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Abstract: We study performance of several conditional variance
estimators for an autoregressive time series which include local linear
smoothers with various bandwidths, local likelihood and difference-
based estimators. In the theoretical part, asymptotic normality of
the local linear estimator of variance with no mixing assumptions
imposed on the underlying process is proved. Moreover, numerical
examples performed reveal that a two-stage local linear smoother
with a bandwidth, proposed by Ruppert, Sheather and Wand, used
to estimate the regression function and a simple rule of thumb band-
width for variance estimation performs best for variances without
much structure, whereas the bandwidth considered by Fan and Yao
works very well for much more variable variances.
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1. Introduction

We focus here on the following real valued time series (X;):ez satisfying

Xt+1 = ’I’I’L(Xt) + U(Xt)€t+1, te Z, (1)

where m(-) and o(-) are some real functions, (g¢)¢cz is an iid sequence such that
E(et) = 0 and Var(e;) = 1 and &1 is independent of the history JF; of the
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process up to time t, 7y = o(..., X_1, Xo,...,X¢). Such a time series is called
autoregressive; in the case when m is not an affine function, it is described as a
nonlinear autoregression. Note that (X;):cz is a Markov process of order 1. A
general autoregressive case involves in equation (1) m(Xy, X¢—1,..., Xi—p) and
o(X¢, Xi—1,...,Xit—q) for some p,q € N. The conditions under which it has a
stationary limiting distribution have been extensively studied, for a discussion
see e.g. Ango Nze (1992), Diaconis and Freedman (1999), conditions A1-A5 in
Hérdle and Tsybakov (1997), and Section 2 in Neumann and Kreiss (1998). We
refer also to Lu and Jiang (2001) for multivariate extensions and the references
there. Throughout the paper we assume that (X;);ez is strictly stationary and
its sample path X, Xo,..., X, is given. Note that assumption of stationarity
amounts to assuming that X is generated according to the limiting stationary
distribution. We assume that (X;):cz is a causal process i.e. it can be repre-
sented as a transformation of a Bernoulli shift n, = (... ,e1—1,&¢): Xe = J(ne)
for a certain measurable J. We refer to Wu (2005) for a general discussion of
causal processes. An intensively studied special case of (1) is the autoregressive
process with ARCH(1) errors for which o?(x) = ¢o + b1z%, ¢o >0, by > 0.
For m(z) = 0 condition b1 < 1 implies strict stationarity.

It follows from equation (1) that E(X;1|X:) = m(X:) i.e. m(-) is the
regression of X, given X, and

Var(Xe11]X:) = B((Xe1 — E(Xe41|X0))?X0) = E((Xe1 — m(X0))?[Xy) = 07 (Xe),

provided marginal distribution of X; has a finite second moment. Thus, o2(-)
coincides with the conditional variance function of X1 given X;.

In the paper we discuss estimation of the conditional variance function o2(-).
This is often of independent interest from estimation of the regression, especially
when one would like to assess heteroscedasticity of the considered dependence
structure or evaluate volatility or risk. Frequently, the conditional variance is
used to evaluate some related characteristics of the conditional distribution, as
e.g. in Value at Risk (VaR) estimation (see, e.g., McNeil et al., 2005). Some pre-
liminary estimates of variance are also needed to construct variance stabilizing
transformation or weighted regression estimators. In image analysis algorithms
for noise reduction, segmentation and clustering are based on variance estima-
tion (see e.g. Sijbers et al. (2007)).

Let us also note that (1) can be considered as a discrete time approximation
of a diffusion process when drift and diffusion functions are time invariant.
Indeed, the Euler approximation with step A to a process (X¢)ter such that
dX; = p(Xy)dt 4+ o(X)dWy, with Wy being the Wiener process, is

Xira = Xia + (Xin)A + \/ZU(XiA)e(H-l)A, 1 €Z, (2)

where €(;41)a ~ N(0,1) and is independent of X;a, so that (2) corresponds to
an obvious modification of (1). Thus, reliable estimation of o(-) is important in
this context (see Fan, 2005).
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We also consider random design regression model such that the underlying
regression function and the conditional variance function are the same as in (1)
i.e. a bivariate sequence (X¢,Y;),t € Z consisting of independent and identically
distributed random pairs such that

Y; = m(Xt) + U(Xt)8t+1, t e Z, (3)

where (g;) satisfies conditions stated above. It is easy to see that indeed
E(Y;|X;) = m(X;) and Var(Y;|X;) = 0%(X;). Models (1) and (3) will be
denoted M7 and Ms, respectively.

In model My, marginal density depends in a complex way on the regression
and the conditional variance function. This makes data generation in M with
the same marginal density as in M infeasible. Thus, in order to investigate
how dependence of autoregression process influences performance of variance
estimators we compared their performance in model M7 and in a modified
model Ms. Namely, we modified (3) in the following way. For a given sample

path of autoregressive stationary process (1) X7 = z1,..., X, = x, we consider
Y =m(zy) +o(x)er, t=1,2,...,n, (4)
where €7,...,¢} are independent copies of ;. Thus, given the values X; =

X1y.ony Xy = Ty, Y75, ..., Y, are conditionally independent. Model (4) will be
called M3. Fig. 1 shows the difference between data generation in models
M and M3. The difference between models Moy and Msj is that in the latter
model the predictors for different observations are not independent. However,
they have the same distribution as in Ms and Mj. Note also that, due to the
construction, (Y7*,...,Y* ;) and (Xa,...,X,,) are responses pertaining to the
same regression, conditional variance and values of predictors.

15 & 1>
X; -2 X, -2 X,
l l l
* * *
; Y; . Y

Figure 1: Data generation in models My and M3

In all considered setups we do not assume any prior knowledge of the pa-
rameters of the models: m(-), o(-) and the marginal distribution of X;, and
thus we adopt a nonparametric approach in order to estimate o(-). We prove
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asymptotic normality of a local linear smoother of the variance without im-
posing hard-to-verify mixing assumptions on the underlying process (X;). Our
assumptions on dependence of (X;) boil down to the conditions that a condi-
tional density of X;11 given X} is a Lipschitz function and (X}) is geometrically
moment contracting (see Section 3 for definition). Easily verifiable conditions
for the last property exist. Moreover, we investigate how conditional variance
estimators designed for the random design setup Mo perform for the autore-
gressive model M;. Apart from scattered examples there is no in-depth study
addressing this issue. In particular, no clear picture is available on comparison
of their performance. In order to fill this gap we provide, in particular, some ev-
idence that estimators with parameters chosen for the iid case indeed also work
for autoregressive case. This phenomenon named whitening by windowing prin-
ciple usually describes coincidence of asymptotic laws or the same asymptotic
behavior of some theoretical measure of performance in both cases. Here we
argue that it also holds for samples of moderate size when Empirical Integrated
Squared Error (EISE) is considered as a goodness-of-fit measure. Moreover,
we show that in considered examples a two-stage local linear smoother with a
bandwidth, proposed by Ruppert, Sheather and Wand (1995), used to estimate
the regression function and a simple rule of thumb bandwidth used to estimate
the variance performs best for variances without much structure, whereas the
bandwidth considered in Fan and Yao (1998) works very well for much more
variable variances. The simulations reveal also that the local linear estimator of
the variance works comparably to its benchmark version for which the regression
function is known.

The paper is structured as follows. In Section 2 the considered estimators of
variance function are introduced and motivated. In Section 3 we prove asymp-
totic normality of a two-stage local-linear estimator of o(-) under a new set of
conditions which do not include mixing of autoregressive process. In Section 4
we describe the performed simulation study and its results.

2. Estimators of the conditional variance function

We will briefly describe the most frequently used estimators of o2(-) in the
random design regression model Ms. Assume that the sample (X1,Y7),...,
(Xn,Ys), pertaining to a stationary solution of (3), is available.

The main idea underlying the first discussed approach to estimate o2(-) is to
view it as the regression function of (Y; —m(X;))? given X; and use one of many
available regression tools for its estimation. As m(-) is unknown, it also has to
be approximated, and thus the estimators are obtained by two-step procedure
in which appropriate estimator m is constructed first and residuals e¢; = Y; —
m(X;) are obtained. Then, the regression function (Y; — m(X;))? given X; is
estimated using squared residuals e? = (V; —m(X;))?. The differences between
the methods consist in the way the two regressions involved are estimated. Here
we discuss two main classes of estimators based on this methodology: local linear
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and log-linear approach. These are counterparts of two basic procedures of
regression estimation, namely weighted least squares and maximum likelihood,
applied to the squared residuals. Moreover, we present modified Rice estimator
based on apparently different methodology, which, as it turns out, is also based
on squared residuals from a specific regression fit. Finally, let us mention an idea
of modeling the mean and the variance functions simultaneously by penalized
likelihood method with penalization related to roughness of m and o (see Yau
and Kohn, 2003, and Yuan and Wahba, 2004).

2.1. Local linear estimator

The method applies local linear smoother on both levels: when estimating the
regression and the conditional variance function. Namely, 7 (z) = Bo(x), where
Bo(x) is defined as

n

(Bo(a), Bux)) = argming, 5, (Vi — fo — fu(X; ~ ) Kny(X; —2), (5)
i=1

where Kp(s) = h='K(s/h), K is a probability density function chosen by the
experimenter and h is a smoothing parameter (a bandwidth). Recognizing that
(5) is a weighted least squares problem with the design n x 2 matrix X consisting
of the column of 1s and the column consisting of X; —x, i=1,2,...,n, where
the n x n diagonal matrix of weights W = diag(Kp, (X1 —z), ..., Kp, (X, — 1)),
the solution can be written as

(Bo(), Br()) = (X'WX)"' X'WY

with Y = (Y1,Ys,...,Y,) and X’ denoting transposition of X. An explicit
form of Bo(ac) is given by
m(x) _ SQ(xahQ)tO(xahQ) —31(117, hQ)tl(anhQ)’ (6)
so(z, h2)s2(x, h2) — s1(x, ha)

where s;(z,h) =Y p_ (Xp — )] Kp(Xg — x) and tj(x, h) = > (X — 2) Ky
(X — 2)Y;. Many proposals of bandwidth choice for estimation of m(-) in the
homoscedastic case exist. For a choice of hy used in regression estimation we
consider here first the method proposed by Ruppert, Sheather and Wand (1995)
(whenceforth called RSW bandwidth) and implemented as dpill procedure in R
package kernsmooth.

The estimator of o%(-) is defined as the local linear smoother applied to the
transformed data (X;, €?), where

2 = (Vi —m(Xy))>. (7)

The linear smoother at the second stage uses a kernel K, possibly different from
the kernel K and a bandwidth k. As the choice of kernel does not significantly
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change the properties of the resulting estimator, we choose K = K in our
investigations. A choice of hy is based on asymptotic considerations which
imply that under appropriate conditions (see Yu and Jones, 2004)

E(&Q(x)|X1, X)) — 02(93) = %(0’2)//(.’1}) / sQK(s) ds h% + 0p(h%) (8)

and

E(e? —1)2
nhy f(z)

where f(-) is a density of distribution of X;. Note that the main terms of
asymptotic bias and variance of 62(-) are the same as if m(-) were known. This
can be easily seen by considering (Y —m(X))? as the response in the regression
model

Var(62(2)| X1, ..., X») = o' (2) / K2(s)ds + op((nh1)~Y), (9)

(Y —m(X))? = 0?(X) + o%(X)(e2 = 1) (10)

and using standard results on regression function estimation for the local linear
smoothers (see Fan and Gijbels, 1996). Note that E(c?(X)(e?2 —1)|X = z) = 0.
Thus 62 behaves asymptotically as a benchmark estimator being a local linear
smoother based on (Y; — m(X;))? = 02(X;)e? and whence it is adaptive to an
unknown regression function m. In this context it is important to remark that
Wang et al. (2008) proved that minimax rates of convergence of variance esti-
mator for fixed design model are the same for known and unknown m provided
it has at least 1/4 derivatives; see also Gendre (2008). Note also that as 5%(-) is
a local smoother, its asymptotic properties for the model (10) and fixed z are
the same as for its homoscedastic analogue with 02 = o?(z)E(e? — 1).

Assume that f is positive on a compact interval [a,b]. Then the bandwidth
h1,0pt minimizing the main term of asymptotic expansion of a weighted MISE

Eff(&Q(x) —02%(x))?f(z) dx is of the form

Ptopt = (ff[<a2>"<x>12f<x> dxm%(K))‘”Sn—us), (11)

[? o4(x) dz R(K)C.

a
where C. = E(c? — 1)?, R(K) = [ K*(s)ds and ma(K) = [s?K(s)ds. The
following plug-in estimators of hq,op¢ are considered:
(1) hf())pt is plug-in estimate obtained by fitting a third order polynomial
Z?:o ciz' to {€F}7_, in order to obtain a preliminary estimator of o*(-). We
call the estimated coefficients ¢; and use f:(zg’zo
of f; ol(s)ds and n=' Y1 (262 + 663X;)%I{X; € [a,b]} as an estimator of

éj27)? dz as an estimator
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f;[(O'Q)”(S)]Qf(S) ds. In the simulation examples we assumed that € is N(0,1)-

distributed and thus C. = 2. The resulting estimator, which uses hf(),pt at the
second stage, will be denoted 67 ; ,.

(ii) hf())pt is defined analogously, but a preliminary fit exp{Z:f=0 cir'} to {e3} is
applied in order to obtain an estimator of o2(-). The resulting estimator will be
denoted 6%, ,. This bandwidth is also used by Yu and Jones (2004) for a local
log-linear fit described below. Note that as weighted MISE

b
MISE = IE/ (62(z) — o2(x))% f(x) dz

a

is considered as a theoretical measure of performance, in simulations we used
a mean of empirical integrated squared errors (EISEs), where EISE equals to
m~t 30 (6%(Xi) = 0(X0)) I (X, ela) > With m = #H{X; € [a,b]}.

In order to gauge the effect of bandwidth choice on performance of locally
linear variance estimators we also consider two additional bandwidth propos-
als. The first one is preasymptotic substitution method used in the context of
variance estimation by Fan and Yao (1998) (whenceforth abbreviated to FY)
and introduced in Fan and Gijbels (1995). The method is used twice: first
to estimate the regression function and then the variance, using the squared
residuals from the regression fit. Authors’ open source program has been used
for the calculations (source code can be found at http://www.orfe.princeton.
edu/~jqfan/papers/pub/constband.c). The resulting estimator will be called
62 ;5. Moreover, 62 ; , will denote a k-nn local linear smoother using bandwidths
based on k(n) nearest neighbours. More specifically, both bandwidths are de-
fined as the distance from x to its k(n)th nearest neighbour, where k(n) is a
predetermined sequence of integers.

There are several papers studying similar proposals to those discussed above.
One possibility is to study kernel estimators instead of linear smoothers, this,
however, results in significantly poorer performance near the boundaries. ’Di-
rect’ estimator of o(-) is constructed by plugging local-linear estimators of the
conditional second moment and the regression into equality o%(z) = E(Y?|X =
x) — (E(Y|X = z))?; such approach is adopted e.g. in Hirdle and Tsybakov
(1997). This turns out to lead to a more biased estimator than the presented
above (see Fan and Yao, 1998, p. 649). Chen et al. (2009) estimated o(-) by
means of the linear smoother using log(r; +n~!) instead of r?. For the Euler ap-
proximation (2) Stanton (1997) used a kernel estimator relying on approximate
equality E((X(i+1)a — Xia)?/A|X;a) &~ 0?(Xia). However, this approximation
holds only for small A and in general one has to base the estimation on squared
residuals (X(;11)a — Xia — (X;a))?/A. Let us also mention that Cwik et
al. (2000) studied construction of confidence bands for integrated conditional
variance using kernel and linear smoothers with fixed and k-nn bandwidths.
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2.2. Local log-linear estimator

The estimator is based on the idea of localizing the (conditional) loglikelihood
in the case when errors are normally distributed. Observe that we have then

n L )2
—2l0g £(Y1,Ya, .., YalX1, Xayoo o, Xn) = 3 (%mga?(m) +nlog2m. (12)
i=1 oA
Omitting the constant and assuming that o?(s) behaves approximately as
exp(vo + v1(s — z)) in the neighborhood of z, we obtain the following local-
ized version of (12) introduced in Yu and Jones (2004):

> (Y= m(X0))? exp(—vo—v1 (Xi —2)) +vo+01(Xi —2) ) Ky (X —2). (13)

i=1
When the squared errors (Y; — m(X;))? are replaced by squared residuals e?
defined in (7), criterion (13) is known as pseudolikelihood. The above expression
is minimized with respect to vy and wvy. Call the resulting values 9o(z) and
91(z). Then, 62(z) := exp 9o(x). In the following m is chosen as the local linear
smoother with RSW bandwidth. The main result in Yu and Jones (2004) states
that the formula for asymptotic variance of log-linear smoother remains as in
(9) whereas the asymptotic bias has the form

E(6%(z)|X1,... X,) — 0% (x) = %(log )" (z)o?(x)ma(K) h? + op(h?).

This results in hy op as in (11) but with f:[(JQ)”(x)]zf(x) dz replaced by

b
/ [(log 0)"(2) 0% (2) f () da.

Bandwidth hq p is estimated by plug-in method analogously to (ii) in Section
2.1 ie. exp{Z?zO ciz'} is fitted to {e3} in order to obtain a preliminary esti-
mator of 02(-). We call the final variance estimator log-linear or local maximum
likelihood estimator 6% ,,;. As a technical aside consider the problem of min-
imization of (13) and note that taking derivatives with respect to vp and vy
yields

exp(—vo) = A1/As, exp(—vo) = Aa/As,

where
A1 = ZKhl (LE - Xq;),AQ = ZKhl(l’ - Xz)(x - Xi),
i=1 i=1
Az = Y K (= Xi) (@ — X)(V; — (X,))? exp(—vi (X; — 2)),
i=1

Ay = ) Kn(z—X)(Yi — m(X;))? exp(—vi (X; — ).
i=1
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Instead of minimizing (13) with respect to vg and v; one finds a zero of A, JAg—
As /A3 and then, denoting the resulting values of A; by A;, one gets 67,,;, =
Ay /Ay,

2.3. Modified Rice estimators

Assume that f is supported on the finite interval [a,b] and let Y{11, Yo, ..., Y}y
be concomitants of ordered explanatory variables Xi., < Xo.,, < ... < Xy,
The original Rice (1984) estimator has been designed to estimate the variance

0% = 0?(-) in the homoscedastic case and has the following form

a' ’I’L — 1 z_: Y'[z+1] - Y'[z] (14)
which is an average of squares of differenced concomitants. For a more general
definition involving weighted differences see, e.g., Dette et al. (1998). The
modified Rice estimator is based on the following approximate equality: for
X, =z~2' =X; and i # j we have

E((Y; = Y;)?Xi = 2,X; = 2') ® E((ei0(2) — g;0(2))?) ~ 20%(z).  (15)

Thus, by regressing 2_1()/[]-_,_1] — Y[j])2 on Xj., one gets heuristically jus-
tified estimator of o2(-). We define a local version of (14), called henceforth
modified Rice estimator 63,5, (), as a local linear smoother based on a sample
(Xjin, 27 (Y1) — Y5)?)s J = 1,2,...,n — 1. The obvious advantage of such
estimator is that the regression estimators do not enter its definition and thus
estimation of m is entirely avoided. A kernel estimator of o2(-) based on the
same idea is defined in Levine (2006), see also Cai and Wang (2008) and Cai
et al. (2009). Wang et al. (2008) proved asymptotic minimaxity of a wavelet
estimator of variance function based on (Y41 — Y;7)*.

In order to put (14) and &JQM gy into broader perspective note, however, that
Y[ — Y} is a regression residual at Xj., when m(Xi.,,) is defined as Yj; 41,
i.e. value of the response at the adjacent point is used as regression estimate.
We also consider the following refinement of this procedure due to Gasser et al.
(1986) in which residual at Xj.,, is defined as the difference between Y};) and the
value at Xj., of the line joining the points (X;_1.n, Yji—1)) and (Xiy1:n, Yjit1))s
namely

Xi—l—l:n - Xz n Y Xz m Xi—l:n
[i—1] —
Xit1im — Xic1m Xit1n — Xic1m

=: Y} +a; Y1) + 0iY]iq -

DY =Yy — Yiit)

(16)

The normalized version of D? is defined as D; = (1 + a? + b2)_1/ 2DY. Note
that —a;Y};—1) — biY}iqq) is a predlctor of regression value m( n)- We define
63, ro(+) as a local linear smoother based on (X;.p,, D?).
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Observe that in the case of autoregression 27(Yj11 — Y};)? equals
271 Xag+1)+1 — Xa@)+1)?, where d(j) is j'* antirank i.e. the index of an obser-
vation equal to j* order statistic Xj.n. Then, approximate equality (15) still
holds as 0(Xj.n)eaj)+1 and (X y1:n)€q(j+1)+1 are conditionally independent
given X, and X;i1:p.

As the form of the asymptotic bias and the variance of 63,5, (-) and 6%, o (+)
are not known (this is even true for (14) in the case of random design regression),
we used dpill procedure applied to (Xipn, 2™ (Y11 — Yy5)?) and (Xiin, D7)
to calculate bandwidths for the respective estimators considered in numerical
experiments. One expects such bandwidths to undersmooth as, e.g., the variance
of 632, is likely to be larger than (9) due to non negligible contribution of
positive covariances of (1/2)(Yj;11] — Yy;)? and (1/2)(Yy;) — Yjj—1))?. In order
to account for this we compared the variances of local linear smoother and Rice
estimator for the fixed uniform design case. A routine calculation shows that the
last variance is (nhq) "ot (z)E(e?) [ K?(s)ds/f(x) +op((nh1)~!), which means
that the ratio of asymptotic variances is 3/2 for the normal errors. In view of
this, we used RSW bandwidth multiplied by (3/2)'/° as a smoothing parameter
for modified Rice estimators. Crossvalidation has been also tried as a method
of bandwidth choice, but it consistently yielded very small bandwidths in this
case, possibly due to dependence of observations.

3. Asymptotic normality of local linear smoother of con-
ditional variance

In this section we study asymptotic normality of the two-step local linear vari-
ance estimator, defined in Section 2.1 under assumptions tailored for the autore-
gressive process (1). We assume that (X, ) has Bernoulli shift representation
X, =J(...,en—1,6n) for some measurable J. Let || X||, = (E|X[?)'/?. (X,,) is
called geometric moment contracting (GMC) if for some ¢ > 1 and 0 < r < 1
[| Xy — X2|lg = O@r™), where X¥ = J(...,e_1,&8,...,6n—1,6,) and &f is an
independent copy of €. A simple sufficient condition for GMC is ||L.||q < 1
where L. 1= sup,, |R(z,¢) — R(2',¢)|/|x — 2’| and R(z,¢) = m(z) + o(x)e,
see Wu and Shao (2004). GMC condition is needed to ensure that supremum
sup, || f1(z|Xn) — fi(z|X})||, be summable over n, where fi(z|y) be a condi-
tional density of X411 given X;.

‘We will prove the result on asymptotic normality of the local linear estima-
tor of o2(-) for stationary autoregressive time series. The version of this result
was proved in Fan and Yao (1998) for a stationary bivariate process (X;,Y;)
such that Y; = m(X;) + o(X;)e;41 provided it is absolutely regular with coef-
ficients ((j) satisfying Z;’;le,B‘S/(H‘S) (j) < oo, where § € [0,1) is such that
E|Y|*(11+%) < o0, Here we prove this result directly for the autoregressive process
without using any mixing conditions and a slightly different set of conditions
on bandwidths. The proof exploits the martingale structure of the main term
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in the decomposition of 62(-). Let L, denote convergence in distribution and
z € R be an arbitrary fixed point. We assume throughout that hy, he — 0 and
nhyi,nho — 00.

THEOREM 1 Assume that X,, = J(...,en—1,€y) satisfies (1) and moreover:
(i) m and o are twice continuously differentiable in a neighborhood of x, o and
m/o are Lipschitz continuous on R;

(i) a density function f-(x) of e; is Lipschitz continuous and bounded;

(i11) (Xi)iez is geometric moment contracting;

(iv) infrer o(x) > 0 and f(x) > 0;

(v) K is symmetric, bounded, compactly supported with support in [—1,1];

(vi) Ele1|P < oo for some p > 4;

(vii) hy and ha satisfy the following conditions:

(a) hi/ha = O(1) (b) n*~2/Phy/logn — oo (¢) nhy® — 0. Then

(nh)V2(6%(2) — o*(x)) 2> N(0,v(z)), (17)

where

ot (2)E((eT — 1)?) [ K?(s)ds
f(=) '

Remark. (a) The proof of Theorem 1 indicates that condition (a) of (vii) can

v(x) = (18)

be replaced by a weaker condition hi/ % log n/n'/?hy — 0. Note that this con-
dition, without a logn term is actually imposed in Fan and Yao (1998), where
it is needed to deal with remainder terms of order ((nhs)~!) in their (A2.5).
Moreover, for p = 4 condition (b) reduces to nh2/log> n — oo whereas Fan and
Yao (1998) assume that liminf nh? > 0, i = 1, 2. Condition (c) is the usual con-
dition for negligibility of asymptotic bias. It can be seen by analyzing the main
term I in the proof that when nh? — Cj, ,i = 1,2 then the result still holds
with a mean of asymptotic distribution equal to C,ll{ *(02(z))" [ K(s)s*ds/2.
(b) As it was mentioned, summability of sup,, ||f1(x|X,) — f1(z|X})]||4, which is
a consequence of GMC property is needed in the proof. It also follows, however,
from local property of 62(-) that when a weaker sufficient condition is used,
namely sup, crr, ||f1(y|Xn) — f1(y|X};)||q is summable for some ¢ > 1, where U,
denotes some open neighborhood of x, then assumptions of the Lipschitz conti-
nuity of o(-), m/o(-) and f. can be dropped (see (21) and (25)). Finally, note
that the Lipschitz continuity of m/o follows e.g. from the Lipschitz continuity
of both ¢ and m when ¢ is bounded away from 0 and m is bounded.

(¢) As (X;) is weakly dependent, we conjecture that the bias and the vari-
ance of the local linear smoother 62(x) in the autoregressive model M; have
the same rates as in the random design model Ms. This is also supported
by empirical evidence in Section 4 showing that the effect of dependence on
MISE of 62%(z) is negligible. Then it follows from (8) and (9) that in model My
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MSE(6%(x)) ~ C1/(nhy)+Csh?, the MSE-optimal bandwidth is of order n=/5
and the resulting MSE of order n=%/%. It is known (see Wang et al., 2008, Re-
marks 2 and 3, p. 650) that for sufficiently smooth m the minimax rate of MSE
over a ball of twice differentiable standard deviations is attained by the linear
smoother and coincides with the rate for a fixed standard deviation. Given that,
it is also conjectured that the minimax rate in the autoregressive case under the
stated assumptions is n~%/5 and is attained by the linear smoother. The prob-
lem of influence of bandwidth h; on the performance of 62(x) is also addressed
by means of simulations in Section 4.

Proof. C will denote a generic constant, a value of which may vary. We outline
how the main terms in the decomposition (A2.3) in Fan and Yao (1998) can
be directly dealt with in the case of autoregressive process without resorting to
assumptions on mixing. The decomposition is as follows:

62(x) — o?(z) =
L+ I — I+ I+ Op(h) (I + Iy — I3 + Iy + | I + I, — It + I4), (19)

where

(20)

1 - Xi—z
L= —— K( : )AX»— X))2,
4 Tlhlf(fli) Z {m( l) m( l)}
and I} is defined in the same way as I; with additional multiplicative factor
hi'(X; — ) in the ith summand.

Note that it is enough to prove that (nh1)Y/2I, 2> N(0,v(z)), (nh1)V/2I; £
0 for i =1,3,4 and (nhi)V2I! 55 0 for 1 <i < 4.

In order to deal with the term I; observe that as K is bounded and com-
pactly supported, Markov’s inequality implies that (nhy)~' > K((X;—z)/h1) =
Op(1). This, together with two term Taylor decomposition and nh$ — 0 yields
that I = op((nhy)~1/?).

Consider now term I>. Let fi(:|y) denote a conditional density of Xy, given

Xi = y. Obviously in view of (1), fi(zly) = o(y)~'fe((z — m(y))/o(y)) and
f1(z|y) bounded in z as f-(-) is bounded and infscg o(s) > 0. Moreover, since
both m(-) and o(-) satisfy the Lipschitz condition, it is easily seen that

[f1(zly) — frlzly™)] < CA + |z —m(y))]y —v7|- (21)
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In order to show that (nhy)'/2I5 EEN N(0,v(x)), observe that since I5 is a sum of
martingale differences with respect to F; = o(...,&;-1,&;), in view of martingale
CLT (see, e.g., Chow and Teicher, 1998), it is enough to check that

S (e (K)o, 17 -

A2 St (BE) 2, pwote),

’I’th =1 hl

where A? := E(e?,; — 1)? and to verify conditional Lindeberg’s condition. LHS
of (22) equals to

n/\_;i [Kz(Xz'h:~T>g4(Xi) _E(KQ(Xih—:.,ZT)O-4(Xi)|E—1)}+

i=1

2 S e (B ot ) — (K)ot 9

nh1 i hl hl
)\2 X o n n
+ h—E(K2( n m)04(X1)) =220 M+ Y N+ Dy).
1 1 i=1 i=1

Obviously, D,, — f(z)o*(z) [ K*(u)du and thus we check that the two first
sums tend to 0 in probability. Consider the first sum. As f; and K are bounded
and o(-) is bounded in a neighborhood of z, it is easily seen that |M;| < C/nhq
and Y1 | E(M?|F;—1) < C/nhy. Then it follows from Freedman’s (1975) in-
equality that for \,, = nhja, with sufficiently small positive a we have

P(Z M; > ¢e) <Eexp(\, Z M;)/ exp(Ane) < exp(nhi(Ca® — ag)).
i=1 i=1

For a < &/C the bound tends to 0. For the second term observe that

~ 1 QU= T\ 4
o< p— <
E| ;:1 Nil < o /K ( " )0 (w)E|Hy (u)|du <

1
nh1

(24)
u— C
(D)o ) o)l <€ sup Ha W)l
h1 N uelz—hy,z+hi]

where Hy(u) = Y0 fi(u|X;—1) — f(u). Lemma 3(i) in Wu et al. (2010) in
conjunction with Jensen’s inequality implies that the last quantity is bounded
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by C@l/ min(2,9) (n)/n, where

Z Z |9 mm(2q

JEZ i=1—j (25)

04()) =2 sup [[fi(ulXq) = fi(ulX])]lg,
u€lz—h1,z+hi1]
Xr=J(...,e_1,€5,€1,--.,€;) with €§ being an independent copy of «o.

In view of (21) 0,4(i) = O(||X; — X} ||¢) and it follows from assumption (iii)
that || X; — X7, = (9( *) for some 0 < r < 1. Then it is easily seen that ©4(n) =
O(n) and thus E| > Ni| = 0. Lindeberg’s condition routinely follows from
boundedness of K and local boundedness of o(+). Consider now I5. Using (A2.2)
in Fan and Yao (1998) we obtain the decomposition I3 = I3 + I3 + I33, where

Iy =a,' 32050 dijs

b = K(&h;ng)a(Xi)U(Xj)gi+18j+l{f(;(i)K(Xihj l’) + f()l(])K(XJhl— -T)}7

an = n*hihaf(z) and terms I3 and Is3 are defined in (A2.6) of Fan and
Yao (1998). Moreover, its is proved in Fan and Yao (1998) that I32 = op(h3)
and I33 = OP(h2 + h2)

We consider IE(Z” 1 $ij)? = ZZj,k,l:l E¢ijém . Observe that if 4, j, k,!
are all different then E(¢;;¢x) = 0. In order to deal with the remaining sum it
is enough to prove that the following sums Z?J w1 Edijorj, Z?J w1 Edj;bik,

Z, i Eiipij, > oiq EdZ are o( @, ) We outline the proof for the first sum,

the remalnlng ones are dealt with in a similar fashion.
It equals

- Xy — Xi—X; 2 2

> K( )K< s )U(Xi)U(Xk)U (Xj)eit1r+18541 Wi i Wi 5,
i,5,k=1

where Wi, = f(X,)'K((X; — 2)/h) + f(X;)" K((X; — 2)/h1). Breaking

down the product W; ;W ; into summands, we decompose the original sum

into four sums. One of them equals

{3 (R (R oo}

j=1 k=1
(X)) K () (X)) =
i{iK(Xih;QXj)U(Xi)&H}

j=1 =1

< sup Wy ZU ]+1K2<X )/fQ( i)

|z—y|<h:

2

P K (T 7(X) <



Performance of variance function estimators for autoregressive time series 429

where W (y) = 377, K((X; — y)/h2)o(Xi)eit1.

As Y o3 (X;) J+1K2(X _Z)/fQ( ;) = Op((nhy)), what can be shown
by using Markov’s inequality, it is enough to prove that sup|,_,<p, W23(y) =
op((nhs))?. This follows from Wu et al. (2010), who proved in their Proposition

2 that sup,e(_r, 1) [Dn(y)| = OQS("I/;L"g" + (”l}‘f”)l/?) for any L > 0, where
D,(y) = hy'W(y). It is easily seen that the condition (vii)(b) implies the
required order of sup|,_,<;, W?(y). The remaining terms in decomposition of
E¢;jor; are dealt with similarly by a slight adaptation of a result of Wu et al.
(2010) to sums
>ic K(Xi = y)/ha) K(Xi — y)/h)o(Xi)eis / f(Xi).

Terms I35 and I33 are dealt with as in Fan and Yao (1998), yielding I3o+1I33 =
op(h? + h3). Finally, we bound I, using

n

~ 1 < XZ_
|I4| < sup |m<y>—m<y)|2mi;ﬂ< h1x>

ly—z|<ha

and observing that

sup fin(y) — m(y)] = Op (Bl 1 (2BY! | pe)

ly—a|<L n'=1/rhy  \ nhy

which follows from representation of 7(x) — m(x) in (A2.2) of Fan and Yao
(1998) and application of Proposition 2 in Wu et al. (2010) again. This, in view

of (vii)(b), implies (nhy)'/21, L, 0. Terms I are dealt with in an analogous
manner.

4. Simulation study

4.1. The setting

In the performed numerical experiments the following three regression functions

m;,t = 1,2,3, and eight conditional standard deviations o;,j =1,...,8, have
been considered:

(m1) m(z) = 0.8z;

(m2) m(x) = (0.8 — 1.1 exp(—30z?))x;

(m3) m(z) = 0.8xI10<yy — 0.3x115<0};

(01) o(z) = 0.5;

(02) o(z) = 0.5((x + D)I|_1,0 + (=2 + L) (0,1));

(03) o(x) = (1 + (1 —2)?)/8)"/?;

(04) o(z) = 0.25(_o,0.51 + 0.5((x + 1)I(_0.5,0) + (=2 + 1)L (0,0.5)) + 0-251[0.5,00);
(05) 0(x) = 0.4I(_oo,—0.5) + 0.8I1_0.5,0.5) + 0.6I[g 5 00);
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06) o(x) = 0.75 exp(—x2/8);

(07) o(x) = 0.525 + 0.225[0.3 cos(mz) + 0.4 sin(37(x — 0.175))];

(08) o(z) = 14(0,1) + Z?:o Lo(1/2 — 1, (55)?), where ¢(0,1) is the standard
Gaussian density.

Std. dev. s4 Std. dev. s,

Std. dev. s3 Std. dev. s4

Figure 2: Standard deviations o1 — o4

Each combination (m, o) has been investigated yielding 3 x 8 = 24 models
M in total. The plots of conditional standard deviation functions are given in
Figs. 2 and 3.

Standard deviations o7 and og are much more volatile that the remaining
ones, which makes their estimation significantly more difficult. This also holds
for a discontinuous standard deviation os.

In all cases the error random variable £ has the standard normal distribution.
For standard deviation functions o1, oy and o4 the maximal value of variance of
errors sup, var(eo(z)) equals to 0.25 and is attained at 0. For the last standard
deviation functions o5 through og the maximal variance is 0.64, 0.56, 0.42 and
0.36, respectively. For o3 maximal variance is attained at a random left endpoint
of an interval on which conditional variance is estimated. The motivation to
consider larger variances in the last four examples has been to make estimation
of o2(-) feasible on a larger part of its support.

Namely, in the autoregression problem the support of the stationary distri-
bution depends in an involved way on the regression and the variance function
as well as on the distribution of errors. However, it has been suggested by our
numerical experiments that increasing the variance of errors results in lengthen-
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Std. dev. s5 Std. dev. sg

1.0

05

0.0

Std. dev. s, Std. dev. sg

1.0
0

0.0

Figure 3: Standard deviations o5 — o3

ing of its support. In order to support this empirical observation we investigated
the influence of augmenting o(-) on the length of the central part of support
of the marginal distribution. In particular, we have considered model M; with
standard deviation oo multiplied by C, where C' = 0.2,0.4,...,2. Fig. 4 shows
the 10-90 inter percentile range IPR = qg.9 — qo.1 of the central part of support
of stationary distribution for regression functions m; and ms (the results for
mgy are very similar to those for m;). The monotone dependence of IPR on C
is evident.

For sample sizes even as large as 500, observations are very scattered in
both tails what significantly worsens the performance of variance estimators in
these regions. In order not to have performance measures unduly influenced by
this, we considered estimation on the central part of the support. It is defined
analogously to the definition above as the interval [a,b] = [X{o.1n):n, X[0.9n]:n]
with endpoints being 10th to 90th empirical percentile of a sample at hand.
This is analogous to the approach of Fan and Yao (1998), who in their example
2 for the model My rejected approximately 10% of the largest and the smallest
observations.

In Figs. 2 and 3 the average values of the 10th and 90th percentile based
on 1000 simulations are also depicted. Dotted lines indicate the left and the
right endpoints of the central part of supports of the stationary distribution
for regression m1. The supports pertaining to ms were omitted as they almost
coincide with those for m;. Dashed lines correspond to the support of the
stationary distribution pertaining to ms.
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—— mi1i

Figure 4: Endpoints of the central part of the support of the stationary distri-
bution against C for (my,Cos) and (ms, Cos) where C = 0.2(0.2)2 (see text)

4.2. Considered estimators

In the simulation study we considered local linear smoothers 6%, ., i =1,...,4,
the local maximum likelihood estimator 67 ,,;, and the modified Rice estimators
&12\4 ri» © = 1,2. For the k-nn linear smoother k was always equal to 0.3m, m
being the number of points falling into [a,b], but the bandwidth was modified
near the boundaries of the interval [a,b]. Namely, the k-nn rule was applied
for « € [go.2, go0.8] where go.2 and go s are, respectively, 20th and 80th empirical
percentile of a sample. For the remaining x in [a, b] neighborhoods of size equal
to the size of the neighborhood of the closest point in [go 2, go.s], were considered.
The performance of estimator was assessed using Empirical Integrated Squared
Error EISE

EISE=— 3 (8*(X) ~ o*(X)", (26)
X, €la,b]

where m = #{i : X; € [a,b]}. For each particular combination of the regression
and the variance k = 1000 replications were performed. Sample size n was equal
500 throughout. Burn-in period to ensure stationarity of autoregressive series
was 1" = 500.

In the simulation study we focused on several aspects of performance. Be-
sides the main aim of comparing the performance of the considered estimators
for the models under study we have also investigated the effect of dependence of
predictors occurring when the regression model Msj is replaced by the autore-
gression model M, the impact of estimating regression function m(-) on the
variance estimation and the importance of the choice of smoothing parameter.



Performance of variance function estimators for autoregressive time series 433

These aspects will be consecutively discussed.

4.3. Effect of dependence

In order to assess the effect of dependence we compared the behavior of in-
troduced estimators of variance based on (X1, Y7"), ..., (Xn-1,Y," ), generated
from model M3, and (X7, X3),...,(Xn—1,X,) from model M; using band-
widths designed for the random-design regression model. The main observation
which follows is that the performance of variance estimators in both situations
is very similar, i.e. the effect of dependence is negligible. Tables 1 and 2 present
means and standard deviations for the case (ms,02) and (ma, o7), respectively.
All values are multiplied by 10%. Results of comparison M; with M3 for all
other cases are similar. In Fig. 5 boxplots for relative difference of mean EISE
(MEISE) in both models M; and M3 for all considered estimators are displayed.
Namely, each boxplot is based on 24 values (3 regressions x 8 variances) of

I =100% x (MEISEn, — MEISEa,)/MEISE,.

10
1

'
—_ !
R
o —_
|

T T T T T T T
LL1 LL2 LL3 LL4 LML MR1 MR2

Figure 5: Boxplots for index I (see text)

It turns out that the absolute values of I do not exceed 10% and are less than
5% in most cases. All values of |I| exceeding 5% corresponding to regressions
my and meo are negative, indicating that in these cases dependence between
responses actually increases the accuracy of the estimator. The three smallest
values of I (around —9.5%) correspond to estimation of the constant variance
in the case of regression mg by local linear smoothers LLi (i = 1,2, 3). Standard
deviations of EISE are in most cases slightly larger for, M3 model.
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Table 1: Means and standard deviations of EISE x10* for (mso(z), o2(z))

[ Lol [ L2 [ LL3 [ LL4 | LML | MRI [ MR2 |

MI1][ 4.32(3.25)] 4.35(3.22)] 5.25(4) | 6.56(3.21)] 4.44(3.28)] 6.49(5.33)] 8.13(6.92)
M3 4.54(3.25)| 4.54(3.22)| 5.53(4.2)] 6.9(3.62) | 4.69(3.33)| 6.96(5.12)] 8.83(7.16)

Table 2: Means and standard deviations of EISE x10* for (mso(z), o7(z))

[ il LLT ] LL2 [ LL3 [ LL4 [ LML ] MRIT ] MR2 |
[MI][ _52(12.65) | 53.20(12.02)] 43.59(23.16)] 54.98(10.08)] 51.11(12.71)| 57.75(21.74)] 67.49(29.75)]
[M3]] 51.7(12.83)| 52.49(12.27)[ 43.18(23.35)[ 54.84(10.47)| 50.68(13.08)] 56.4(21.5) | 66.13(27.94)]

4.4. Comparison of variance estimators in the autoregressive case

The results on performance of considered estimators are given in Tables 3-5. It
is seen that for variances, which do not have much structure (01 — 0g) among
all estimators excluding LL4, the local linear smoother LL2 performs the best
both in terms of the mean of EISE and its standard deviation. k-nn estimator
LL4 clearly oversmoothes and this works in its favour for very regular cases
01,03 and og. Estimators LL1, LL2 and LML perform similarly for standard
deviations o1 — 0g. For such cases LL3 performs the worst among local linear
smoothers. For oy (uniform) and og (gaussian) its mean EISE is around 100%
larger than for LL2.

The ranking of performance changes dramatically when significantly more

variable standard deviations are considered as in cases of o7 and og. In these
cases LL3 performs the best, also local maximum estimator performs slightly
better than LL2. The shape of regression function does not have much influence
on behavior of variance estimators. An exception is much better performance
of LL2 in the case of o3 and o5 for regression ms, which is mainly caused by
change of the interval on which variances are estimated. In the case of ms, less
variable part of the standard deviation is estimated. We also experimented with
a modified LL2 estimator for which the order of the polynomial fitted to (e3)"_,
had been chosen by the Mallows criterion from possible orders 3, 4 and 5. This
resulted in a moderate increase of a relative MEISE (less than 10%) in the cases
corresponding to o1 — og with a significant decrease of it for o7 and og. For og
the decrease of MEISE was around 32%, 30% and 63% for regressions my, ms
and mg, respectively.
Modified Rice estimators perform consistently the worst. Surprisingly, calcula-
tion of residuals using a larger number of points, as in case of MR2, worsened
the performance. This is possibly due to the fact that for considered examples
the distribution of X is pronouncedly not uniform and as a result approximate
equality in (15) is violated.
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Table 3: Means and standard deviations of Empirical Integrated Squared Error

for mq(x)

[ Lol [ L2 [ U3 [ T[Id [ TIML [ MRI [ MRZ |
o1 [[ 13.03(10.33) | 11.53(9.04) | 24.41(16.5) | 10.88(7.93) | 12.32(8.98) | 22.9(18.84) | 30.79(26.39)
oo || 4.27(3.22) | 4.29(3.22) | 4.91(3.63) | 7.15(3.48) | 4.37(3.23) | 6.41(4.72) | 7.91(6.39)

75 || 34.38(37.02) | 31.91(35.59) | 62.49(76.51) | 25.9(31.26) | 31.33(35.04) [66.30(121.19)|86.97(195.43)
01| 5.13(3.36) | 4.96(3.3) | 6.26(4.1) | 7.28(3.25) | 4.95(3.41) | 7.53(4.78) | B.97(5.8)

120.42(36.97)

117.94(35.79)

117.47(45.69)

133.61(33.87)

119.63(39.34)

139.3(47.56)

157.47(60.99)

40.89(29.95)

39.97(28.61)

96.26(60.93)

34.72(24.61)

12.42(29.46)

69.59(50.85)

89.55(65.24)

52.07(12.67)

53.44(11.95)

43.27(21.59)

55.42(10.25)

51.29(12.68)

57.67(21.04)

67(29.81)

81.06(19.01)

89.16(12.2)

25.01(12.69)

96.07(6.73)

79.16(15.74)

78.78(24.44)

82.07(25.55)

Table 4: Means and standard deviations of Empirical Integrated Squared Error

for ma(x)

[T LL1 [ LL2 [ LL3 [ LL4 [ LML ] MRI1 [ MR2 |
o1 [[12.96(10.18) | _11.49(9) |24.84(17.75) | 10.8(8.07) | 12.3(9.06) |23.65(17.59) [31.05(25.26)
o2 |[ 4.32(3.25) | 4.35(3.22) | 5.25(4) | 6.56(3.21) | 4.44(3.28) | 6.49(5.33) | 8.13(6.92)

3 |[35.91(44.25) | 33.48(44.39) | 67.1(92.37) | 26.92(34.78) [33.21(42.68) [70.35(110.04) [89.25(135.23)
os|[ 5.1(3.37) | 4.97(3.32) | 6.49(4.54) | 6.76(3) | 4.96(3.39) | 7.12(4.9) | 8.81(6.67)

5 [[119-52(36.41) [117.39(35.62) [117.82(47.91)|132.08(33.27) | 119(38.75) [139.68(51.97)|159.38(70.53)
6 |[ 40.6(29.38) |39.79(28.33) |95.14(57.07) | 34.2(24.14) [42.17(28.76)|73.23(57.48) | 97.49(75.4)

o7 || 52(12.65) |53.29(12.02) |43.59(23.16) |54.98(10.08) [51.11(12.71)|57.75(21.74) |67.49(29.75)
s |[80.88(19.31) | 89.4(12.21) |25.48(14.47) | 95.2(6.82) [78.93(15.73)|68.29(26.12) | 71.94(26.77)

Table 5: Means and standard deviations of Empirical Integrated Squared Error

for mg(x)

| || LL1 | LL2 | LL3 | LL4 | LML | MR1 | MR2 |
01 || 12.66(8.61) | 11.2(7.97) | 24.67(16.26) | 10.74(7.34) | 12.15(8.09) | 24.62(18.51) | 32.62(26.39)

o2 || 5.18(4.16) | 5.24(4.09) | 9.02(7.43) | 4.73(3.83) | 5.44(4.19) | 8.41(7.21) | 10.81(9.35)

o3 || 10.35(9.84) | 9.18(9.21) | 17.8(18.12) 8.14(8.1) 9.46(8.97) | 18.5(22.45) 23.53(26.1)

o4 || 5.5(3.96) | 5.38(3.96) | 9.71(8.39) | 5.24(3.82) | 5.68(41) | 8.3(6.71) | 10.64(9.07)

05 || 82.53(40.1) |80.41(38.79) | 126.92(83.83) [74.87(39.17) |81.88(39.16) | 121.73(83.59) | 152.69(114.51)
o6 ||44.61(31.83) [41.52(30.22) | 98.26(61.78) |38.04(28.32)|45.09(30.82) | 86.07(67.35) | 113.21(91.72)
o7 ||[41.38(16.04) [46.21(14.61)| 43.86(27.88) | 43.4(12.99) |42.44(14.78)| 49.25(28.51) | 59.59(36.52)

s ||48.76(22.46) |63.93(18.72) | 23.64(14.59) | 70.98(8.79) |52.55(20.52)| 47.8(19.89) | 52.18(22.17)

4.5. Comparison with benchmark estimators

In order to assess the influence of estimating regression function m for the
autoregressive model M1, we also compared performance of considered local
linear smoothers with corresponding benchmark (ideal) estimators, for which m
is assumed to be known. In the case of the local linear smoothers this amounts
to estimation of variance based on squared errors and not squared residuals.
Tables 6 and 7 show the means of EISE for LI.2 and L3 estimators. Overall, the
performance of adaptive and benchmark estimators is very similar. Surprisingly,
in some cases, notably for standard deviation o3, the ideal estimator performed
worse than the adaptive one.
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Table 6: Means for EISE for LL2 and corresponding benchmark

LI | oo [ oo] os [ ou] o5 [ o6 [ or [ os]
mil|  LL2 | 1153 4.20] 31.91| 4.96] 117.94] 39.97| 53.44] 89.16
mi || benchmarkl 11.88] 4 | 34.49| 4.72| 116.13| 38.66| 53.20| 88.85
ma||  LL2 | 11.49| 4.35| 33.48| 4.97| 117.39| 39.79| 53.20| 894
ms|| benchmarkl 11.72| 4.02| 36.51| 4.69| 115.38| 38.42| 52.92| 88.97
ms||  LL2 | 11.2| 524] 90.18| 538| 80.41| 41.52| 46.21| 63.93
ms|| benchmarkl 11.43| 5.03| 9.54 | 5.26| 80.62 | 41.07| 46.39| 62.92

Table 7: Means of EISE for LL3 and corresponding benchmark

L | oo | oo| os | oa o5 | o6 [ o7 | os |
mi LL3 24.41| 4.91| 62.49| 6.26| 117.47| 96.26| 43.27| 25.01
m1 || benchmark| 24.81| 4.84| 68.06| 6.36| 118.67| 97.59| 44.51| 25.16
ma LL3 24.84| 5.25| 67.1| 6.49| 117.82| 95.14| 43.59| 25.48
msz || benchmark| 25.25| 5.1 | 73.51| 6.48| 118.38| 96.23| 43.51| 25.7
ms LL3 24.67| 9.02| 17.8 | 9.71| 126.92| 98.26| 43.86| 23.64
ms || benchmark] 24.77| 9.68| 18.93| 9.74| 132.12| 99.67| 44.64| 23.91

4.6. Influence of conditional error distribution

We also considered the uniform and Laplace distribution of errors € (see Tables
8 and 9). The support of the uniform distribution is taken as [—v/12/2,v/12/2]
to ensure that the variance equals 1, and X for the Laplace distribution is 1/ V2.
The value of C, in (11) has been fixed at 2 as for normal errors. In the case
of the uniform conditional errors performance of both local linear smoothers
LL2 and LL3 has much improved, the change being more significant in the case
of LL3. For the Laplace distribution the situation is reversed, both estimators
perform worse than in the normal case, with the change being more significant
again in the case of LLL.3. Note that the direction of the change of performance
is consistent with the change in values of C. = E(¢%2 — 1)? appearing in the
asymptotic variance (18). Value of C. equals 2, 0.8 and 5, respectively, for the
normal, uniform and Laplace distributions. LML estimator performs similarly
to LL2.

Table 8: Means of EISE for the uniform distribution

LIl [ o] oof os| oaf o5 | o6 | or [ os |
[ TL2 4.62] 2.83] 15.98] 3.58] 96.65] 19.35] 47.21] 89.3
| TL3| 8.36] 2.44] 28.78| 2.91] 71.71] 37.47| 20.75 12.93
ma| TL2 4.57| 2.74] 4.21| 2.9 50.81] 19.03| 40.64] 52.65
ma| TL3 84| 3.43] 7.12| 3.59] 5407 3242 1958 113
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Table 9: Means of EISE for Laplace distribution

LI [ oo [ oof o3 [ oa| o5 [ o6 [ or [ os]
[ TL2 20.85] 8.82] 78.18 | 9.48 ] 171.62] 100.76] 73.29 | 91.54
|| TL3| 77.76] 15.12] 162.58] 16.97| 248.37] 270.37| 110.41| 5..73
| TL2 29.46] 11.46] 21.36 | 11.91] 155.68 108.01| 67.01 | 66.53
|| LL3| 77.34] 27.71] 54.56 | 20.81] 348.79] 303.43] 115.11] 52.77

4.7. Choice of smoothing parameter

In order to check whether the performance of the local linear smoother LL2 can
be still improved by an appropriate choice of bandwidth h; we have considered
its EISE as a function of h; and minimized it over an equidistant grid of 50
points. The maximal value of hy considered equals half of the average length of
the support of X;. Estimator of m has been calculated as in definition of LL2.

(a) (b)
(©) (d)

Figure 6: Marginal densities for (m1,02) and (mq,03) with corresponding stan-
dard deviations. (a) Marginal density for standard deviation o9, (b) Marginal
density for standard deviations os, (c) Standard deviation os, (d) Standard
deviation o3.

In Table 10 mean values of I = 100%(EISE — EISEin)/EISEp,, are
given. It is seen that the room of improvement is still significant both in the
case of constant o, when I is around 70%, and for highly variable standard
deviation og, when it is around 300%. Note that in Table 10 both estimators
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Table 10: Relative change of EISE for LL2 when optimal A is used

LIl oo oof o5 oa] o5] o6[ or] o3|
mal| 80.7] 20.8] 67.8] 20.4] 21.9] 31.0] 57.5] 3084
mal| 77.6] 19.8] 72.8] 20.6] 22.0] 31.8] 57.5| 306.9
mdl| 73.9] 28.1] 59.9] 17.2] 165] 51.6] 50.6] 255.6

employed the same value of bandwidth for all z. In this context it is interesting
to note the following interplay between the marginal density and the variance
of conditional errors. Namely, Fig. 6 illustrates a sweeping property of standard
deviations which asserts that the observations are swept from the regions where
standard deviation is large, resulting in small values of marginal density in these
regions. This indicates that, at least for standard deviations having large range
of values, using local bandwidths can have beneficial effects.
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Figure 7: Scatterplots of (X;—1,X;). (a) Standard deviation o2 with normally
distributed e;, (b) Standard deviation oo with uniformly distributed e, (c)
Standard deviation og with normally distributed &;, (d) Standard deviation og
with uniformly distributed &;.
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4.8. General conclusions from the simulation study

We can draw two conclusions from our simulation study, concerning which es-
timators should be applied in practice. One recommendation is to use LML
estimator which enjoys uniformly good performance regardless of complexity of
estimated standard deviations. The second, alternative proposal, is to evaluate
the complexity of the standard deviation and, depending on the result, to apply
either LL2 estimator for little varying variances LL3 estimator in the case of
highly structured ones. The preliminary assessment of the variability of the
variance function can be based on the scatterplot (X;—1, X;). Fig. 7 shows such
plots for standard deviations o2 and og in the case of regression mq, clearly
indicating, especially for the uniform error distribution, much more structure in
the second case.

Acknowledgements We are indebted to Dr. K. Yu for providing the main
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