency of 2.5 kHz. A DC-AC converter with bootstrap was implemented
using SVPWM, with switching frequency of 7.5 kHz. The drive signals for
the converter switches are obtained from the DSP. Data was acquired using NI
USB- 6009 Data Acquisitionr from Nationalr, and later plotted using Scilabr.
Fig. 6 and 9 show the link’s angular position for the second and third DOFs,
respectively. The steady-state errors obtained for position control are 1.3% and
0.6%, being lower than those obtained with vector control algorithm applied to
the same manipulator (2.1% and 1.1%, respectively, (Diniz et al., 2010b), as
more robust position tracking results in this case.

The q-axis current errors, which are part of the sliding manifold described in
equation (26) and represent the machine torque variation, are shown in Figs. 7
and 10. It is worth mentioning that, for the second DOF, the induction motor
must drive a reductor and also has the highest load considering all the involved
DOFs, consequently leading to high power levels. This can be clearly seen
in Fig. 7, where the quadrature current error, which represents the machine
torque according to equation (6), is higher for the second link. As the third
link has almost no load, the induction motor quadrature current for this DOF
is lower than the second DOF counterpart, as seen in Fig. 10. Then a change in
quadrature current has greater effect on the direct current waveform depicted
in Fig. 8, if compared to the result for the motor in the second link. Since
the direct current is driven to a constant value for low speeds, it leads to a
major increase in the load, and consequently in the quadrature current. On
the other hand, the direct current in the third link is not significantly affected,
as shown in Fig. 8. Finally, it is important to state that all currents varied
around the sliding manifold s = 0 with the chattering controlled by the terms
(qi − |a)ij − âij |) in equation (35), as in Figs. 7, 8, 10, and 11. If compared to
the same scheme using vector control to drive the induction motors (Diniz et
al., 2010b), it becomes evident that the proposed SMC approach has provided
improved performance.

6. Conclusion

This paper has successfully demonstrated the application of a sliding mode
current control scheme for an elbow manipulator joint control based on the
nonlinear model of induction motors. Parameters for the position and speed
controllers such as the manipulator’s mechanical coupling are taken into account
in the SMC control, offering an intuitive design and implementation with low
complexity for practical interest. This allows for tracking the desired trajectory
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reference for the motor link coordinates under the assumption that manipula-
tor’s mechanical coupling can be modeled and interpreted as a load on the in-
duction motor shaft, thus having direct influence on both direct and quadrature
currents. This approach has provided improved results considering the position
tracking reference, if compared to the vector control scheme, which has not been
implemented considering the mechanical coupling. The SMC algorithm was im-
plemented on a DSP due to low computational effort, enabling its application
in industrial environment. The results give low error at steady-state for the
manipulator position. The provided simulation and experimental results on the
implemented manipulator have then validated the proposed control system.

Figure 6. Experimental results of angular position for the 2nd DOF

Figure 7. Experimental results of induction motor quadrature current error for
the 2nd DOF
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Figure 8. Experimental results of induction motor direct current error for the
2nd DOF

Figure 9. Experimental results of angular position of 3rd DOF

Figure 10. Experimental results of induction motor quadrature current error
for the 3rd DOF
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Figure 11. Experimental results of induction motor direct current error for 3rd
DOF

Figure 12. Three-link manipulator driven by induction motors
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