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1. Introduction

Invariant control systems are smooth, nonlinear control systems evolving on
(real, finite dimensional) Lie groups with dynamics invariant under translations
(see Jurdjevic and Sussmann, 1979; Jurdjevic, 1997; Agrachev and Sachkov,
2004; Biggs and Remsing, 2012). In order to understand the local geometry
of (nonlinear) control systems, one needs to introduce natural equivalence re-
lations. The most natural equivalence relation for (smooth, nonlinear) control
systems is equivalence up to coordinate changes in the state space. This is
called state space equivalence (see Biggs and Remsing, no date; Jakubczyk,
1990). Two control systems are state space equivalent if they are related by
a diffeomorphism (in which case their trajectories, corresponding to the same
controls, are also related by that diffeomorphism).

In this paper we consider only left-invariant control affine systems, evolving
on the Euclidean group SE(2). We classify, under state space equivalence, all
such full-rank control systems. This classification is obtained by making use
of an algebraic characterization of state space equivalence. A representative is
identified for each equivalence class, in a systematic manner.

∗Submitted: November 2011; Accepted: August 2012
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2. Invariant control systems and equivalence

Left-invariant control affine systems

A left-invariant control affine system Σ is a control system of the form

ġ = g Ξ (1, u) = g (A+ u1B1 + · · ·+ u`B`) , g ∈ G, u ∈ R`.

Here G is a (real, finite-dimensional) matrix Lie group and the parametriza-
tion map Ξ(1, ·) : R` → g is an affine injection (i.e., B1, . . . , B` are li–
nearly independent). The admissible controls are piecewise continuous maps
u(·) : [0, T ]→ R` and the trace of the system Γ = A+ Γ0 = A+ 〈B1, . . . B`〉 is
an affine subspace of (the Lie algebra) g. A system Σ is called homogeneous if
A ∈ Γ0, and inhomogeneous otherwise. Furthermore, Σ has full rank provided
the Lie algebra generated by its trace equals the whole Lie algebra g. Note that
Σ is completely determined by the specification of its state space G and its
parametrization map Ξ (1, ·). Hence, we shall specify a system Σ (on G) by
simply writing

Σ : A+ u1B1 + · · ·+ u`B`.

State–space equivalence

State space equivalence is well understood (see Agrachev and Sachkov, 2004;
Jakubczyk, 1990); it establishes a one-to-one correspondence between the tra-
jectories of equivalent systems. This equivalence relation is very strong. Con-
sequently, there are so many equivalence classes that any general classification
appears to be very difficult, if not impossible. However, there is a chance for
some reasonable classification in low dimensions.

Now, let G be a fixed matrix Lie group and let Σ and Σ′ be two (left-
invariant control affine) systems on G. We say that Σ and Σ′ are locally state
space equivalent at g ∈ G and g′ ∈ G if there exist open neighbourhoods N
and N ′ of g and g′, respectively, and a (local) diffeomorphism φ : N → N ′

(mapping g to g′ ) such that Tgφ · Ξ (g, u) = Ξ′ (φ(g), u) for all g ∈ N and
u ∈ R` (i.e., the diagram

N × R`
φ×id R` //

Ξ

��

N ′ × R`

Ξ′

��

TN
Tφ

// TN ′

commutes). Σ and Σ′ are called globally state space equivalent if this happens
globally (i.e., N = G and N ′ = G′). In this paper we consider only local state
space equivalence, which will be referred to, simply, as equivalence. Any equiv-
alence between two control systems can be reduced to an equivalence between
neighbourhoods of the identity. More precisely,



Equivalence of Control Systems on the Euclidean Group SE (2) 515

Proposition 1 (Biggs and Remsing, no date) Σ and Σ′ are equivalent at
g ∈ G and g′ ∈ G if and only if they are equivalent at g = 1 ∈ G and
g′ = 1 ∈ G.

Henceforth, we will assume that any equivalence is between neighbourhoods
of identity. We recall an algebraic characterization of this equivalence. Let Σ
and Σ′ be two full-rank systems.

Proposition 2 (Biggs and Remsing, no date) Σ and Σ′ are equivalent if and
only if there exists a Lie algebra automorphism ψ ∈ Aut (g) such that ψ ·
Ξ (1, u) = Ξ′ (1, u) for all u ∈ R`.

3. Classification

Let (the fixed state space) G be the Euclidean group SE (2). The group

SE (2) =

{[
1 0
v R

]
: v ∈ R2×1, R ∈ SO (2)

}
is a (real, three-dimensional) connected matrix Lie group. The associated Lie
algebra

se (2) =


 0 0 0
x1 0 −x3

x2 x3 0

 : x1, x2, x3 ∈ R


has standard basis

E1 =

0 0 0
1 0 0
0 0 0

 , E2 =

0 0 0
0 0 0
1 0 0

 , E3 =

0 0 0
0 0 −1
0 1 0

 .
(The bracket operation is given by [E2, E3] = E1, [E3, E1] = E2 and [E1, E2] =
0.) With respect to this basis, the group Aut (se (2)) of Lie algebra automor-
phisms of se (2) is given by

 x y v
−ςy ςx w

0 0 ς

 : x, y, v, w ∈ R, x2 + y2 6= 0, ς = ±1

 .

Note that 〈E1, E2〉 is an invariant subspace of every such automorphism.
We now proceed to classify (under local state space equivalence) all full-rank

left-invariant control affine systems on SE (2). This reduces (by Proposition 2)
to the algebraic classification of the corresponding affine parametrization maps.
We outline the approach to be used in classifying these systems. First, we
distinguish between the number of controls involved and the homogeneity of
the systems; this yields four types of systems.
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Remark Let A = a1E1 + a2E2 + a3E3. The condition a3 = 0 is invariant.
More precisely, for any automorphism ψ, the coefficient of E3 in A is zero if
and only if the coefficient of E3 in ψ ·A is zero.

The trace of any full-rank system must admit a vector with a nonzero E3 term.
This property, together with the invariance of the coefficient of E3, allows us
to further distinguish between various families of equivalence classes. For each
of these families, we simplify an arbitrary system by successively applying au-
tomorphisms. Finally, we verify that all the candidates for class representatives
are distinct and not equivalent. Families of these representatives are typically
parametrized by some constants α > 0, β 6= 0 and a vector γ = (γ1, . . . , γk).

When convenient, a system specified by

3∑
i=1

aiEi + u1

3∑
i=1

biEi + u2

3∑
i=1

ciEi + u3

3∑
i=1

diEi

will be represented as a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

 .
As any automorphism ψ : se(2) → se (2) is identified with its matrix (with
respect to the standard basis), the evaluation ψ · Ξ (1, u) becomes a matrix
multiplication.

We start with single-input systems. (Only the inhomogeneous case need be
considered as the homogeneous systems do not have full rank.)

Proposition 3 Every single-input (inhomogeneous) system is equivalent to ex-
actly one of the following systems

Σ
(1,1)
1,α : αE3 + uE2

Σ
(1,1)
2,αγ : E2 + γ1E3 + u(αE3).

Here α > 0 and γ1 ∈ R, with different values of these parameters yielding
distinct (non-equivalent) class representatives.

Let Σ be an arbitrary system represented as a1 b1
a2 b2
a3 b3

 .
First, we consider the case of b3 = 0. Then, as Σ has full rank, a3 6= 0.

Let ψ be the automorphism specified by ς = 1, x = 1, y = 0, v = −a1a3 and
w = −a2a3 . Then1 0 −a1a3

0 1 −a2a3
0 0 1

 a1 b1
a2 b2
a3 0

 =

 0 b1
0 b2
a3 0

 .



Equivalence of Control Systems on the Euclidean Group SE (2) 517

Now, by applying the automorphism specified by
ς = sgn(a3), x = b2, y = −b1 and v = w = 0, we get

 b2 −b1 0
sgn(a3)b1 sgn(a3)b2 0

0 0 sgn(a3)

 0 b1
0 b2
a3 0

 =

 0 0
0 sgn(a3)(b21 + b22)
α 0


where α = sgn(a3)a3 > 0. Lastly, we apply the automorphism specified by

ς = 1, x = sgn(a3)
b21+b22

and y = v = w = 0 to obtain
sgn(a3)
b21+b22

0 0

0 sgn(a3)
b21+b22

0

0 0 1


 0 0

0 sgn(a3)(b21 + b22)
α 0

 =

 0 0
0 1
α 0

 ·
Thus, Σ is equivalent to Σ

(1,1)
1,α .

Next, we assume b3 6= 0. Let ψ be the automorphism specified by ς =
1, x = 1, y = 0, v = − b1b3 and w = − b2b3 . Then1 0 − b1b3

0 1 − b2b3
0 0 1

 a1 b1
a2 b2
a3 b3

 =

 a1 − a3b1
b3

0

a2 − a3b2
b3

0

a3 b3

 =

 c1 0
c2 0
a3 b3


for some corresponding constants c1 and c2. (Note that if c1 = c2 = 0, then
Σ is not inhomogeneous). Now, by applying the automorphism specified by
ς = sgn(b3), x = c2, y = −c1 and v = w = 0, we get c2 −c1 0

sgn(b3)c1 sgn(b3)c2 0
0 0 sgn(b3)

 c1 0
c2 0
a3 b3

 =

 0 0
sgn(b3)

(
c21 + c22

)
0

sgn(b3)a3 α


where α = sgn(b3)b3 > 0. Lastly, we apply the automorphism specified by

ς = 1, x = sgn(b3)
c21+c22

and y = v = w = 0 to obtain
sgn(b3)
c21+c22

0 0

0 sgn(b3)
c21+c22

0

0 0 1


 0 0

sgn(b3)
(
c21 + c22

)
0

sgn(b3)a3 α

 =

 0 0
1 0
γ1 α


where γ1 = sgn(b3)a3. Thus, Σ is equivalent to Σ

(1,1)
2,αγ . (Here γ = γ1.)

Finally, we verify that all these systems are not equivalent. Assume two

systems Σ
(1,1)
1,α and Σ

(1,1)
1,α′ are equivalent. Then there exists an automorphism

such that x y v
−ςy ςx w

0 0 ς

 0 0
0 1
α 0

 =

 vα y
wα ςx
ςα 0

 =

 0 0
0 1
α′ 0
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which implies that α = α′. Similarly, two systems Σ
(1,1)
2,αγ and Σ

(1,1)
2,α′γ′ are equiv-

alent only if α = α′ and γ = γ′. Lastly, any automorphism leaves 〈E1, E2〉
invariant. Thus, as uE2 ∈ 〈E1, E2〉 and u(αE3) /∈ 〈E1, E2〉, it follows that

Σ
(1,1)
1,α and Σ

(1,1)
2,α′γ′ cannot be equivalent.

We now proceed to two-input systems. First, we consider the homogeneous
case and then the inhomogeneous case.

Proposition 4 Every two-input homogeneous system is equivalent to exactly
one of the following systems

Σ
(2,0)
1,αγ : γ1E2 + γ2E3 + u1(αE3) + u2E2

Σ
(2,0)
2,αγ : γ1E2 + γ2E3 + u1(E2 + γ3E3) + u2(αE3).

Here α > 0 and γ1, γ2, γ3 ∈ R, with different values of these parameters yielding
distinct (non-equivalent) class representatives.

Let Σ be an arbitrary system represented as a1 b1 c1
a2 b2 c2
a3 b3 c3

 .
For the case of c3 = 0, an argument similar to that of Proposition 3 shows

that Σ is equivalent to Σ
(2,0)
1,αγ for some γ = (γ1, γ2) ∈ R2 and α > 0. Now

assume that c3 6= 0. Let ψ be the automorphism specified by ς = 1, x = 1, y =
0, v = − c1c3 and w = − c2c3 . Then

ψ ·

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 =

 a1 − a3c1
c3

b1 − b3c1
c3

0

a2 − a3c2
c3

b2 − b3c2
c3

0

a3 b3 c3

 =

 a′1 b′1 0
a′2 b′2 0
a3 b3 c3


for some corresponding constants a′1, a

′
2, b
′
1 and b′2. By applying an automor-

phism ψ′ specified by ς = sgn(c3), x =
sgn(c3)b′2
b′21 +b′22

, y = − sgn(c3)b′1
b′21 +b′22

and v = w = 0,

we get

ψ′ ·

 a′1 b′1 0
a′2 b′2 0
a3 b3 c3

 =

 a′1b
′
2−a

′
2b

′
1

b′21 +b′22
0 0

γ1 1 0
γ2 γ3 α


for some γ = (γ1, γ2, γ3). Here α = sgn(c3)c3 > 0 and a′1b

′
2 − a′2b′1 = 0 as the

system is homogeneous. Thus, Σ is equivalent to Σ
(2,0)
2,αγ .

We verify that all these systems are not equivalent. Assume two systems

Σ
(2,0)
1,αγ and Σ

(2,0)
1,α′γ′ are equivalent. Then there exists an automorphism such

that x y v
−ςy ςx w

0 0 ς

 0 0 0
γ1 0 1
γ2 α 0

 =

 yγ1 + vγ2 vα y
ςxγ1 + wγ2 wα ςx

ςγ2 ςα 0

 =

 0 0 0
γ′1 0 1
γ′2 α′ 0
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which implies that α = α′ and γ = γ′. Similarly, Σ
(2,0)
2,αγ and Σ

(2,0)
2,α′γ′ are

equivalent only if α = α′ and γ = γ′. Lastly, u2E2 ∈ 〈E1, E2〉 and u2(αE3) /∈
〈E1, E2〉, and so Σ

(2,0)
1,αγ cannot be equivalent to Σ

(2,0)
2,α′γ′ .

Proposition 5 Every two-input inhomogeneous system is equivalent to exactly
one of the following systems

Σ
(2,1)
1,αβγ : αE3 + u1(E1 + γ1E2) + u2(βE2)

Σ
(2,1)
2,αβγ : βE1 + γ1E2 + γ2E3 + u1(αE3) + u2E2

Σ
(2,1)
3,αβγ : βE1 + γ1E2 + γ2E3 + u1(E2 + γ3E3) + u2(αE3).

Here α > 0, β 6= 0 and γ1, γ2, γ3 ∈ R, with different values of these parameters
yielding distinct (non-equivalent) class representatives.

Consider an arbitrary system Σ represented as a1 b1 c1
a2 b2 c2
a3 b3 c3

 .
First, we assume that b3 = c3 = 0 (in this case a3 6= 0). Let ψ be the

automorphism specified by ς = 1, x = 1, y = 0, v = −a1a3 and w = −a2a3 . Then

ψ ·

 a1 b1 c1
a2 b2 c2
a3 0 0

 =

 0 b1 c1
0 b2 c2
a3 0 0

 ·
Now, by applying an automorphism ψ′ specified by ς = sgn(a3), x = c2

b1c2−b2c1 , y =
− c1
b1c2−b2c1 and v = w = 0, we get

ψ′ ·

 0 b1 c1
0 b2 c2
a3 0 0

 =

 0 1 0
0 γ1 β
α 0 0


for some γ = γ1. Here α = sgn(a3)a3 > 0 and β =

sgn(a3)(c21+c22)
b1c2−b2c1 6= 0. Thus,

Σ is equivalent to Σ
(2,1)
1,αβγ . When b3 6= 0 and c3 = 0, a very similar argument

shows that Σ is equivalent to Σ
(2,1)
2,αβγ for some γ = (γ1, γ2) ∈ R2, α > 0 and

β 6= 0.
Next, we assume that c3 6= 0. Let ψ be the automorphism specified by

ς = 1, x = 1, y = 0, v = − c1c3 and w = − c2c3 . Then

ψ ·

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 =

 a1 − a3c1
c3

b1 − b3c1
c3

0

a2 − a3c2
c3

b2 − b3c2
c3

0

a3 b3 c3

 =

 a′1 b′1 0
a′2 b′2 0
a3 b3 c3
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for some corresponding constants a′1, a
′
2, b
′
1 and b′2. Now, by applying the

automorphism ψ′ specified by ς = sgn(c3), x =
sgn(c3)b′2
b′21 +b′22

, y = − sgn(c3)b′1
b′21 +b′22

and

v = w = 0, we get

ψ′ ·

 a′1 b′1 0
a′2 b′2 0
a3 b3 c3

 =

 β 0 0
γ1 1 0
γ2 γ3 α


for some γ = (γ1, γ2, γ3). Here α = sgn(c3)c3 > 0 and β 6= 0. Thus, Σ is

equivalent to Σ
(2,1)
3,αβγ .

Finally, we verify that all these systems are not equivalent. Assume two sys-

tems Σ
(2,1)
1,αβγ and Σ

(2,1)
1,α′β′γ′ are equivalent. Then there exists an automorphism

ψ such that ψ · Ξ(2,1)
1,αβγ(1, ·) = Ξ

(2,1)
1,α′β′γ′(1, ·), i.e., αv x+ γ1y βy

αw ςγ1x− ςy ςβx
ςα 0 0

 =

 0 1 0
0 γ′1 β′

α′ 0 0

 .
This implies that α = α′, β = β′ and γ = γ′. Similarly, Σ

(2,1)
2,αβγ and Σ

(2,1)
3,αβγ

are equivalent to Σ
(2,1)
2,α′β′γ′ and Σ

(2,1)
3,α′β′γ′ , respectively, only if α = α′, β = β′

and γ = γ′. Lastly, u2E2, u2(βE2) ∈ 〈E1, E2〉 and u2(αE3) /∈ 〈E1, E2〉, and

so neither Σ
(2,1)
1,αβγ nor Σ

(2,1)
2,αβγ can be equivalent to Σ

(2,1)
3,α′β′γ′ . Likewise, Σ

(2,1)
1,αβγ

cannot be equivalent to Σ
(2,1)
2,α′β′γ′ .

Remark Note that Σ
(2,1)
2,αβγ and Σ

(2,1)
3,αβγ differ only from Σ

(2,0)
1,αγ and Σ

(2,0)
2,αγ ,

respectively, by the βE1 term. Specifically, we have

Ξ
(2,1)
2,αβγ(1, u) = βE1 + Ξ

(2,0)
1,αγ(1, u)

Ξ
(2,1)
3,αβγ(1, u) = βE1 + Ξ

(2,0)
2,αγ(1, u).

We are left to deal with three-input homogeneous systems (as there are
clearly no inhomogeneous systems of this type).

Proposition 6 Every three-input (homogeneous) system is equivalent to ex-
actly one of the following systems

Σ
(3,0)
1,αβγ : γ1E1 + γ2E2 + γ3E3

+ u1(αE3) + u2(E1 + γ4E2) + u3(βE2)

Σ
(3,0)
2,αβγ : γ1E1 + γ2E2 + γ3E3

+ u1(E1 + γ4E2 + γ5E3) + u2(αE3) + u3(βE2)

Σ
(3,0)
3,αβγ : γ1E1 + γ2E2 + γ3E3

+ u1(E1 + γ4E2 + γ5E3) + u2(βE2 + γ6E3) + u3(αE3).

Here α > 0, β 6= 0 and γ1, γ2, γ3, γ4, γ5, γ6 ∈ R, with different values of these
parameters yielding distinct (non-equivalent) class representatives.
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We again consider an arbitrary system Σ represented as

 a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

 .
First, we assume c3 = d3 = 0 (in this case b3 6= 0). Let ψ be the automor-

phism specified by ς = 1, x = 1, y = 0, v = − b1b3 and w = − b2b3 . Then

ψ ·

 a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 0 0

 =

 a1 − b1a3
b3

0 c1 d1

a2 − b2a3
b3

0 c2 d2

a3 b3 0 0

 =

 a′1 0 c1 d1

a′2 0 c2 d2

a3 b3 0 0


for some corresponding constants a′1 and a′2. Now, by applying an auto-
morphism ψ′ specified by ς = sgn(b3), x = d2

c1d2−c2d1 , y = − d1
c1d2−c2d1 and

v = w = 0, we get

ψ′ ·

 a′1 0 c1 d1

a′2 0 c2 d2

a3 b3 0 0

 =

 γ1 0 1 0
γ2 0 γ4 β
γ3 α 0 0


for some γ = (γ1, γ2, γ3, γ4). Here α = sgn(b3)b3 > 0 and β =

sgn(b3)(d21+d22)
c1d2−c2d1 6=

0. Thus, Σ is equivalent to Σ
(3,0)
1,αβγ . For c3 6= 0 and d3 = 0, a very similar

argument shows that Σ is equivalent to Σ
(3,0)
2,αβγ for some γ = (γ1, . . . , γ5) ∈

R5, α > 0 and β 6= 0.
Now we assume d3 6= 0. Let ψ be the automorphism specified by ς =

1, x = 1, y = 0, v = −d1d3 and w = −d2d3 . Then

ψ ·

 a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

 =

 a1 − a3d1
d3

b1 − b3d1
d3

c1 − c3d1
d3

0

a2 − a3d2
d3

b2 − b3d2
d3

c2 − c3d2
d3

0

a3 b3 c3 d3


=

 a′1 b′1 c′1 0
a′2 b′2 c′2 0
a3 b3 c3 d3


for some corresponding constants a′i, b

′
i, c
′
i , i = 1, 2. By applying an auto-

morphism ψ′ specified by ς = sgn(d3), x =
c′2

b′1c
′
2−b′2c′1

, y = − c′1
b′1c

′
2−b′2c′1

and

v = w = 0, we get

ψ′ ·

 a′1 b′1 c′1 0
a′2 b′2 c′2 0
a3 b3 c3 d3

 =

 γ1 1 0 0
γ2 γ4 β 0
γ3 γ5 γ6 α


for some γ = (γ1, . . . , γ6). Here α = sgn(d3)d3 > 0 and β 6= 0. Thus, Σ is

equivalent to Σ
(3,0)
3,αβγ .
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Finally, we verify that all these systems are not equivalent. Assume two sys-

tems Σ
(3,0)
1,αβγ and Σ

(3,0)
1,α′β′γ′ are equivalent. Then there exists an automorphism

such that ψ · Ξ(3,0)
1,αβγ(1, ·) = Ξ

(3,0)
1,α′β′γ′(1, ·), i.e., xγ1 + yγ2 + vγ3 αv x+ γ4y βy

−ςyγ1 + ςxγ2 + wγ3 αw ςxγ4 − ςy ςβx
ςγ3 ςα 0 0

 =

 γ′1 0 1 0
γ′2 0 γ′4 β
γ′3 α′ 0 0

 .
This implies that α = α′, β = β′ and γ = γ′. Similarly, Σ

(3,0)
2,αβγ and Σ

(3,0)
3,αβγ

are equivalent to Σ
(3,0)
2,α′β′γ′ and Σ

(3,0)
3,α′β′γ′ , respectively, only if α = α′, β = β′

and γ = γ′. Lastly, u3(βE2) ∈ 〈E1, E2〉 and u3(αE3) /∈ 〈E1, E2〉, and so

neither Σ
(3,0)
1,αβγ nor Σ

(3,0)
2,αβγ can be equivalent to Σ

(3,0)
3,α′β′γ′ . Likewise, Σ

(3,0)
1,αβγ

cannot be equivalent to Σ
(3,0)
2,α′β′γ′ .

We collect the results in a theorem. In addition, invariant classifying condi-
tions are now included.

Theorem Let

Σ :

3∑
i=1

aiEi + u1

3∑
i=1

biEi + u2

3∑
i=1

ciEi + u3

3∑
i=1

diEi

be a full-rank left-invariant control affine system on SE (2). (For a single-input
system, u2 = u3 = 0, whereas for a two-input system, u3 = 0.)

(i) Every single-input system Σ is equivalent to exactly one of the following
systems

Σ
(1,1)
1,α : αE3 + uE2 b3 = 0

Σ
(1,1)
2,αγ : E2 + γ1E3 + u(αE3) b3 6= 0.

(ii) Every two-input homogeneous system Σ is equivalent to exactly one of the
following systems

Σ
(2,0)
1,αγ : γ1E2 + γ2E3 + u1(αE3) + u2E2 c3 = 0

Σ
(2,0)
2,αγ : γ1E2 + γ2E3 + u1(E2 + γ3E3) + u2(αE3) c3 6= 0.

(iii) Every two-input inhomogeneous system Σ is equivalent to exactly one of
the following systems

Σ
(2,1)
1,αβγ : αE3 + u1(E1 + γ1E2) + u2(βE2) b3 = 0, c3 = 0

Σ
(2,1)
2,αβγ : βE1 + γ1E2 + γ2E3 + u1(αE3) + u2E2 b3 6= 0, c3 = 0

Σ
(2,1)
3,αβγ : βE1 + γ1E2 + γ2E3

+ u1(E2 + γ3E3) + u2(αE3) c3 6= 0.
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(iv) Every three-input system Σ is equivalent to exactly one of the following
systems

Σ
(3,0)
1,αβγ : γ1E1 + γ2E2 + γ3E3 + u1(αE3)

+ u2(E1 + γ4E2) + u3(βE2) c3 = 0, d3 = 0

Σ
(3,0)
2,αβγ : γ1E1 + γ2E2 + γ3E3 + u1(E1 + γ4E2

+ γ5E3) + u2(αE3) + u3(βE2) c3 6= 0, d3 = 0

Σ
(3,0)
3,αβγ : γ1E1 + γ2E2 + γ3E3 + u1(E1 + γ4E2 + γ5E3)

+ u2(βE2 + γ6E3) + u3(αE3) d3 6= 0.

Here, α > 0, β 6= 0 and γi ∈ R, with different values of these parameters
yielding distinct (non-equivalent) class representatives.

4. Final remarks

The results obtained in this paper suggest that the number of parameters, in-
volved in the classification of left-invariant control affine systems, is quite large.
Accordingly, such a classification for systems on higher-dimensional Lie groups
may become cumbersome. However, it seems that a classification for systems
on lower-dimensional Lie groups (at least in three dimensions) is feasible.

Alternative equivalence relations may be considered, e.g., global state space
equivalence and detached feedback equivalence (see Biggs and Remsing, no
date). Remarkably, for SE(2), the classifications under local and global state
space equivalence are identical. In general, this is far from being the case. Then
again, detached feedback equivalence (a weaker equivalence relation) yields far
fewer equivalence classes.

We append a tabulation of the classification in matrix form.
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Type Equivalence representatives (α > 0, β 6= 0, γi ∈ R)

(1, 1)

 0 0
0 1
α 0

  0 0
1 0
γ1 α



(2, 0)

 0 0 0
γ1 0 1
γ2 α 0

  0 0 0
γ1 1 0
γ2 γ3 α



(2, 1)

 0 1 0
0 γ1 β
α 0 0

  β 0 0
γ1 0 1
γ2 α 0

  β 0 0
γ1 1 0
γ2 γ3 α



(3, 0)

 γ1 0 1 0
γ2 0 γ4 β
γ3 α 0 0


 γ1 1 0 0
γ2 γ4 0 β
γ3 γ5 α 0

  γ1 1 0 0
γ2 γ4 β 0
γ3 γ5 γ6 α


[
A B1 · · · B`

]
←→ A+ u1B1 + · · ·+ u`B`

Classification of systems on SE(2) (matrix form)


