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Abstract: There is an important open problem in the theory
of approximate convexity whether every paraconvex function on a
bounded interval is strongly paraconvex. Our aim is to show that
this is not the case. To do this we need the following generalization
of Takagi function.

For a sequence a = (ai)i∈N ⊂ R+ we consider Takagi-like function
of the form

T [a](x) :=

∞
∑

i=1

aidist(x, 1
2i−1Z) for x ∈ R.

We give convenient conditions for verification whether T [a] is para-
convex or strongly paraconvex. This enables us to construct a class
of paraconvex functions which are not strongly paraconvex.

Keywords: paraconvexity, strongly paraconvex function, semi-
concavity, Takagi function.

1. Introduction

In the year 1903 T. Takagi (Takagi, 1903) introduced the function

T (x) :=

∞
∑

n=1

dist(x, 1
2n−1Z) for x ∈ R,

which is a simple example of a continuous nowhere differentiable function. Since
then, the Takagi function and its generalizations of the form

T [a](x) :=

∞
∑

n=1

andist(x, 1
2n−1Z) for x ∈ R, (1)
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where a = (an)n∈N ⊂ R, have been applied in various parts of mathematics,
in particular in the theory of fractals (Allaart and Kawamura, 2010; Hata and
Yamaguti, 1984; Kairies, 1997; Kr̈uppel, 2007, 2008; Kôno, 1987), approximate
convexity and functional equations (Boros, 2008; Hazy, 2005; Hazy and Pales,
2004; Kairies, 1997, 1998; Makó and Pales, 2010; Pales, 2003; Tabor and Tabor,
2009a,b), or special functions theory (Kôno, 1987). For the survey of Takagi-
like functions we refer the reader to Allaart and Kawamara (2011) and Kairies
(1997). It is worth mentioning that by Kôno (1987, Theorem 2.2), T [a] is a
real-valued function if and only if

∑

n∈N

|an|/2n < ∞.

Our aim is to show that the functions of Takagi class can serve as an impor-
tant source of examples and counterexamples for paraconvex and semiconvex
functions. We will show that the Takagi functions have a large variety of prop-
erties related to approximate convexity. To explain our main results, we need
to recall some notions of approximate convexity (Rolewicz 1997, 2000, 2005a,b;
Zaj́ıček, 2007). We put R+ = [0,∞).

Definition 1.1 Let γ : R+ → R+ be a nondecreasing function such that
lim

r→0+
γ(r)/r = 0.

Let V be a convex subset of a normed space. We say that a function f : V →
R is γ-paraconvex if

Cf(x, y; t) := f(tx + (1 − t)y) − tf(x) − (1 − t)f(y) ≤ γ(‖x− y‖)
for x, y ∈ V, t ∈ [0, 1].

(2)

We call f strongly γ-paraconvex if

Cf(x, y; t) ≤ min(t, 1 − t)γ(‖x− y‖) for x, y ∈ V, t ∈ [0, 1]. (3)

We will say that f is (strongly) paraconvex if there exists a respective function
γ such that f is (strongly) γ-paraconvex.

An almost equivalent notion to strong paraconvexity is the notion of semi-
convexity, see Cannarsa and Sinestrari (2004). In fact, on open convex sets
semiconvexity is equivalent to strong paraconvexity, Zaj́ıček (2008). Let us
mention that paraconvex, strongly paraconvex and semiconvex functions play
an important role in the study of real-valued functions on normed spaces (Can-
narsa and Sinestrari, 2004; Hazy, 2005; Hazy and Pales, 2005; Ngai, Luc and
Théra, 2000; Rolewicz, 1979, 2000, 2005a, b; Zaj́ıček, 2007, 2008). Important
problems in the study of paraconvexity and semiconvexity are:

• proving that (under some additional assumptions) paraconvex functions
are strongly paraconvex (Rolewicz, 2000, 2005b).

• showing that strongly paraconvex functions are almost everywhere differ-
entiable, see for example Rolewicz (2005 a,b); Zaj́ıček (2007).

In this paper we deal with, to some extent, dual problems:
• does there exist a paraconvex function f : [0, 1] → R which is not strongly

paraconvex?
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• is every paraconvex function f : [0, 1] → R almost everywhere differen-
tiable?

We answer the above questions negatively by giving conditions for T [a] to
be paraconvex or strongly paraconvex. This, jointly with the Theorem of Kôno
(1987), implies that

∞
∑

n=1

1√
n

dist(x, 1
2n−1Z)

is an example of a paraconvex function which is differentiable only on a set of
measure zero (and, consequently, is not strongly paraconvex).

2. Preliminary results

In this section we prove a list of technical lemmas. We begin with an obvious
but important result (its more general version can be found in Kôno, 1987). For
the convenience of the reader we present its proof.

Proposition 2.1 Let V be a convex subset of a normed space and let f : V → R

be a Lipschitz function. Then

|Cf(x, y; t)| ≤ 2t(1 − t)lip(f)‖x− y‖ for x, y ∈ V, t ∈ [0, 1],

where lip(f) denotes the Lipschitz constant of f .

Proof: For x, y ∈ V, t ∈ [0, 1] we have

|Cf(x, y; t)| ≤ t|f(tx + (1 − t)y) − f(x)| + (1 − t)|f(tx + (1 − t)y) − f(y)|

≤ t(1 − t)lip(f)‖x− y‖ + t(1 − t)lip(f)‖x− y‖ = 2t(1 − t)lip(f)‖x− y‖.
We denote

dn(x) := dist(x,
1

2n−1
Z) for n ∈ N, x ∈ R.

It is obvious that dn is periodic with period 1/2n−1.

Lemma 2.1 Let n ∈ N. Then

dn(x) =

{

|x− k
2n | if k ∈ 2Z,

1
2n − |x− k

2n | if k ∈ 2Z + 1,
for x ∈ [k−1

2n , k+1
2n ].

Proof: Since dn is periodic with period 1/2n−1, it is enough to consider the
case when k = 0 or k = 1. If k = 0, then for x ∈ [− 1

2n ,
1
2n ] we have

dn(x) = dist(x, 1
2n−1Z) = dist(x, {0}) = |x|.

If k = 1, then for x ∈ [0, 2
2n ] we have

dn(x) = dist(x, 1
2n−1Z) = dist(x, {0, 2

2n }) =
1

2n
− |x− 1

2n
|.
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For a sequence a = (ai)i∈N ⊂ R+ and k ∈ N, l ∈ N∪ {∞}, l ≥ k we consider
the function T l

k[a] : R → [0,∞] defined by

T l
k[a](x) :=

l
∑

i=k

aidi(x) for x ∈ R.

Instead of T∞
1 [a] we write T [a]. Clearly, T l

k[a] is periodic with period 1/2k−1.

We use the convention
0
∑

i=1

= 0, which implies that T 0
1 [a] = 0.

Lemma 2.2 Let a = (ai)i∈N ⊂ R+ be given, and let k ∈ Z, n ∈ N be fixed. If
n = 1 or k ∈ 2Z + 1 then T n−1

1 [a] is affine on [k−1
2n , k+1

2n ].

Proof: If n = 1, then T n−1
1 [a] = T 0

1 [a] = 0, which trivially yields the asser-
tion. Consider now the case when n ≥ 2. Then k = 2m+ 1 for a certain m ∈ Z.
Since the sum of affine functions is affine, it is enough to show that di is affine
on

[
k − 1

2n
,
k + 1

2n
] = [

m

2n−1
,
m + 1

2n−1
],

for every i ∈ {1, . . . , n− 1}. For each i ∈ {1, . . . , n− 1} there exists an mi ∈ Z

such that

[
m

2n−1
,
m + 1

2n−1
] ⊂ [

mi

2i
,
mi + 1

2i
].

If mi ∈ 2Z, then by Lemma 2.1

di(x) = |x− mi

2i
| = x− mi

2i
for x ∈ [

mi

2i
,
mi + 1

2i
],

while if mi ∈ 2Z + 1 we get

di(x) =
1

2i
− |x− mi

2i
| =

mi + 1

2i
− x for x ∈ [

mi

2i
,
mi + 1

2i
].

Lemma 2.3 Let a = (ai)i∈N ⊂ R+ be given and let k ∈ Z, l, n ∈ N, l ≥ n be
fixed. Then for x ∈ [ k

2n − 1
2l
, k
2n + 1

2l
] we have

T l
n[a](x) =

{

(an + . . . + al)|x− k
2n | if k ∈ 2Z,

an

2n + ((−an) + an+1 + . . . + al)|x− k
2n | if k ∈ 2Z + 1.

Proof: Consider an arbitrary x ∈ [ k
2n − 1

2l
, k
2n + 1

2l
]. We have

[
k

2n
− 1

2l
,
k

2n
+

1

2l
] ⊂ [

2i−nk

2i
− 1

2i
,

2i−nk

2i
+

1

2i
] for i = n, . . . , l. (4)

If k ∈ 2Z then by (4) and Lemma 2.1 we obtain that

di(x) = |x− 2i−nk

2i
| = |x− k

2n
| for i = n, . . . , l,
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and consequently

T l
n[a](x) =

l
∑

i=n

aidi(x) = (

l
∑

i=n

ai)|x− k

2n
|.

Assume now that k ∈ 2Z + 1. Making use of (4) for i = n and Lemma 2.1
we get

dn(x) =
1

2n
− |x− k

2n
|.

Since 2i−nk ∈ 2Z for i = n + 1, . . . , l, by (4) and Lemma 2.1,

di(x) = |x− k

2n
| for i = n + 1, . . . , l.

Thus

T l
n[a](x) = andn(x) +

l
∑

i=n+1

aidi(x) =
an
2n

+ ((−an) + an+1 + . . . + al)|x− k

2n
|.

Lemma 2.4 For n ∈ N we have
a) Cdn(x, y; t) ≤ 2t(1 − t)|x − y| for x, y ∈ R, t ∈ [0, 1],
b) Cdn(x, y; t) ∈ [− 1

2n ,
1
2n ] for x, y ∈ R, t ∈ [0, 1].

Proof: It is clear that dn is Lipschitz with lip(dn) = 1. By Proposition 2.1
we get a). By the definition of the operator C we have for x, y ∈ R, t ∈ [0, 1]

Cdn(x, y; t) = dn(tx + (1 − t)y) − tdn(x) − (1 − t)dn(y)

∈ [0, 1
2n ] − [0, 1

2n ] = [− 1
2n ,

1
2n ].

Lemma 2.5 Let a = (ai)i∈N ⊂ R+ be a given sequence. We assume that there
exists a q > 1/2 such that

ai+1 ≥ qai for i ∈ N.

Let Kq ∈ N be such that

q + . . . + qKq > 1. (5)

Let n ∈ N and l ∈ N, l ≥ n + Kq be arbitrary.
Then T l

n[a] is convex on [ k
2n − 1

2l ,
k
2n + 1

2l ] for every k ∈ Z.

Proof: We have

an+1 + . . . + al ≥ an(q + . . . + qKq ) ≥ an,

and hence
(−an) + an+1 + . . . + al ≥ 0.

Lemma 2.3 completes the proof.
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Lemma 2.6 Let x, y ∈ R, x < y < x+1/2. Let n be the smallest positive integer
such that

(x, y) ∩ 1
2nZ 6= ∅.

Then the following statements hold:
i) There exists a unique k ∈ Z such that k

2n ∈ (x, y). Moreover, if n > 1
then k ∈ 2Z + 1.

ii) There exists the greatest l ∈ N such that

[x, y] ⊂ [
k

2n
− 1

2l
,
k

2n
+

1

2l
]. (6)

Moreover, then l ≥ n and

1

4

1

2l
≤ y − x ≤ 2

1

2l
. (7)

Proof: i) The existence of k ∈ Z such that k
2n ∈ (x, y) follows from the

definition of n. To prove its uniqueness suppose that there exist k1, k2 ∈ Z,
k1 < k2 such that k1

2n ,
k2

2n ∈ (x, y). Then k1

2n ,
k1+1
2n ∈ (x, y). One of the numbers

k1, k1 +1 is even. Suppose, e.g., that k1 ∈ 2Z. Then k1

2 ∈ Z and k1/2
2n−1 = k1

2n ∈ Z,
which contradicts the definition of n.

Now we prove the second part of i). Suppose that n > 1 and that there exists
a p ∈ Z such that 2p

2n ∈ (x, y). Then we would get p
2n−1 = (2p)/2n ∈ (x, y), and

since n− 1 ∈ N we again obtain a contradiction.
ii) We first prove that l = n satisfies (6). We have to show that k−1

2n ≤ x and

that k+1
2n ≥ y. Suppose for an indirect proof, that either k−1

2n > x or k+1
2n < y.

We consider the case when k−1
2n > x. Obviously, k−1

2n < y. Hence k−1
2n ∈ (x, y),

which contradicts i). The reasoning in the case k+1
2n < y is analogous.

For sufficiently large l ∈ N we have

(
k

2n
− 1

2l
,
k

2n
+

1

2l
) ⊂ (x, y).

It means that the set of integers l satisfying (6) is bounded above. Therefore
there exists the greatest element l in this set. It remains to prove that it satisfies
(7). From (6) we get

y − x ≤ (
k

2n
+

1

2l
) − (

k

2n
− 1

2l
) =

2

2l
.

Now we prove that y−x ≥ 1
4

1
2l . Suppose that it is not true, that is y−x < 1

4·2l .

Since l is the greatest integer satisfying (6), either x < k
2n − 1

2·2l or y > k
2n + 1

2·2l .

If x < k
2n − 1

2·2l then we would get

y = y − x + x <
1

4 · 2l
+

k

2n
− 1

2 · 2l
<

k

2n
,
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a contradiction. Similarly, if y > k/2n + 1/(2 · 2l), we would get

x = y + (−y + x) >
k

2n
+

1

2 · 2l
− 1

4 · 2l
>

k

2n
,

a contradiction.

3. Paraconvexity

In this section we investigate the problem when the function T [a] is paraconvex.

Theorem 3.1 Let a = (ai)i∈N ⊂ R+ be such that T [a] is paraconvex. Then

lim
n→∞

an = 0.

Proof: We have

an = CT [a](0, 2−n−1; 1
2 )/(2−n) ≤ γ(2−(n−1))

2−n
→ 0 as n → ∞.

It occurs that the condition lim
n→∞

an = 0 does not guarantee even the local

paraconvexity of the function T [a].

Theorem 3.2 Let U be a nonempty open subinterval of R and let a = (ai)i∈N ⊂
(0,∞) be such that

lim sup
i→∞

ai+1

ai
≤ 1

2
.

Then T [a]|U is not paraconvex.

Proof: There exist q ∈ (0, 1/2) and n0 ∈ N satisfying

an+1

an
≤ q for n ≥ n0.

We can find n ∈ N, n ≥ n0 and k ∈ 2Z + 1 such that

[
k − 1

2n
,
k + 1

2n
] ⊂ U.

Fix arbitrarily an l ∈ N, l ≥ n. By Lemma 2.3 we have

T∞
n [a]( k

2n ) = an

2n (8)

and

T l
n[a](

k

2n
+

1

2l
) = T l

n[a](
k

2n
− 1

2l
) = an(

1

2n
− 1

2l
) +

l−1
∑

i=n+1

1

2l
ai

≤ an(
1

2n
− 1

2l
) +

1

2l

l−1
∑

i=n+1

anq
i−n = an(

1

2n
− 1

2l
) +

1

2l
anq

1 − ql−n−1

1 − q
.
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Since di(
k
2n ± 1

2l
) = 0 for i > l, we obtain that

T∞
n [a](

k

2n
± 1

2l
) ≤ an(

1

2n
− 1

2l
) +

1

2l
anq

1 − ql−n−1

1 − q
. (9)

By Lemma 2.2 T n−1
1 [a] is affine on the interval [ k

2n − 1
2l
, k
2n + 1

2l
] and therefore

CT n−1
1 [a]|[ k

2n
− 1

2l
, k
2n

+ 1

2l
] = 0. Whence by the above estimations and (8), (9), we

get

CT [a](
k

2n
− 1

2l
,
k

2n
+

1

2l
;

1

2
) = CT∞

n [a](
k

2n
− 1

2l
,
k

2n
+

1

2l
;

1

2
)

≥ 1

2l
(an − anq

1 − ql−n−1

1 − q
),

and consequently

CT [a](
k

2n
− 1

2l
,
k

2n
+

1

2l
;

1

2
)/|( k

2n
+

1

2l
) − (

k

2n
− 1

2l
)|

≥ 1

2
(an − anq

1 − ql−n−1

1 − q
) → 1

2
an

1 − 2q

1 − q
> 0 as l → ∞.

This proves that T [a]|U is not paraconvex.

Theorem 3.3 Let a = (ai)i∈N ⊂ (0,∞) be a sequence such that lim
n→∞

an = 0.

We assume that there exists a q > 1/2 satisfying

ai+1

ai
≥ q for i ∈ N. (10)

Then T [a] is paraconvex.

Proof: Let Kq be the number satisfying (5). We define a function ω : R+ →
R+ by

ω(r) :=

{

0 for r = 0,
max{ai : i ∈ N, i ≥ − log2 r −Kq − 1} for r > 0.

It is clear that ω is nondecreasing and that limr→0+ ω(r) = 0. We will show
that

CT [a](x, y; t) ≤ 2Kq+2|x− y|ω(|x− y|) for x, y ∈ R, t ∈ [0, 1]. (11)

Consider arbitrary x, y ∈ R, x < y, |x − y| < 1/2 and arbitrary t ∈ [0, 1].
Let n, k, l be as in Lemma 2.6. By Lemmas 2.6 and 2.2 we obtain that T n−1

1 [a]
is affine on [x, y]. Therefore we have

CT [a](x, y; t) = CT∞
n (x, y; t) for t ∈ [0, 1].

Two cases may occur:
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a) l < n + Kq,
b) l ≥ n + Kq.

Consider first the case a). Then n + Kq + 1 ≥ l + 2 and by (7) we get

1

2n+Kq+1
≤ 1

2l+2
≤ |x− y|.

This yields that
n ≥ − log2 |x− y| −Kq − 1,

and consequently
2−n ≤ 2Kq+1|x− y|.

Making use of the last two inequalities, Lemma 2.4 b) and definition of ω, we
obtain

CT∞
n [a](x, y; t) =

∞
∑

i=n

Cdi(x, y; t)

≤ max{ai | i ≥ n}
∞
∑

i=n

Cdi(x, y; t)

≤ max{ai | i ≥ − log2 |x− y| −Kq − 1}∑∞
i=n

1
2i

= ω(|x− y|) 1
2n−1 ≤ 2Kq+2|x− y|ω(|x− y|).

We have proved (11).
Now we consider the case b). It follows from Lemma 2.5 that T l

n[a] is convex
on the interval [ k

2n − 1
2l ,

k
2n + 1

2l ]. Hence, by (6), T l
n[a] is convex on [x, y]. Whence

it follows that
CT∞

n [a](x, y; t) ≤ CT∞
l+1[a](x, y; t).

By (7) we have
2−l−2 ≤ |x− y|,

and consequently
l + 1 ≥ − log2 |x− y| − 1.

From the above inequality, Lemma 2.4 b) and (7) we get

CT∞
l+1[a](x, y; t) =

∞
∑

i=l+1

aiCdi(x, y; t)

≤ max{ai | i ≥ l + 1}
∞
∑

i=l+1

1
2i

≤ max{ai | i ≥ − log2 |x− y| − 1} 1
2l

≤ ω(|x− y|) 1
2l

≤ ω(|x− y|)4|x− y|
≤ 2Kq+2|x− y|ω(|x− y|).

We have proved (11).
Consider now the case when |x− y| ≥ 1/2. By Lemma 2.4 b) we obtain

CT [a](x, y; t) =

∞
∑

i=1

aiCdi(x, y; t) ≤
∞
∑

i=1

ai
2i
.
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We are going to compare the above estimation with (11). We denote

γ(r) := 2Kq+2rω(r) for r ∈ R+. (12)

We have

ω(12 ) = max{ai | i ≥ − log2(12 ) −Kq − 1} = max{ai | i ∈ N},

and consequently

γ(12 ) = 2Kq+1 max{ai | i ∈ N} ≥ max{ai | i ∈ N}
∞
∑

i=1

1

2i
≥

∞
∑

i=1

ai
2i
.

Hence (11) is valid also in the case when |x− y| ≥ 1/2.
We have proved (11), which means that the function T [a] is γ-paraconvex

with γ defined by (12).
Example. We show that the condition (10) cannot be replaced by

lim inf
i→∞

ai+1

ai
> 1/2. (13)

We define sequences b = (bi)
∞
i=1 and c = (ci)

∞
i=1 by the formulas

b1 = 3, bi = 0 for i ≥ 2,

c1 = 0, ci = (23 )i−1 for i ≥ 2.

Observe that

T [b](1/2)− T [b](1/2 + h) = 3|h| for h ∈ (−1/2, 1/2). (14)

Clearly a = (ai) = (bi + ci) satisfies (13). We will show that T [a] is not
paraconvex on an arbitrary neighbourhood U of 1/2.

For an indirect proof suppose that T [a] is γ-paraconvex with a certain func-
tion γ. Then for arbitrary sequences (xn), (yn) ⊂ U such that

lim
n→∞

|xn − yn| = 0,

we would get

lim sup
n→∞

CT [a](xn, yn; 1/2)

|xn − yn|
≤ γ(|xn − yn|)

|xn − yn|
= 0. (15)

Clearly

lip(T [c]) ≤
∞
∑

i=2

(
2

3
)i−1 = 2. (16)
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Consider an arbitrary sequence (hn) ⊂ (0, 12 ) convergent to zero and such that
1
2 ± (hn) ⊂ U . We define sequences (xn), (yn) and (tn) by the formulas

xn = 1/2 + hn, yn = 1/2 − hn, tn = 1/2 for n ∈ N.

Then for n ∈ N

1
|xn−yn|CT [a](xn, yn; tn)

= 1
2hn

CT [b](1/2 + hn, 1/2 − hn; 1/2) + 1
2hn

CT [c](1/2 + hn, 1/2 − hn; 1/2)

= 1
2hn

(

1
2 (T [b](1/2)− T [b](1/2 + hn)) + 1

2 (T [b](1/2)− T [b](1/2 − hn))
)

+ 1
2hn

CT [c](1/2 + hn, 1/2 − hn; 1/2)

by (14)
= 3

2 + 1
2hn

(

1
2 (T [c](1/2) − T [c](1/2 + hn)) + 1

2 (T [c](1/2) − T [c](1/2 − hn))
)

≥ 3
2 − 1

2hn

(

1
2 lip(T [c])hn + 1

2 lip(T [c])hn)
by (16)
≥ 1

2 ,

which contradicts (15).
Remark. Let us observe that q = 1/2 is, in a sense, a boundary value. In

Theorem 3.2 we have shown that if a = (ai) ⊂ (0,∞) and

lim sup
i→∞

ai+1

ai
<

1

2
for i ∈ N,

then T [a] is not paraconvex. In the case when a = ( 1
2i )i∈N we have (see, for

example Kairies, 1997, Tabor and Tabor, 2009 b)

T [(2−i)i∈N](x) = x(1 − x) for x ∈ [0, 1].

Whence we immediately obtain that if a = (ai)i∈N ⊂ (0,∞) and

ai+1

ai
=

1

2
for i ∈ N,

then
T [a](x) = 2a1x(1 − x) for x ∈ [0, 1].

One can easily check that this function is paraconvex with γ(r) = a1

2 r2. By
Theorem 3.3 if lim

i→∞
ai = 0 and there exists a q such that

ai+1

ai
≥ q >

1

2
for i ∈ N,

then T [a] is paraconvex.
To show an important consequence of Theorem 3.3 we need the result of

Kôno.

Theorem of Kôno (1987, Theorem 2). Let a = (ai)i∈N ⊂ R be a sequence

such that
∞
∑

i=1

|ai|
2i < ∞. Then
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(i) T [a] is absolutely continuous if and only if
∞
∑

i=1

a2i < ∞,

(ii) T [a] is differentiable on a set of continuum cardinality and the range of
the derivative is a whole line but there exists no derivative almost surely

if and only if lim
i→∞

ai = 0 but
∞
∑

i=1

a2i = ∞,

(iii) T [a] has nowhere finite derivative if and only if lim inf
i→∞

|ai| > 0.

Directly from Theorem 3.3 and Theorem of Kôno we get

Corollary 3.1 Let a = (ai)i∈N ⊂ (0,∞) be a sequence such that
• lim

i→∞
ai = 0,

•
∞
∑

i=1

a2i = ∞,

• there exists a q > 1/2 such that ai+1 ≥ qai for i ∈ N.
Then T [a] is paraconvex function which is differentiable only on a set of measure
zero.

Clearly, an = 1√
n

is a sequence satisfying the assumptions of the above

corollary, which implies that the function

∞
∑

n=1

1√
n

dist(x, 1
2n−1Z)

is an example of a paraconvex function which is differentiable only on a set of
measure zero (and consequently is not strongly paraconvex).

4. Strong paraconvexity

As we know, functions of the Takagi class are usually very irregular. In this
section we will investigate the question when the elements of Takagi class are
strongly paraconvex.

Theorem 4.1 Let a = (ai)i∈N ⊂ R+ be a sequence such that T [a] is strongly
paraconvex. Then

∞
∑

i=1

ai < ∞.

Proof: We have

1

2n

n
∑

i=1

ai = T [a](
1

2n
) = CT [a](1, 0;

1

2n
) ≤ min(

1

2n
, 1 − 1

2n
)γ(1) ≤ 1

2n
γ(1).

Whence we immediately obtain the assertion.
Now we prove a sufficient condition. The idea of the proof is similar to that

of Theorem 3.3.



Paraconvex, but not strongly, Takagi functions 557

Theorem 4.2 Let a = (ai)i∈N ⊂ R+ be a sequence such that there exists a
q > 1/2 satisfying

ai+1

ai
≥ q for i ∈ N.

If

∞
∑

i=1

ai < ∞, (17)

then the function T [a] is strongly paraconvex.

Proof: Let Kq be the constant satisfying (5). We define the function ω :
R+ → R+ by

ω(r) :=

{

0 for r = 0,
∑{ai : i ∈ N, i ≥ − log2 r −Kq − 1} for r > 0.

It is clear that ω is nondecreasing. It follows from (17) that lim
r→0

ω(r) = 0. We

will show that

CT [a](x, y; t) ≤ 2t(1 − t)|x− y|ω(|x− y|) for x, y ∈ R, t ∈ [0, 1]. (18)

Let x, y ∈ R, x < y, t ∈ [0, 1]. We consider first the case when |x− y| ≤ 1/2.
Let n, k, l be as in Lemma 2.6. By the same argumentation as in the proof of
Theorem 3.3 we obtain that

CT [a](x, y; t) = CT∞
n [a](x, y; t).

Again proceeding as in that proof we consider two cases:
a) l ≤ n + Kq,
b) l ≥ n + Kq.

In the first case we get that

n ≥ − log2 |x− y| −Kq − 1,

which means that ∞
∑

i=n

ai ≤ ω(|x− y|).

Making use of Lemma 2.4 a) we obtain

CT∞
n [a](x, y; t) =

∞
∑

i=n

aiCdi(x, y; t)

≤
∞
∑

i=n

ai · max{Cdi(x, y; t) : i ∈ N, i ≥ n}
≤ ω(|x− y|)2t(1 − t)|x − y|.

We have proved (18) in the case a).
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Now we consider the case b). As in the proof of Theorem 3.3 we obtain

CT∞
n [a](x, y; t) ≤ CT∞

l+1[a](x, y; t)

and
l + 1 ≥ − log2 |x− y| − 1.

Applying the above inequalities, definition of ω and Lemma 2.4 i) we get

CT [a]∞n (x, y; t) ≤ CT∞
l+1[a](x, y; t) ≤

∞
∑

i=l+1

ai · max{Cdi(x, y; t) : i ∈ N, i ≥ l + 1}
≤ ω(|x− y|)2t(1 − t)|x− y|.

We have proved (18). It remains to consider the case when |x − y| ≥ 1/2. By
Lemma 2.4 a) we have

CT [a](x, y; t) =
∞
∑

i=1

aiCdi(x, y; t) ≤ (
∞
∑

i=1

ai)2t(1 − t)|x − y|.

On the other hand, for r ≥ 1/2 we have

ω(r) =
∑

{ai : i ∈ N, i ≥ − log2 r −Kq − 1} =

∞
∑

i=1

ai.

Thus, in the considered case we have

CT [a](x, y; t) ≤ 2t(1 − t)|x− y|ω(|x− y|),

which means that (18) is valid, an consequently T [a] is γ-strongly paraconvex,
with γ(r) := 2rω(r).
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Falconer K. (1990) Fractal Geometry. Mathematical Foundations and Ap-
plications. Wiley and Sons, Chichester.



Paraconvex, but not strongly, Takagi functions 559

Hata M., Yamaguti M. (1984) The Takagi’s function and its generalization.
Japan J. Appl. Math. 1, 183–199.
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