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Abstract: We consider a general multiobjective optimization problem
with five basic optimality principles: efficiency, weak and proper Pareto
optimality, strong efficiency and lexicographic optimality. We generalize
the concept of trade-off directions defining them as some optimal surface
of appropriate cones. In convex optimization, the contingent cone can be
used for all optimality principles except lexicographic optimality, where
the cone of feasible directions is useful. In nonconvex casethe contin-
gent cone and the cone of locally feasible directions with lexicographic
optimality are helpful. We derive necessary and sufficient geometrical op-
timality conditions in terms of corresponding trade-off directions for both
convex and nonconvex cases.

Keywords: generalized trade-off directions, multiobjective optimiz-
ation, geometrical characterization, convex and nonconvex optimization,
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1. Introduction

The overall goal in multiobjective optimization is to find a compromise between several
conflicting objectives which is best-fit to the needs of a decision maker. This comprom-
ise is usually referred to as an optimality principle. Various mathematical definitions
of the optimality principle can be derived in several different ways depending on the
needs of the solution approaches used. Moreover, sometimesthe use of one definition
may be more advantageous than some other due to computational complexity reasons.

The usage of trade-offs as a tool containing essential information about comprom-
ise has been suggested in a series of papers (see, e.g., Sakawa and Yano, 1990), where
certain scalarizing functions were used to define the concept. Another approach, pro-
posed in Kaliszewski and Michalowski (1995, 1997) consistsin generating solutions

∗Submitted: November 2010; Accepted: July 2012
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satisfying some pre-specified bounds on trade-off information by means of a scalariz-
ing function. In Henig and Buchanan (1997) for convex (including nondifferentiable)
problems, the concept of trade-offs has been generalized into a cone of trade-off dir-
ections, which was defined as a Pareto optimal surface of a contingent (tangent) cone
located at the point considered.

The usage of contingent and normal cones as well as the cone offeasible directions
is a natural choice in the case of convex optimization (see, e.g., Rockafellar, 1970,
1981). In nonconvex optimization, the main difficulty arises due to the fact that the
contingent cone as well as the cone of feasible directions may lose convexity. Two ad-
ditional types of cones have been shown to be helpful - tangent cone and cone of local
feasible directions (see, e.g., Clarke, 1983). The guaranteed property of convexity of
these cones assures that they can be used to overcome some difficulties which appear
in nonconvex optimization. However, in nonconvex case, tangent cones do not neces-
sarily represent the shape of the set considered even locally and the relation to trade-off
directions is lost. Therefore, to define trade-off directions in nonconvex case, we must
use nonconvex contingent cones as it was suggested originally in Lee and Nakayama
(1997) for smooth problems and later generalized for not necessarily differentiable
problems in Miettinen and Mäkelä (2002).

The aim of this paper is to describe necessary and sufficient optimality conditions
in terms of trade-off directions for both convex and nonconvex cases. The paper is
organized as follows. In Section 2, we formulate a general multiobjective problem and
introduce five basic optimality principles, which are the most common in multiobject-
ive optimization. We give traditional definitions and geometrical ones via appropriate
cones. For every optimality principle considered, we definegeneralized trade-off dir-
ections for convex and nonconvex cases in Section 3. Giving up convexity naturally
means that we need local instead of global analysis. Section4 presents the main res-
ults showing interrelation between optimal solutions and corresponding generalized
trade-off directions. The results are presented for convexand nonconvex cases and
summarized in two schemes. Section 5 is devoted to some illustrative examples in
biobjective case. Final remarks appear in Section 6.

2. Basic optimality principles

We consider general multiobjective optimization problemsof the following form:

min
x∈S

{ f1(x), f2(x), . . . , fk(x)},

where fi : Rn → R areobjective functionsfor all i ∈ Ik := {1, . . . ,k}. The decision
vectorx belongs to the nonemptyfeasible set S⊂ Rn. The image of the feasible set
is denoted byZ ⊂ Rk, i.e. Z := f (S). Elements ofZ are termedobjective vectorsand
they are denoted byz= f (x) = ( f1(x), f2(x), . . . , fk(x))T . Additionally, for non-convex
case we assume
(i) fi : Rn → R are continuous for alli ∈ Ik;
(ii) f (B(x;ε)) open for allx ∈ Sandε > 0, whereB(x;ε) is an open ballwith radius

ε and centerx.
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The Minkowski sum of two setsA andE is defined byA+E = {a+e| a∈ A, e∈
E}. The interior, closure, convex hull and complement of a setA are denoted by intA,
cl A, convA andAC, respectively.

A set A is a coneif λx ∈ A wheneverx ∈ A andλ > 0. We denote the positive
orthant ofRk by Rk

+ = {d ∈ Rk | di ≥ 0 for everyi ∈ Ik}. The positive orthant is also
known asstandard ordering cone. The negative orthantRk

− is defined respectively.
Note, thatRk

− andRk
+ are closed convex cones.

In what follows, the notationz< y for z,y ∈ Rk means thatzi < yi for everyi ∈ Ik
and, correspondingly,z≤ y stands forzi ≤ yi for everyi ∈ Ik.

Simultaneous optimization of several objectives for multiobjective optimization
problem is not a straightforward task. Contrary to the the single objective case, the
concept of optimality is not unique in multiobjective cases.

Below we give traditional definitions of five well-known and most fundamental
principles of optimality (see, e.g., Ehrgott, 2005; Henig,1982; Miettinen, 1999).

Weak Pareto Optimality.An objective vectorz∗ ∈ Z is weakly Pareto optimalif there
does not exist another objective vectorz∈ Z such thatzi < z∗i for all i ∈ Ik.

Pareto optimality or efficiency.An objective vectorz∗ ∈Z is Pareto optimalor efficient
if there does not exist another objective vectorz∈ Z such thatzi ≤ z∗i for all i ∈ Ik
andzj < z∗j for at least one indexj ∈ Ik.

Proper Pareto Optimality.An objective vectorz∗ ∈ Z is properly Pareto optimalif
there exists no objective vectorz ∈ Z such thatz ∈ Z∗ +C for some convex
coneC, Rk

− \ {0} ⊂ int C, attached toz∗. Any Pareto optimal objective vector
which is not properly Pareto optimal is calledimproperly Pareto optimal.

Strong Efficiency.An objective vectorz∗ ∈ Z is strongly Pareto optimalif for all i ∈ Ik
there exists no objective vectorz∈ Z such thatzi < z∗i or, in other words,z∗ ∈ Z
optimizes allzi , i ∈ Ik.

Lexicographic Optimality.An objective vectorz∗ ∈ Z is lexicographically optimalif
for all other objective vectorz∈ Z one of the following two conditions holds:
1) z= z∗

2) ∃ i ∈ Ik : (z∗i < zi)∧ (∀ j ∈ Ii−1 : z∗j = zj), whereI0 = /0.

Next we redefine the five sets of efficient solutions by using appropriate ordering
cones. It is trivial to verify that the definitions of optimality and efficiency formulated
above are equivalent to those following below.

DEFINITION 1 The weakly Pareto optimal set is

WP(Z) := {z∈ Z | (z+ int Rk
−)∩Z = /0};

the Pareto optimal set is

PO(Z) := {z∈ Z | (z+Rk
− \ {0})∩Z= /0};

the properly Pareto optimal set is defined as

PP(Z) := {z∈ Z | (z+C\ {0})∩Z= /0}
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for some convex cone C (chosen beforehand for allz∈ Z) such thatRk
− \ {0} ⊂ int C;

the strongly efficient set is

SE(Z) := {z∈ Z | (z+(Rk
+)

C)∩Z = /0};

and the lexicographically optimal set is

LO(Z) = {z∈ Z | (z+(Ck
lex)

C)∩Z = /0},

where(Ck
lex)

C is a complement cone to the lexicographic cone which is defined as fol-
lows

Ck
lex := {0}∪{d∈ Rk | ∃ i ∈ Ik such that di > 0 and dj = 0 ∀ j < i}.

Note that
SE(Z)⊂ PP(Z)⊂ PO(Z)⊂WP(Z),

and
LO(Z)⊂ PP(Z)⊂ PO(Z)⊂WP(Z).

The corresponding local analogues of the five optimality sets LWP(Z), LPO(Z),
LPP(Z), LSE(Z), LLO(Z) can be defined in a similar way if we assume that the cor-
responding optimality conditions hold within some open ball f (B(x;δ )∩S), δ > 0.
To guarantee the existence of an open neighborhood, we use innonconvex case two
additional assumptions(i) and (ii) on function f (x). In a convex case, local and
global concepts are equal. Note thatLSE(Z) ⊂ LPP(Z) ⊂ LPO(Z) ⊂ LWP(Z) and
LSE(Z)⊂ LLO(Z)⊂ LPO(Z) ⊂ LWP(Z).

3. Generalized trade-off directions

The concept of trade-offs in multiobjective optimization is a key point to define com-
promise between conflicting objectives. It can be used to describe solutions which
linearly approximate the feasible region and which are mutually non-dominated with
respect to the given optimality principle. The trade-off directions can be used in many
algorithms requiring specifying directions which may leadfast to the solution that is
most preferred by the decision maker (see e.g. Branke et al.,2008 and Miettinen,
1999).

Since the contingent cones linearly approximate the shape of the feasible set,
equally well in both convex (global approximation) and nonconvex (local approxima-
tion) cases, they can be used to define the generalized trade-off directions. A (weakly)
Pareto surface of the contingent cone serves for that purpose.

Next we define several geometrical basic cones (see, e.g., Rockafellar, 1970).

DEFINITION 2 The contingent cone of a set Z⊂ Rk at z∈ Z is defined as

Kz(Z) := {d ∈ Rk | there exist tj ց 0 andd j → d such thatz+ t j ·d j ∈ Z}.

DEFINITION 3 The cone of feasible directions of a set Z⊂ Rk at z∈ Z is denoted by

Dz(Z) := {d ∈ Rk | there exists t> 0 such thatz+ t ·d ∈ Z}.
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We introduce the following definition which provides regularity condition forZ at
z∈ Z.

DEFINITION 4 (see, e.g., Aubin, Frankowska, 2008) The set Z is called regular at z∈Z
if Dz(Z) = Kz(Z).

Notice that regularity condition is equivalent to the Karush-Kuhn-Tucker regular-
ity condition (or the so-called KKT constraint qualification) Dz(Z) = cl Az(Z), where
Az(Z) is a cone of attainable directions, which is also known as inner contingent cone,
i.e. clAz(Z) = Kz(Z) (see, e.g., Bazaraa, Sherali, Shetty, 2006).

In nonconvex case, the cone of feasible directionsDz(Z) does not describe the
shape ofZ locally. Thus, we introduce a cone of locally feasible directions, which
reflects the shape ofZ locally (see, e.g., Mäkelä, Neittaanmäki, 1992).

DEFINITION 5 The cone of locally feasible directions of a set Z⊂ Rk at z∈ Z is de-
noted by

Fz(Z) = {d ∈ Rk | there exists t> 0 such thatz+ τ ·d ∈ Z for all τ ∈ (0, t]}.

The following definition provides local regularity condition forZ at z∈ Z.

DEFINITION 6 The set Z is called locally regular atz∈ Z if Fz(Z) = Kz(Z).

For nonconvex cases, Clarke (1983) has defined a convex tangent cone in the fol-
lowing way:

DEFINITION 7 The tangent cone of a set Z⊂ Rk at z∈ Z is given by the formula

Tz(Z) = {d ∈ Rk |

for all t j ց 0 andz j → z with z j ∈ Z,

there existsd j → d with z j + t j ·d j ∈ Z}.

The following basic relations can be derived from the definitions of the concepts
used in Mäkelä, Neittaanmäki (1992), and Rockafellar (1981).

LEMMA 1 For the cones Kz(Z), Dz(Z), Tz(Z) and Fz(Z) we have the following

a) Kz(Z) and Tz(Z) are closed and Tz(Z) is convex.
b) 0∈ Kz(Z)∩Dz(Z)∩Tz(Z)∩Fz(Z).
c) Z ⊂ z+Dz(Z).
d) cl Fz(Z)⊂ Kz(Z) ⊂ cl Dz(Z).
e) Tz(Z) ⊂ Kz(Z).
f) If Z is convex, thencl Fz(Z) = Tz(Z) =Kz(Z) = cl Dz(Z). Moreover Fz(Z) =Dz(Z).

Note that, under convexity assumption, for anyz∈Z we have clFz(Z) =Kz(Z) (see,
e.g., Rockafellar, 1981), i.e. local regularity defines a bit stronger requirement on a
local structure of a set than the convexity assumption. At the same time local regularity
does not necessarily imply clDz(Z) = Kz(Z), the condition which is guaranteed under
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Figure 1. Nonconvex contingent coneKz(Z)

cl Dz(Z) = Kz(Z) ⇐ Regularity
⇑

Convexity ⇒ Tangent regularity
⇓

cl Fz(Z) = Kz(Z) ⇐ Local regularity

Figure 2. Interconnection between various types of regularity

convexity assumption. For more advance properties of tangent and contingent cones
as well as some other related concepts of cones, the reader may consult, e.g., Aubin,
Frankowska (2008).

Even though contingent cones are generally nonconvex, their convexity is guaran-
teed under special circumstances (see, e.g., Aubin, Frankowska, 2008 and Rockafellar,
1970).

DEFINITION 8 The set Z is called tangentially regular atz∈ Z if Tz(Z) = Kz(Z).

Trivially, we can see that e.g. convex sets are always tangentially regular.
Note that in order to formulate some of optimality conditions we use four different

assumptions about structural properties ofZ - convexity, tangent regularity, regularity
and local regularity. In general, all these are different and do not directly imply each
other. The interconnections between the four regularity assumptions are presented in
Fig. 2. Also note that assuming all three types of regularitymay not guarantee the
property of convexity as Fig. 3 shows. Indeed, in this example all four cones are the
same (contingent cone, tangent cone as well as cones of feasible and locally feasible
directions), and they are equal to the half-space which is located above (including the
tangent line itself) the tangent line atz∈ Z.

The sets of generalized trade-off directions can be defined as follows
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Figure 3.Z is regular, tangentially and locally regular atz∈ Z, but not convex

DEFINITION 9 The sets of generalized trade-off directions are defined as follows:
- in case of weak Pareto optimality: GWP(Z) :=WP(Kz(Z));
- in case of Pareto optimality (efficiency): GPO(Z) := PO(Kz(Z));
- in case of proper Pareto optimality: GPP(Z) := PO(Kz(Z));
- in case of strong efficiency: GSE(Z) := SE(Kz(Z));
- in case of lexicographic optimality: GLO(Z) := LO(Fz(Z)).

Note thatGPO(Z) = GPP(Z) by definition, since Pareto optimality can be seen as
an extreme case of proper Pareto optimality withC = Rk

−. It is also easy to see that
in convex caseLO(Fz(Z)) = LO(Dz(Z)) andSE(Kz(Z)) = SE(Dz(Z)). This follows
directly from the definitions and Lemma 1.

Notice that, since two solutions are considered to be mutually lexicographically
non-dominated if they have the same objective vectors, we have to use the cone of
feasible directions in the definition of the set of generalized trade-off directions in case
with lexicographic optimality. Indeed, the set of generalized trade-off directions in case
with local lexicographic optimality is either empty or onlyone point0 (zero vector,
origin of Fz(Z)), so it becomes indifferent ifDz(Z) is closed or open, what is not true
in cases with other types of local optimality.

4. Main results

4.1. Convex case

Here we formulate and prove the basic results concerning relations between optimality
and the corresponding set of generalized trade-off directions in convex case.

THEOREM 1 Let Z be convex. Ifz∈WP(Z), then GWP(Z) 6= /0.

This result directly follows from the result of forthcomingTheorem 6 and the fact that
WP(Z)⊂ LWP(Z).
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THEOREM 2 Let Z be convex. Ifz∈ PO(Z), then GPO(Z) 6= /0 under assumption that
Z is regular. Moreover, GPO(Z) 6= /0 impliesz∈ PO(Z).

Proof. Assumez∈PO(Z). Suppose thatGPO(Z) = /0. Then(d+Rk
−\{0})∩Kz(Z) 6= /0

for all d ∈ Kz(Z). Taking d = 0 (0 ∈ Kz(Z)), we get(Rk
−\{0})∩Kz(Z) 6= /0, and

due to regularity assumption(Rk
−\{0})∩Dz(Z) 6= /0. The last contradicts the initial

assumption thatz∈ PO(Z) (see Theorem 2, Miettinen, Mäkelä, 2001).
Now assumey∈GPO(Z), y 6= 0, then(y+Rk

−\{0})∩Kz(Z) = /0 and(y+Rk
−\{0})

∩ cl Dz(Z) = /0 under assumption thatZ is convex. Then(y+Rk
−\{0})∩Dz(Z) = /0,

and hence (due to linearity and convexity ofDz(Z) in convex case), we have(z+
Rk
−\{0})∩Dz(Z) = /0,. Thus, we have(z+Rk

−\{0})∩Z = /0, i.e. z ∈ PO(Z). This
ends the proof.

THEOREM 3 Let Z be convex. The solutionz∈ PP(Z) if and only if GPP(Z) 6= /0.

This result directly follows from the result of forthcomingTheorem 9 and the fact
that convex set is always tangentially regular and the fact thatPP(Z)⊂ LPP(Z).

THEOREM 4 Let Z be convex. The solutionz ∈ SE(Z) if and only if GSE(Z) 6= /0, or
equivalently GSE(Z) = {0}.

Proof. First we show thatz∈ SE(Z) if and only if 0∈ GSE(Z). Indeed (see Corollary
3.1, Mäkelä, Nikulin, 2009),

z∈ SE(Z)⇔ Kz(Z)∩Rk
+ = Kz(Z)⇔

(0+(Rk
+)

C)∩Kz(Z) = /0⇔ 0∈ GSE(Z).

Now it remains to show that ify ∈ Kz(Z), y 6= 0, theny 6∈ GSE(Z). Indeed, ify ∈
Kz(Z), y 6= 0, theny ∈ Rk

+. Thus,0∈ (y+(Rk
+)

C)∩Kz(Z), and theny 6∈ GSE(Z). This
ends the proof.

THEOREM 5 Let Z be convex. The solutionz ∈ LO(Z) if and only if GLO(Z) 6= /0, or
equivalently GLO(Z) = {0}.

Proof. First we show thatz∈ LO(Z) if and only if 0∈ GLO(Z). Indeed (see Corollary
4.1, Mäkelä, Nikulin, 2009),

z∈ LO(Z)⇔ Dz(Z)∩Ck
lex = Dz(Z)⇔

(0+(Ck
lex)

C)∩Dz(Z) = /0⇔ 0∈ GLO(Z).

Now it remains to show that ifd ∈ Dz(Z), d 6= 0, thend 6∈ GLO(Z). Indeed, ifd ∈
Dz(Z), d 6= 0, thend ∈ Ck

lex and−d ∈ (Ck
lex)

C, i.e. d+(−d) = 0 ∈ Dz(Z), and then
(d+(Ck

lex)
C)∩Dz(Z) 6= /0. Thus,d 6∈ GLO(Z). This ends the proof.
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4.2. Nonconvex case

Here we formulate and prove the basic results concerning relations between optimality
and the corresponding set of generalized trade-off directions in nonconvex case. Notice
also that assumption (ii), made at the beginning of the paperand not used at all in
convex case, in nonconvex settings is going to play a more significant role. The actual
meaning of this assumption is solely technical: it serves toprevent some degenerate
cases such as e.g. mapping an open ball to a point.

THEOREM 6 (see Miettinen, M̈akel̈a, 2003)
If z∈ LWP(Z), then GWP(Z) 6= /0.

To prove the next theorem we need one known result:

THEOREM 7 (see Miettinen, M̈akel̈a, 2001)
If z∈ LPO(Z), then

(z+Rk
−\{0})∩Fz(Z) = /0.

THEOREM 8 If z∈ LPO(Z), then GPO(Z) 6= /0 under the assumption that Z is locally
regular. Moreover, GPO(Z) 6= /0 impliesz ∈ LPO(Z) under the assumptions that Z is
both locally and tangentially regular.

Proof. Assumez∈ LPO(Z). Suppose thatGPO(Z) = /0. Then(d+Rk
−\{0})∩Kz(Z) 6=

/0 for all d ∈ Kz(Z). Takingd = 0 (0∈ Kz(Z)), we get(Rk
−\{0})∩Kz(Z) 6= /0, and due

to local regularity assumption(Rk
−\{0})∩ Fz(Z) 6= /0. The last contradicts (due to

Theorem 7) the initial assumption thatz∈ LPO(Z).
Now assumey ∈ GPO(Z), y 6= 0; then

(y+Rk
−\{0})∩Kz(Z) = /0, and

(y+Rk
−\{0})∩Fz(Z) = /0

under the assumption thatZ is locally regular. IfZ is tangentially regular, then (due
to linearity and convexity ofFz(Z) under tangent regularity), we have(z+Rk

−\{0})∩
Fz(Z) = /0. Thus, we havez∈ LPO(Z). This ends the proof.

THEOREM 9 (see Miettinen, M̈akel̈a, 2002) Ifz∈ LPP(Z), then GPP(Z) 6= /0.
Moreover, GPP(Z) 6= /0 impliesz∈ LPP(Z) under the assumption that Z is tangentially
regular.

To prove the next theorem we are going to use one known result:

THEOREM 10 (see M̈akel̈a, Nikulin, 2009) Ifz∈ LSE, then

Kz(Z)∩Rk
+ = Kz(Z).

THEOREM 11 If z∈ LSE(Z), then GSE(Z) 6= /0, or equivalently GSE(Z) = {0}.
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Proof. Let z∈ LSE(Z). Then by Theorem 10

Kz(Z)∩Rk
+ = Kz(Z).

Then it follows that

(0+Rk
−\{0})∩Kz(Z) = /0⇒ 0∈ GSE(Z).

Now it remains to show that ify ∈ Kz(Z), y 6= 0, then y 6∈ GSE(Z). Indeed, if
y ∈ Kz(Z), y 6= 0, theny ∈ Rk

+. Thus,0∈ (y+(Rk
+)

C)∩Kz(Z), and theny 6∈ GSE(Z).
This ends the proof.

THEOREM 12 If z∈ LLO(Z), then GLO(Z) 6= /0, or equivalently GLO(Z) = {0}.

Proof. Let z∈ LLO(Z). Then (see Theorem 5, Mäkelä, Nikulin, 2009)

Fz(Z)∩Ck
lex = Fz(Z).

Now it remains to show that ifd ∈ Fz(Z), d 6= 0, thend 6∈ GLO(Z). Indeed, ifd ∈
Fz(Z), d 6= 0, thend ∈ Ck

lex and−d ∈ (Ck
lex)

C, i.e. d+(−d) = 0 ∈ Fz(Z), and then
(d+(Ck

lex)
C)∩Fz(Z) 6= /0. Thus,d 6∈ GLO(Z). This ends the proof.

5. Examples

We will illustrate geometrical meaning of the basic resultsformulated above via the
following examples in biobjective case.

To construct the example, we will use the following norms in an arbitraryq–
dimensional vector spaceRq:
- L1 or linear norm

||y||1 := ∑
i∈Iq

|yi |, y ∈ Rq;

- L2 or Euclideannorm

||y||2 :=
√

∑
i∈Iq

(yi)2, y ∈ Rq;

- L∞ or Chebyshevnorm
||y||∞ := max

i∈Iq
|yi |, y ∈ Rq

.

The first example describes the results in convex case.

Convex case example

Let z := f (x) = ( f1(x), f2(x)), where f1(x) = x1 and f2(x) = x2. Assume that the
sets of feasible solutions are given as

X1 :=
{

x | ||x||1 ≤ 1
}

,
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X2 :=
{

x | ||x||2 ≤ 1
}

,

X3 :=
{

x | ||x||∞ ≤ 1
}

.

Then, respectively, we have

Z1 :=
{

( f1(x), f2(x)) : x ∈ X1

}

=
{

z | ||z||1 ≤ 1
}

,

Z2 :=
{

( f1(x), f2(x)) : x ∈ X2

}

=
{

z | ||z||2 ≤ 1
}

,

Z3 :=
{

( f1(x), f2(x)) : x ∈ X3

}

=
{

z | ||z||∞ ≤ 1
}

.

Fig. 4 representsZ1 in objective space, andz= (−1,0). Then we have
i)

Fz(Z1) = Dz(Z1) = Kz(Z1) = Tz(Z1) =

{z | z2 ≥−z1−1, z2 ≤ z1+1, −1≤ z1},
i.e. Z1 is regular as well as tangentially and locally regular at point z;

ii)
z∈WP(Z1) = PO(Z1) = PP(Z1) =

{z | z1+ z2 =−1, −1≤ z1 ≤ 0, −1≤ z2 ≤ 0},
z∈ LO(Z1) = {(−1,0)}, z 6∈ SE(Z1) = /0;

iii)
GWP(Z1) = GPO(Z1) = GPP(Z1) =

{d | d2 =−d1−1, −1≤ d1},
GLO(Z1) = {0}, GSE(Z1) = /0.

Note that iii) is consistent with the results of Theorems 1 through 5.
Fig. 5 representsZ2 in objective space andz= (− 1√

2
,− 1√

2
). Then we have

i)
Kz(Z2) = Tz(Z2) = {z | z2 ≥−z1−

√
2},

Dz(Z2) = Fz(Z2) = {z | z2 >−z1−
√

2},
i.e. Z2 is neither regular nor locally regular at pointz, but it is tangentially
regular;

ii)
z∈WP(Z2) = PO(Z2) = {z | z2

1+ z2
2 = 1, −1≤ z1 ≤ 0, −1≤ z2 ≤ 0},

z∈ PP(Z2) = {z | z2
1+ z2

2 = 1, −1< z1 ≤ 0, −1< z2 ≤ 0},
z 6∈ LO(Z2) = {(−1,0)}, z 6∈ SE(Z2) = /0;

iii)
GWP(Z2) = GPO(Z2) = GPP(Z2) = {d | d2 =−d1−

√
2},

GLO(Z2) = /0, GSE(Z2) = /0.
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Figure 4.L1-case

Note that iii) corresponds to the results of Theorems 1 through 5.
Fig. 6 representsZ3 in objective space andz= (−1,−1). Then we have

i)
Fz(Z3) = Dz(Z3) = Kz(Z3) = Tz(Z3) =

{z | z2 ≥−1, z1 ≥−1},
i.e. Z3 is regular as well as tangentially and locally regular at point z;

ii)
z∈WP(Z3) = {z | z2 =−1, −1≤ z1 ≤ 1}∪{z | z1 =−1, −1≤ z2 ≤ 1},

z∈ PO(Z3) = PP(Z3) = LO(Z3) = SE(Z3) = {(−1,−1)};

iii)
GWP(Z3) = {d | d2 =−1, −1≤ d1}∪{d | d1 =−1, −1≤ d2} 6= /0,

GPO(Z3) = GPP(Z3) = GLO(Z3) = GSE(Z3) = {0} 6= /0.

Note that iii) is consistent with the results of Theorems 1 through 5.
The second example illustrates the results in nonconvex case.

Nonconvex case example

Fig. 7 representsZ in objective space and some fixed pointz∈ Z. Then we have
i) Z is neither regular nor locally regular at pointz. However, it is tangentially regular;
ii)

z∈ LWP(Z), z∈ LPO(Z), z∈ LPP(Z),

z 6∈ LLO(Z), z 6∈ LSE(Z);

iii)
GWP(Z) = GPO(Z) = GPP(Z) 6= /0,

GLO(Z) = /0, GSE(Z) = /0.
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Figure 5.L2-case

Figure 6.L∞-case

Figure 7. The first example for nonconvexZ
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Figure 8. The second example for nonconvexZ

Fig. 8 representsZ in objective space and some fixed pointz∈ Z. Then we have
i) Z is neither regular nor locally regular at pointz. However, it is tangentially regular;
ii)

z∈ LWP(Z), z∈ LPO(Z), z∈ LLO(Z),

z 6∈ LPP(Z), z 6∈ LSE(Z);

iii)
GWP(Z) 6= /0, GPO(Z) = GPP(Z) = /0,

GLO(Z) = {0} 6= /0, GSE(Z) = /0.

Note that in both nonconvex examples iii) is consistent withthe results of Theorems
6 through 12.

6. Conclusions

In this paper we introduced and characterized the concept oftrade-off directions for
five most common optimality principles in multiobjective optimization. We generally
followed the approach, initially proposed by Henig and Buchanan (1997), then fol-
lowed by Lee and Nakayama (1997), as well as Miettinen and Mäkelä (2002, 2003),
where trade-off directions are defined via some optimal surface of appropriate cones.
The approach of Henig and Buchanan (1997) is independent of the scalarizing func-
tion and has only minor presumptions to the problem treated.The cone of trade-off
directions is defined via Pareto optimal surface of the tangent cone and the treatment
is based on classical tools of convex analysis. The special attention was made to the
proper Pareto optimality. To maintain nonconvexity Lee andNakayama (1997) sugges-
ted to use generalized trade-off directions employing nonconvex contingent cone and
formulating some essential results assuming differentiability. Some related results are
also given in Aubin, Frankowska (2008) and Luc (1989) in moregeneral spaces.
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Relaxing the convexity means that we have to analyze small neighborhoods of
points instead of the whole set. We derive our results for a general framework im-
posing some additional local regularity properties to maintain nonconvexity as well as
some general regularity properties in convex case for the ”hardest” optimality prin-
ciples. Only few extra assumptions about the problem itselfin nonconvex case are
needed to avoid degeneracy in our analysis. Under our approach, we specified neces-
sary and in some cases also sufficient conditions of optimality in terms of correspond-
ing trade-off directions in both convex and nonconvex cases. The results obtained not
only summarize and structure some already known facts abouttrade-off directions but
also shed new light on their structural properties, emphasizing some fundamental sim-
ilarities and differences existing in convex and nonconvexoptimization. An interesting
topic of further research is to investigate applicability of the proposed concepts in dif-
ferent multiobjective interactive methods (see, e.g., Branke, Deb, Miettinen, Slowinski,
2008).

Now we shortly analyze the similarity and difference between the results in two
cases: convex and nonconvex. Here we would like to emphasizetwo facts about the
results. The first fact is that some conditions, which are necessary and sufficient (under
some extra assumptions) for optimality in convex case, are transformed into neces-
sary but not sufficient conditions for local optimality in nonconvex case. The loss of
sufficiency can be explained by the fact that the above-mentioned conditions use the
contingent cone, which may have ”bad” directions towards feasibility. In the case with
proper Pareto optimality, tangent regularity is crucial toprove sufficiency. Sufficiency
in Pareto case is not guaranteed, but it can be achieved by imposing some regularity
rules, which actually create local convexity towards some directions but keep the re-
maining areas irregular, i.e. nonconvex. The local and tangent regularity is used to
prove the sufficiency. To investigate if the the assumptionsof tangent regularity and
local regularity could be weakened is an interesting direction for continuation of re-
search in this area. Secondly, we noticed that in the case of lexicographic and strong
efficiency, the set of generalized trade-off directions is either empty or it contains zero
vector only. This reflects the fact that these two optimalityprinciples do not contain
non-zero trade-offs, i.e. there is no meaningful compromise between objectives in these
cases. Indeed, the lexicographic optimality principle involves sequential optimization,
and strong efficiency is a kind of parallel optimization, whose ideas are closer to single
objective than to multiple objective optimization. Despite this, non-emptiness of the set
of generalized trade-offs is quite informative itself, andtherefore generalized trade-offs
can be seen as an alternative advanced tool to describe the given optimality conditions
for all five optimality principles considered in the paper.
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