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Abstract: We introduce a new aggregation operator that uni-
fies the weighted average (WA) and the ordered weighted averaging
(OWA) operator in a single formulation. We call it the ordered
weighted averaging – weighted average (OWAWA) operator. This
aggregation operator provides a more complete representation of
the weighted average and the OWA operator because it considers
the degree of importance that each concept has in the aggregation
and includes them as particular cases of a more general context. We
study different properties and families of the OWAWA operator. The
applicability of this method is very broad because any study that
uses the weighted average or the OWA can be revised and extended
with our approach. We focus on a multi-person decision-making
application in the selection of financial strategies.
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1. Introduction

Weighted average (WA) is one of the most common aggregation operators. It
can be used in a wide range of different problems including statistics, economics
and engineering. The ordered weighted averaging (OWA) operator is another
interesting aggregation operator though its use has not been reported so much in
the literature since it first appeared in 1988 (Yager, 1988). The OWA operator
provides a parameterized family of aggregation operators that range from the
maximum to the minimum values. For further reading on the OWA operator and
its applications, consult Beliakov et al. (2007); Grabisch et al. (2009); Merigó
and Gil-Lafuente (2009); Yager and Kacprzyk (1997); Yager et al. (2011).

Recently, some authors have tried to unify both concepts in the same formu-
lation. Notable works include that of Torra (1997), who introduced the weighted
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OWA (WOWA) operator, and Xu and Da (2003), who reported the hybrid aver-
aging (HA) operator. Both models unified the OWA and the WA because both
concepts were included in the formulation as particular cases. However, these
models seem to be a partial unification, and they fail to completely unify the
concepts or weight their relevance to a specific problem. For example, in some
problems, we may prefer to give more importance to the OWA operator because
we believe that it is more relevant. This issue cannot be addressed with WOWA
or HA. Moreover, there are other studies that have unified WAs with OWAs (see
Merigó and Casanovas, 2010a; Liu, 2011; Merigó et al., 2010; Zhao et al., 2010;
Zhou and Chen, 2011). An interesting approach is that of immediate probabil-
ities (Engemann et al., 1996; Merigó, 2010; Yager et al., 1995), which is used
for unifying probability with the OWA operator. Sometimes probability can be
seen as a weighted average, so it is possible to extend this approach to the case
with WAs. However, this case does not consider how relevant each concept is
in the aggregation.

In this paper, we present a new approach that unifies the OWA operator
with the WA. We call it the ordered weighted averaging – weighted average
(OWAWA) operator. We could also refer to it as the WOWA operator, but
there is another approach that already uses this name (Torra, 1997). The main
advantage of this approach is that it unifies the OWA and the WA, taking into
account the degree of importance that each concept has in the formulation.

We study different properties of the OWAWA operator. We analyze some of
the common measures for characterizing the weighting vector of OWA aggrega-
tion and apply these to the case OWAWA. We develop a new degree of or-ness
that considers the or-ness of OWA and WA. We also introduce a new entropy
measure that unifies Yager entropy with Shannon entropy. Furthermore, we
present a new divergence measure and a new balance operator for aggregation
that uses OWAs and WAs.

We also develop different families of OWAWA operators. Moreover, we are
also able to unify arithmetic mean (or simple average) with OWA operator when
the weights of WA are equal, obtaining the arithmetic-OWA. We also find a
similar result with the WA: the arithmetic-WA. We study other families such as
the step-OWAWA, median-OWAWA, olympic-OWAWA, S-OWAWA, centered-
OWAWA and maximal entropy OWAWA (MEOWAWA) operator.

We analyze the construction of interval numbers and related structures by
using OWA and OWAWA operators in an aggregation process. We see that the
OWA operator permits to organize information in the form of interval numbers
where we consider the minimum, the maximum and further internal aggregations
obtained with it. We extend this approach for the construction of some basic
fuzzy numbers. We also consider the use of OWAWA operators obtaining a
more complete representation that includes the subjective importance of the
arguments. Thus, we arrive at the concept of the subjective interval number
and the subjective fuzzy number. We analyze this methodology from different
perspectives, focussing on the aggregation of arguments when considering a wide
range of alternatives and states of nature.
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We also study the applicability of the new approach. It is possible to develop
an astonishingly wide range of applications because the OWAWA includes the
WA and the OWA as special cases. Therefore, all studies that use either the WA
or the OWA can be revised and extended with this new approach. For example,
we can apply OWAWA to statistics, economics, engineering, decision theory and
biology. In this paper, we focus on a multi-person decision-making problem of
selection of financial strategies. The main advantage of the OWAWA in these
problems is that it is possible to consider the degree of importance and the
attitudinal character of the decision-maker in the same formulation. Moreover,
depending on the particular type of OWAWA operator used, the results may
lead to different decisions.

This paper is organized as follows. In Section 2, we briefly review the WA,
the OWA operator and some previous models integrating WA and OWA in the
same formulation. In Section 3, we present the new approach, and in Section 4,
we study different measures for characterizing the weighting vector. Section 5
analyzes different families of OWAWA operators. In Section 6 we explain how
to construct interval numbers and related structures with OWAWA operators.
In Section 7, we study applications of the new approach, Section 8 analyzes the
application to a multi-person decision-making problem and Section 9 presents
a numerical example. Section 10 presents the conclusions of the paper.

2. Preliminaries

In this section, we briefly review some basic concepts used throughout the paper.
We analyze weighted average (WA), OWA operator and some previous models
considered the possibility of using the OWA operator in the weighted average,
such as the WOWA operator and the hybrid averaging method.

2.1. The weighted average

Weighted average (WA) is one of the most common aggregation operators found
in the literature. It has been used in an incredibly wide range of applications
including statistics, economics and engineering. It can be defined as follows.

Definition 1 A WA operator of dimension n is a mapping Rn → R that has
an associated weighting vector V , with vi ∈ [0, 1] and

∑n
i=1 vi = 1, such that:

WA(a1, ..., an) =

n
∑

i=1

viai, (1)

where ai represents the argument variable.

The WA operator satisfies the usual properties of aggregation operators.
For further reading on different extensions and generalizations of WA, see for
example Beliakov et al. (2007); Grabisch et al. (2011); Merigó (2011).
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An interesting aspect of the OWAWA operator is that it is possible to reorder
the arguments and the weights of the WA, although it is not necessary. This
is relevant because in order to unify the WA with the OWA, we need to adapt
either the WA or the OWA. If we reorder the WA to the OWA, we have to do
the following:

WA(a1, ..., an) =

n
∑

j=1

vjbj , (2)

where bj is the jth largest argument ai, and vj is the weight vi reordered ac-
cording to the reordering of the arguments ai in the form of bj such that vj ∈
[0, 1] and

∑n
j=1 vj = 1.

Obviously, we get the same result in both cases. The recording is a key
feature for unifying the OWA with the WA and will be explained in Section 3.
Note that it is possible to apply the second method to all of the types of WA
discussed in the literature, including the quasi-arithmetic WA (Quasi-WA), the
weighted distance and the fuzzy WA (FWA).

2.2. The OWA operator

The OWA operator (Yager, 1988) is an aggregation operator that provides a
parameterized family of aggregation operators between the minimum and the
maximum values. It can be defined as follows.

Definition 2 An OWA operator of dimension n is a mapping OWA: Rn → R
that has an associated weighting vector W of dimension n with wj ∈ [0, 1] and
∑n

j=1 wj = 1, such that:

OWA(a1, ..., an) =

n
∑

j=1

wjbj , (3)

where bj is the jth largest of the ai.

Note that different properties could be studied such as the distinction be-
tween descending and ascending orders, different measures for characterizing the
weighting vector and different families of OWA operators. For further reading,
refer, e.g., to Merigó and Casanovas (2010b; 2011a; 2011b; 2011c); Xu and Xia
(2011); Yager (1993); Zeng (2011); Zhou and Chen (2011).

The reordering process of the aggregation is an interesting aspect to con-
sider. In most of the OWA literature, we see that the arguments are reordered
according to an established weighting vector. However, we may also develop the
reordering process by reordering the weighting vector according to the positions
of the arguments (Yager, 1998a). That is,

OWA(a1, ..., an) =

n
∑

i=1

aiwi, (4)
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where wi is the ith weight wj reordered according to the positions of the ai.

Note also that (4) is especially useful in the unification between OWA and
WA in the situation where we adapt the reordering of the OWA to the WA.

It is possible to extend this analysis to the whole OWA literature by consid-
ering it in different extensions, such as the uncertain OWA (UOWA) (Xu and
Da, 2002), the induced quasi-OWA (Quasi-IOWA) (Merigó and Gil-Lafuente,
2009) and the OWA distance (OWAD) (Merigó and Gil-Lafuente, 2010).

2.3. Some previous approaches using the OWA operator

in the weighted average

Some previous models already considered the possibility of using OWA oper-
ators and WAs in the same formulation. The main models are the weighted
OWA (WOWA) operator (Torra, 1997; Torra and Narukawa, 2010), the hybrid
averaging (HA) operator (Xu and Da, 2003) and the importance OWA operator
(Yager, 1998b). These techniques can unify OWAs and WAs in the same model,
but they are unable to consider the degree of importance that each case may
have in the aggregation process. Moreover, in some particular cases, we also find
inconsistencies. Other methods could be considered, such as the concept of im-
mediate probability (Engemann et al., 1996; Yager et al., 1995). This method is
focused on probability but it is easy to extend it to use WAs because WA may be
interpreted as a subjective probability. To reiterate, these and other approaches
are useful for some particular situations, but they are less complete than the
OWAWA, because, although they can unify OWAs with WAs, they cannot unify
them with different degrees of importance. In future research, we will also prove
that these models can be seen as a special case of a general OWAWA operator
(or its respective model with probabilities), which uses quasi-arithmetic means.
Obviously, it is possible to develop more complex models of the WOWA, the
HA, the I-OWA and the IP-OWA to account for the degree of importance of
the OWAs and the WAs in the model, but these seem to be artificial and not
a natural unification as it will be shown below. The WOWA operator can be
defined as follows.

Definition 3 Let P and W be two weighting vectors of dimension n [P = (p1,
p2, . . . , pn)], [W = (w1, w2, . . . , wn)], such that pi ∈ [0, 1] and

∑n
i=1 pi = 1,

and wj ∈ [0, 1] and
∑n

j=1 wj = 1. In this case, a mapping WOWA: Rn → R is
a WOWA operator of dimension n if:

WOWA(a1, ...., an) =

n
∑

i=1

ωiaσ(i), (5)

where {σ(1), . . . , σ(n)}is a permutation of {1, . . . , n}such that aσ(i−1) ≥ aσ(i)
for all i = 2, . . . , n. (i.e. aσ(i) is the ith largest in the collection a1, . . . , an),
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and the weight ωi is defined as:

ωi = w ∗





∑

j≤i

pσ(j)



− w ∗





∑

j<i

pσ(j)



 , (6)

with w* a monotonically increasing function that interpolates the points (i/n,
∑

j≤i wj) together with the point (0, 0). w* is required to be a straight line when
the points can be interpolated in this way.

The hybrid averaging operator developed by Xu and Da (2003) can be de-
fined as follows:

Definition 4 A HA operator of dimension n is a mapping HA: Rn → R
that has an associated weighting vector Wof dimensionnwith wj ∈ [0, 1] and
∑n

j=1 wj = 1, such that:

HA(a1, a2, ..., an) =
n
∑

j=1

wjbj , (7)

where bjis the jth largest of the â i(âi = nωiai, i = 1,2,. . . ,n), ω = (ω1, ω2, . . . ,
ωn) is the weighting vector of the ai,with ωi ∈ [0, 1] and the sum of the weights
is 1.

As we have mentioned before, there are other methods that could be considered.
We especially want to consider the concept of immediate probability. Note that
in our definition we extend the immediate probability to the case where we use
WAs instead of probabilities. Thus, we can refer to this model as the immediate
weighted average (IWA). It can be defined as follows:

Definition 5 An IWA operator of dimension n is a mapping IWA: Rn → R
that has an associated weighting vector W of dimension n withwj ∈ [0, 1] and
∑n

j=1 wj = 1, such that:

IWA(a1, a2, ..., an) =

n
∑

j=1

v̂jbj , (8)

where bj is the jth largest of the ai, each ai has associated a WA vi,vj is the
associated WA of bj, and v̂j = (wjvj/

∑n
j=1 wjvj).

3. The ordered weighted averaging – weighted average

operator

The ordered weighted averaging – weighted average (OWAWA) operator is a new
model that unifies the OWA operator and the weighted average (WA). There-
fore, both concepts can be seen as particular cases of the more general OWAWA.
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This approach seems to be complete, at least as an initial real unification be-
tween OWA operators and WAs. It can also be seen as a unification between
decision-making problems with uncertainty (with OWA operators) and in a risk
environment (with probabilities). The main advantage of the OWAWA operator
is that it can unify the OWA and the WA considering the degree of importance
that each concept has in the aggregation. Thus, we are able to represent situ-
ations where either the OWA or the WA is more relevant in the analysis. This
aspect is fundamental because it gives high flexibility of adaptation to different
situations. Therefore, the OWAWA is very useful for implementing different
applications in the available models in the literature by adding the OWA or the
WA because the formulation permits the addition of this concept in a flexible
way depending on the relevance it may have in the application. For example, in
some situations we may consider that using the OWA in a problem that already
uses the WA is not very relevant but should be considered. Thus, by using this
model we can introduce the OWA with a low degree of importance (1%, 2%,
etc.) and consider the alterations in the results. On the other hand, we may
also introduce the OWA in such a way that it is more important than the WA,
giving it a high degree of importance (80%, 90%, etc.). Along the same line, we
can introduce the WA to a problem formulated with the OWA. However, this is
less likely, because much more research has been published using the WA than
the OWA in fields such as statistics, economics, engineering and biology.

In the following, we are going to analyze the OWAWA operator, which is
defined as follows.

Definition 6 An OWAWA operator of dimension n is a mapping OWAWA:
Rn → R that has an associated weighting vector W of dimension n such that
wj ∈ [0, 1] and

∑n
j=1 wj = 1, according to the following formula:

OWAWA(a1, ..., an) =

n
∑

j=1

v̂jbj , (9)

where bj is the jth largest of the ai, each argument ai has an associated weight
(WA) vi with

∑n
i=1 vi = 1 and vi ∈ [0, 1], v̂j = βwj + (1− β)vj with β ∈ [0, 1]

and vj is the weight (WA) vi ordered according to bj, that is, according to the
jth largest of the ai.

Note that it is also possible to formulate the OWAWA operator separating
the part that strictly affects the OWA operator and the part that affects the
WA. This representation is useful to show both models in the same formulation,
but it does not seem to be a unique equation that unifies both approaches.

Theorem 1 An OWAWA operator is a mapping OWAWA: Rn → R of di-
mension n, if it has an associated weighting vector W , with

∑n
j=1 wj = 1 and

wj ∈ [0, 1] and a weighting vector V that affects the WA, with
∑n

i=1 vi = 1 and
vi ∈ [0, 1], such that:
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OWAWA(a1, ..., an) = β

n
∑

j=1

wjbj + (1− β)

n
∑

i=1

viai, (10)

where bj is the jth largest of the arguments ai and β ∈ [0, 1].

Proof. Assuming (10), first we have to adapt the reordering of either bj or ai
so they can be integrated in the same equation. For example, if we reorder ai,
we get:

OWAWA(a1, ..., an) = β

n
∑

j=1

wjbj + (1− β)

n
∑

i=1

vjbj , (11)

where vj is the weight vi ordered according to bj and bj is the jth largest of the
ai. Since bj is used in both parts of the equation, now we can form:

OWAWA(a1, ..., an) =
n
∑

j=1

v̂jbj , (12)

where v̂j = βwj + (1 − β)vj and
∑n

j=1 v̂j = 1. Thus, we get 9.
Note that this unification process is in accordance with the general definition

of aggregation operators when combining two aggregations into a single one (Be-
liakov et al., 2007). In the following example, we demonstrate how to aggregate
with the OWAWA operator. We consider aggregation with both definitions.

Example 1. Assume the following arguments in an aggregation process:
(30, 50, 20, 60). Assume the weighting vector W = (0.2, 0.2, 0.3, 0.3) and the
probabilistic weighting vector V = (0.3, 0.2, 0.4, 0.1). Let the WA have a degree
of importance of 70% and the weighting vector W of the OWA have a degree of
30%. If we want to aggregate this information using the OWAWA operator, we
will get the following. The aggregation can be done either with Eq. (9) or Eq.
(10). With Eq. (9) we calculate the new weighting vector as:

v̂1 = 0.3× 0.2 + 0.7× 0.1 = 0.13,

v̂2 = 0.3× 0.2 + 0.7× 0.2 = 0.2,

v̂3 = 0.3× 0.3 + 0.7× 0.3 = 0.3,

v̂4 = 0.3× 0.3 + 0.7× 0.4 = 0.37,

and then, we perform the aggregation process as follows:
OWAWA = 0.13× 60 + 0.2× 50 + 0.3× 30 + 0.37× 20 = 34.2.

With (10), we aggregate as follows:
OWAWA = 0.3× (0.2× 60 + 0.2× 50 + 0.3× 30 + 0.3× 20) + 0.7× (0.3×

30 + 0.2× 50 + 0.4× 20 + 0.1× 60) = 34.2.



OWA–Weighted Average operators and their application 613

Obviously, we get the same results with both methods.

From a generalized perspective of the reordering step, it is possible to distin-
guish between the descending OWAWA (DOWAWA) and the ascending OWAWA
(AOWAWA) operator by using wj = w∗n−j+1, where wj is the jth weight of
the DOWAWA and w∗n−j+1 the jth weight of the AOWAWA operator.

Note that in 9 we have presented the OWAWA adapting the ordering of the
WA to the reordering of the OWA. It is also possible to develop the unification
by adapting the reordering of the OWA to the ordering of the WA. In this case,
we get the following:

OWAWA(a1, ..., an) =

n
∑

i=1

v̂iai, (13)

where each argument ai has an associated weight (WA) vi with
∑n

i=1 vi = 1 and
vi ∈ [0, 1], v̂i = βwi + (1− β)vi with β ∈ [0, 1] and wi is the weight (OWA) wj

ordered according to the ith position of the ai, being the jth largest argumentai.

If B is a vector corresponding to the ordered arguments bj , we will call this
the ordered argument vector and WT is the transpose of the weighting vector;
then, the OWAWA operator can be expressed as:

OWAWA(a1, ..., an) = WTB. (14)

Note that if the weighting vector is not normalized, i.e., V̂ =
∑n

j=1 v̂j 6= 1,
then the OWAWA operator can be expressed as:

OWAWA(a1, ..., an) =
1

V̂

n
∑

j=1

v̂jbj. (15)

Some other interesting generalizations can be developed following Merigó
and Casanovas (2011a); Mesiar and Pap (2008); Mesiar and Spirkova (2006);
Spirkova (2009); Torra and Narukawa (2010). Following the ideas of Spirkova
(2009), we can develop a generating function for the arguments of the OWAWA
operator that represents the internal formation of this information, such that s:
Rm → R. This generating function expresses the formation of the arguments
when there exists a previous analysis, such as the use of a multi-person process
where each argument is constituted by the opinion of m persons. Moreover,
we will also use a weighting function f for the weighting vector. Note that the
use of a weighting function fi in the weighting vector of the weighted average
is known as the Losonczi mean. If the function is equal for all the weights f ,
then we get the simple Losonczi mean (Losonczi, 1971) or the mixture operator
(Spirkova, 2009). In this case, we directly extend this approach, obtaining the
mixture OWAWA (MOWAWA) operator as follows.
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Definition 7 A MOWAWA operator of dimension n is a mapping MOWAWA:
Rn → R that has associated a vector of weighting functions f , s: Rm → R, such
that:

MOWAWA(sy(a1), ..., sy(an)) =

n
∑

j=1

fj(sy(bj))sy(bj)

n
∑

j=1

fj(sy(bj))
, (16)

where sy(bj) is the jth largest of the sy(ai),ai is the argument variable, and y
indicates that each argument is formed using a different function.

Note that a more general expression of the previous formula can be found as-
suming that the generating function of the weighting vector does not depend
on the arguments bj and can depend on a lot of other circumstances. Thus, we
get the following expression:

OWAWA ∗ (sy(a1), ..., sy(an)) =

n
∑

j=1

fj(v̂j)sy(bj)

n
∑

j=1

fj(v̂j)
, (17)

which can be simplified to an equation that implicitly uses the normalization
process:

OWAWA ∗ (sy(a1), . . . , sy(an)) =
n
∑

j=1

fj(v̂j)sy(bj) (18)

in its generating function.
Note that several families of OWA operators such as those that depend on

the arguments (Yager, 1993) are included in the MOWAWA. But in the new
formulation, we include all the available families of OWA operators and a lot
of other situations. Obviously, the OWAWA* can be used in any of the OWA
literature and in future extensions.

A further interesting result consists in using infinitary aggregation operators
(Mesiar and Pap, 2008). Thus, we can represent an aggregation process where
there are an unlimited number of arguments that appear in the aggregation
process. Note that

∑∞

j=1 v̂j = 1. By using the OWAWA operator we get the
infinitary OWAWA (∞-OWAWA) operator as follows:

∞−OWAWA(a1, ..., an) =

∞
∑

j=1

v̂jbj. (19)

The reordering process is very complex because we have an unlimited number of
arguments, so we never know the first argument to be aggregated. For further
reading on the usual OWA, see Mesiar and Pap (2008).

The OWAWA is monotonic, bounded and idempotent. It is not commutative
because the OWAWA operator includes the weighted average.



OWA–Weighted Average operators and their application 615

Theorem 2 (Monotonicity). Assume f is the OWAWA operator, let (a1,...,
an) and (e1, e2,... , en) be two sets of arguments. If ai ≥ ei, for all i ∈{1, 2,
. . . , n}, then

f(a1, ..., an) ≥ f(e1, e2, ...., en). (20)

Proof. It is straightforward and thus omitted.

Theorem 3 (Idempotency). Assume f is the OWAWA operator, if ai = a, for
all i ∈{1, 2, . . . , n} then:

f(a1, a2, ..., an) = a. (21)

Proof. It is straightforward and thus omitted.

Theorem 4 (Bounded). Assume f is the OWAWA operator, then:

Min{ai} ≤ f(a1, a2, ..., an) ≤ Max{ai}. (22)

Proof. It is straightforward and thus omitted.
Note that the boundedness property presented in Theorem 3 is the extreme

case where we only use the OWA operator in the aggregation of the OWAWA.
However, the usual boundary conditions that we find when using the OWAWA
is a more restrictive one because we are mixing the OWA and the WA.

Theorem 5 (Semi-boundary conditions). Assume f is the OWAWA operator,
then:

β ×Min{ai}+ (1 − β)×
n
∑

i=1

viai ≤ f(a1, a2, ..., an)

≤ β ×Max{ai}+ (1 − β)×

n
∑

i=1

viai. (23)

Proof. Let max{ai}= c, and min{ai}= d, then

f(a1, a2, ..., an) = β

n
∑

j=1

wjbj + (1 − β)

n
∑

i=1

viai

≤ β

n
∑

j=1

wjc+ (1− β)

n
∑

i=1

viai = βc

n
∑

j=1

wj + (1 − β)

n
∑

i=1

viai, (24)

and

f(a1, a2, ..., an) = β

n
∑

j=1

wjbj + (1− β)

n
∑

i=1

viai

≥ β

n
∑

j=1

wjd+ (1 − β)

n
∑

i=1

viai = βd

n
∑

j=1

wj + (1− β)

n
∑

i=1

viai, (25)
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Since
∑n

j=1 wj = 1, we get

f(a1, a2, ..., an) ≤ βc+ (1 − β)

n
∑

i=1

viai, (26)

and

f(a1, a2, ..., an) ≥ βd+ (1− β)
n
∑

i=1

viai. (27)

Therefore,

β ×Min{ai}+ (1− β)×

n
∑

i=1

viai

≤ f(a1, a2, ..., an) ≤ β ×Max{ai}+ (1− β)×

n
∑

i=1

viai. (28)

As we can see, if β = 1, we get the usual boundary conditions. Note that a
similar semi-boundary condition could be analyzed from the OWA perspective.
That is:

(1− β)×Min{ai}+ β ×

n
∑

j=1

wjbj ≤ f(a1, ..., an)

≤ (1− β)×Max{ai}+ β ×

n
∑

j=1

wjbj . (29)

Note that if wi = 1/n for all i, the semi boundaries become the or–like and
the and–like S–OWA operator (Yager, 1993).

Following Grabisch et al. (2009) we can study other properties, such as
continuity. Note that the OWAWA operator is not associative because the
reordering process may produce different results when combining several ele-
ments. An OWAWA operator is continuous if for each ak lim

ai→ak

OWAWA(ai) =

OWAWA(ak).

4. Measures for characterizing the OWAWAweighting vec-

tor

The choice of the measures to characterize the weighting vector V̂ (V and W ) is
another interesting issue. Following a similar methodology as the development of
the OWA operator (Yager, 1988; 1996a; 2002), we can formulate the attitudinal
character (degree of or-ness), the entropy of dispersion, the divergence of the
weighting vector and the balance operator.
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The degree of or-ness – and-ness of an OWA aggregation (Yager, 1988),
known in decision-making as the attitudinal character or degree of optimism, is
defined as follows:

α(W ) =

n
∑

j=1

wj

(

n− j

n− 1

)

. (30)

Before starting the analysis with the OWAWA operator, note that this measure
can also be applied in the weighted average. Thus, we obtain the or-ness mea-
sure of the weighted average. This or-ness measure, based on Eq. (2), can be
formulated as follows:

α(V ) =

n
∑

j=1

vj

(

n− j

n− 1

)

. (31)

Note that α(V ) ∈ [0, 1]. For the maximum we get α(V ) = 1, for the minimum,
α(V ) = 0 and for the arithmetic mean, α(V ) = 0.5. It is straightforward to
calculate the and-ness measure of the weighted average by using the dual:

Andness(V ) = 1− α(V ) =

n
∑

j=1

vj

(

j − 1

n− 1

)

. (32)

As we can see, we reorder the weights in an artificial way because vj is the
vi weight with the jth largest argument ai. However, this measure is able to
provide the degree of or-ness of a WA aggregation, so we can see if the WA
aggregation is close to the maximum or to the minimum. In the WA, we cannot
manipulate the aggregation as we did for the OWA because the weights are
established according to degrees of importance or subjective probabilities.

If we extend the analysis of the or-ness – and-ness measure to the OWAWA
operator, we get the following expressions for the degree of or-ness:

α(V̂ ) = β

n
∑

j=1

wj

(

n− j

n− 1

)

+ (1− β)

n
∑

j=1

vj

(

n− j

n− 1

)

. (33)

This measure can be expressed in different ways, such as:

α(V̂ ) =

n
∑

j=1

v̂j

(

n− j

n− 1

)

. (34)

Note that v̂j = βwj + (1 − β)vj is the jth weight of the OWAWA aggregation
explained in Eq. (9). As we can see, if β = 1, we get the usual or-ness measure of
Yager (1988) presented in Eq. (27) and if β = 0, we obtain the or-ness measure
of the weighted average. It is straightforward to calculate the and-ness measure
by using the dual. That is, Andness(V̂ ) = 1−α(V̂ ). Thus, we get the following
expression:

Andness(V̂ ) =

n
∑

j=1

v̂j

(

j − 1

n− 1

)

. (35)
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It can be shown that α ∈ [0, 1].
In the following, we present some interesting results obtained with this new

or-ness – and-ness measure. For the optimistic (or maximum) criteria in the
OWA, we get the following:

α(V̂ ) = β + (1− β)

n
∑

j=1

vj
n− j

n− 1
. (36)

Note that we can refer to this situation as the maximum weighted average
(Max-WA) or weighted maximum. For the pessimistic (or minimum) criteria,
we obtain:

α(V̂ ) = (1− β)

n
∑

j=1

vj
n− j

n− 1
. (37)

We can refer to this situation as the minimum weighted average (Min-WA) or
weighted minimum. With the arithmetic mean in the OWA case (arithmetic
weighted average), we get:

α(V̂ ) = 0.5β + (1− β)

n
∑

j=1

vj
n− j

n− 1
, (38)

and in the WA (arithmetic OWA), we obtain:

α(V̂ ) = β

n
∑

j=1

wj

(

n− j

n− 1

)

+ 0.5(1− β). (39)

If we use the arithmetic mean in both the OWA and the WA, then we get
α(V̂ ) = 0.5.

If β = 1, we get the classical results obtained by Yager (1988); that is,
α(V̂ ) = 1 for the optimistic (or maximum) criteria, α(V̂ ) = 0 for the pessimistic
(or minimum) criteria and α(V̂ ) = 0.5 for the arithmetic mean. It is also
possible to calculate the maximum and the minimum with the WA (Max-OWA
and Min-OWA), but this result is more artificial because the WA usually uses
the weighting vector as the degree of importance or subjective probability of
the aggregation process.

If both the OWA and the WA use the maximum aggregation, then α(V̂ ) = 1,
and if both use the minimum aggregation, α(V̂ ) = 0. It is straightforward to
calculate the results obtained with the and-ness measure by using the dual
(Andness(V̂ ) = 1− α(V̂ )). Thus, the maximum is Andness(V̂ ) = 0, the mini-
mum is Andness(V̂ ) = 1 and the arithmetic mean is 0.5.

The entropy of dispersion (Yager, 1988) measures the amount of information
being used in the aggregation:

H(W ) = −

n
∑

j=1

wj ln(wj). (40)
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If we extend the entropy of dispersion to the OWAWA operator, we get the
following:

H(V̂ ) = −



β

n
∑

j=1

wj ln(wj) + (1 − β)

n
∑

i=1

vi ln(vi)



 . (41)

Note that vi is the ith weight of the WA aggregation. As we can see, if β =
1, we get the Yager entropy of dispersion of the OWA presented in Eq. (40),
and if β = 0, we obtain the classical Shannon entropy (Shannon, 1948). Strictly
speaking, the Shannon entropy is extended by using the OWAWA operator as
follows:

H(V̂ ) = −



β

n
∑

j=1

wj log2(wj) + (1− β)

n
∑

i=1

vi log2(vi)



 . (42)

Thus, we can extend the entire analysis developed by Shannon (1948) and others
in information theory with this new approach. We could also consider other
entropy measures that could be implemented in the OWAWA operator.

Some interesting examples by using this measure are the step aggregations
(Yager, 1993). If we use a step aggregation in the OWA, we get the following
entropy:

H(V̂ ) = −

(

(1− β)

n
∑

i=1

vi ln(vi)

)

. (43)

And if we use a step aggregation in the WA, we obtain:

H(V̂ ) = −



β
n
∑

j=1

wj ln(wj)



 . (44)

Finally, if we use step aggregation in both OWA and WA, we get the minimum
dispersion, that is, H(V̂ ) = 0. The maximum dispersion is found when both
wj = 1/n and vi = 1/n, for all i (note that j is a reordering of i), and it is

H(V̂ ) = lnn. If we only use wj = 1/n, for all j, we get the following:

H(V̂ ) = β lnn− (1− β)

n
∑

i=1

vi ln(vi), (45)

and if we only use vi = 1/n, for all i, we obtain:

H(V̂ ) = −



β
n
∑

j=1

wj ln(wj)



+ (1− β) lnn. (46)
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The divergence of W (Yager, 2002) measures the divergence of the weights
against the degree of or-ness – and-ness measure. It is useful in various situ-
ations, especially when the attitudinal character and the entropy of dispersion
do not suffice to correctly analyze the weighting vector of an aggregation:

Div(W ) =
n
∑

j=1

wj

(

n− j

n− 1
− α(W )

)2

. (47)

Another measure for calculating the divergence can be as follows:

Div ∗ (W ) =

n
∑

j=1

wj

∣

∣

∣

∣

n− j

n− 1
− α(W )

∣

∣

∣

∣

. (48)

And, more generally, we could use g−1

(

n
∑

j=1

wjg
(∣

∣

∣

n−j
n−1 − α(W )

∣

∣

∣

)

)

where g

is a strictly continuous monotone function.
If we extend the divergence of W to the OWAWA operator, we get the

following divergence of V̂ :

Div(V̂ ) = β





n
∑

j=1

wj

(

n− j

n− 1
− α(W )

)2


+(1−β)





n
∑

j=1

vj

(

n− j

n− 1
− α(V )

)2


 .

(49)

If β = 1, we get the OWA divergence, and if β = 0, we get the WA diver-
gence. Moreover, we can also suggest new measures of divergence as it has been
developed above. For example, we can use:

Div ∗ (V̂ ) = β





n
∑

j=1

wj

∣

∣

∣

∣

n− j

n− 1
− α(W )

∣

∣

∣

∣



+

(1 − β)





n
∑

j=1

vj

∣

∣

∣

∣

n− j

n− 1
− α(V )

∣

∣

∣

∣



 . (50)

We can also generalize the divergence by using the following expression:

Div ∗ (V̂ ) = β



g−1





n
∑

j=1

wjg

(∣

∣

∣

∣

n− j

n− 1
− α(W )

∣

∣

∣

∣

)







+

(1 − β)



g−1





n
∑

j=1

vjg

(∣

∣

∣

∣

n− j

n− 1
− α(V )

∣

∣

∣

∣

)







 . (51)

If β = 0, we get the WA divergence and if β = 1, the OWA divergence.
When using the maximum and the minimum in both the OWA and the WA, we
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getDiv∗(V̂ ) = 0. More generally, for any step aggregation we getDiv∗(V̂ ) = 0.
If we use step aggregation in the WA, we get the following expression:

Div(V̂ ) = β





n
∑

j=1

wj

(

n− j

n− 1
− α(W )

)2


 , (52)

and if we use step aggregation in the OWA, we obtain:

Div(V̂ ) = (1− β)





n
∑

j=1

vj

(

n− j

n− 1
− α(V )

)2


 . (53)

If β = 0, this result becomes the divergence of the WA aggregation. We have
presented the results of the divergence by using the or-ness measure but it is also
possible to present them using the and-ness measure, that is, the dual: or-ness
= 1 – and-ness.

The balance operator (Yager, 1996a) measures the balance of the weights
against the or-ness or the and-ness. It is formulated as follows:

Bal(W ) =
n
∑

j=1

(

n+ 1− 2j

n− 1

)

wj . (54)

It can be shown that Bal(W ) ∈ [−1, 1]. Note that for the maximum,
Bal(W ) = 1, and for the minimum, Bal(W ) = −1.

The balance operator can also be extended by using generalized and quasi-
arithmetic means. Using quasi-arithmetic means, we get:

Bal ∗ (W ) = g−1





n
∑

j=1

g

(

n+ 1− 2j

n− 1

)

wj



 . (55)

Now, if we extend the measures for obtaining the balance operator to the
OWAWA operator, we get the following expression:

Bal(V̂ ) = βg−1





n
∑

j=1

g

(

n+ 1− 2j

n− 1

)

wj



+(1−β)g−1





n
∑

j=1

g

(

n+ 1− 2j

n− 1

)

vj



 .

(56)

And if g(b) = b, then, we get the usual balance operator applied to the OWAWA
operator as follows:

Bal(V̂ ) =

n
∑

j=1

(

n+ 1− 2j

n− 1

)

v̂j . (57)
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If β = 1, we get the classic balance operator developed by Yager (1996a) pre-
sented in Eq. (52) and if β = 0, we obtain the balance operator of the weighted
average that is formulated as follows:

Bal(V ) =

n
∑

j=1

(

n+ 1− 2j

n− 1

)

vj . (58)

As we can see, Bal(V ) ∈ [−1, 1]. For the maximum criteria, Bal(V ) = 1, for
the minimum criteria, Bal(V ) = −1 and for the arithmetic mean, Bal(V ) = 0.

5. Families of OWAWA operators

In this section, we analyze different families of OWAWA operators. This anal-
ysis will demonstrate a wide range of particular cases that can be used in the
OWAWA operator, leading to different results. Thus, we are able to provide
a more complete picture of the aggregation process. However, note that each
family is just a particular case useful in some special situations according to the
interests of the analysis.

First we will consider the two main cases of the OWAWA operator that are
found by analyzing the coefficient β. Basically, if β = 0, then we get the WA,
and if β = 1, we get the OWA operator. Note that when β increases, we are
giving more importance to the OWA operator, and vice versa. From this, it is
possible to consider a wide range of particular cases by giving different values
and interpretations to the β value.

By choosing different manifestations of the weighting vector in the OWAWA
operator, we are able to obtain different types of aggregation operators. For
example, we can obtain the maximum-WA, the minimum-WA and the step-
OWAWA operator.

Remark 1. The maximum-WA corresponds to w1 = 1 and wj = 0 for all
j 6= 1. The minimum-WA is formed when wn = 1 and wj = 0 for all j 6= n. More
generally, the step-OWAWA is formed when wk = 1 and wj = 0 for all j 6= k.
Note that if k = 1, the step-OWAWA is transformed into the maximum-WA,
and if k = n, into the minimum-WA.

Remark 2. The arithmetic-WA (A-WA) is obtained when wj = 1/n for all
j, and it can be formulated as follows:

A−WA(a1, ..., an) =
β

n

n
∑

i=1

ai + (1− β)
n
∑

i=1

viai, (59)

If vi = 1/n, for all i, then, we get the unification between the arithmetic
mean (or simple average) and the OWA operator, that is, the arithmetic-OWA
(A-OWA). The A-OWA operator can be formulated as follows:

A−OWA(a1, ..., an) = β

n
∑

j=1

wjbj +
(1− β)

n

n
∑

i=1

ai. (60)
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Note that if w1 = 1 and wj = 0 for all j 6= 1, the A-OWA operator becomes
the A-Max, also known in the literature as the or-like S-OWA operator, and if
wn = 1 and wj = 0 for all j 6= n, it becomes the A-Min, known as the and-like
S-OWA operator (Yager, 1993).

Remark 3. Another interesting family is that of the S-OWAWA opera-
tor. It can be subdivided into three classes: the “or-like,” the “and-like” and
the generalized S-OWAWA operator. The generalized S-OWAWA operator is
obtained if:

• v̂1 = (1/n)(1 − (α+ γ)) +α,
• v̂n = (1/n)(1 − (α+ γ)) +γ,
• v̂j = (1/n)(1 − (α+ γ)), for j = 2 to n− 1,

where α, γ ∈ [0, 1] and α + γ ≤ 1. If α = 0, the generalized S-OWAWA
operator becomes the “and-like” S-OWAWA operator, and if γ = 0, it becomes
the “or-like” S-OWAWA operator.

Remark 4. Another family of aggregation operators that could be used
is the centered-OWAWA operator. We can define an OWAWA operator as a
centered aggregation operator if it is symmetric, strongly decaying and inclusive.

• It is symmetric if v̂j = v̂j+n−1.
• It is strongly decaying if i <j ≤ (n+ 1)/2 then v̂i < v̂j and if i >j ≥ (n+
1)/2 then v̂i < v̂j .

• It is inclusive if v̂j > 0.

Remark 5. For the median–OWAWA, if n is odd we assign v̂(n+1)/2 = 1 and
v̂j∗ = 0 for all others. If n is even we assign, for example, v̂n/2 = v̂(n/2)+1 = 0.5
and v̂j∗ = 0 for all others. For the weighted median–OWAWA, we select the
argument bk that has the kth largest argument such that the sum of the weights
from 1 to k is equal or higher than 0.5 and the sum of weights from 1 to k − 1
is less than 0.5.

Remark 6. Another type of aggregation that could be used are the E-Z
OWAWA weights. In this case, we should distinguish between two classes. In
the first class, we assign v̂j∗ = (1/q) for j∗ = 1 to q and v̂j∗ = 0 for j∗ >q, and
in the second class, we assign v̂j∗ = 0 for j∗ = 1 to n − q and v̂j∗ = (1/q) for
j∗ = n− q+ 1 to n.

Remark 7. The olympic-OWAWA is generated when v̂1 = v̂n = 0, and for
all other v̂j∗ = 1/(n− 2). Note that it is possible to develop a general form of the
olympic-OWAWA by considering that v̂j = 0 for j = 1, 2, . . . , k, n, n− 1, . . . ,
n−k+ 1, and for all others v̂j∗ = 1/(n− 2k), where k <n/2. Note that if k =
1, then this general form becomes the usual olympic-OWAWA. If k = (n− 1)/2,
then this general form becomes the median-OWAWA aggregation. Furthermore,
it is also possible to develop the contrary case of the general olympic-OWAWA
operator. In this case, v̂j = (1/2k) for j = 1, 2, . . . , k, n, n− 1, . . . , n− k+ 1,
and v̂j = 0, for all other values, where k <n/2. Note that if k = 1, then we
obtain the contrary case for the median-OWAWA.

Remark 8. Another interesting type can be developed using the functional
method introduced by Yager (1988) for the OWA operator. This approach can
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be summarized as follows. Let f be a function f : [0, 1] → [0, 1] such that f(0)
= f(1) and f(x) ≥ f(y) for x >y. We call this function a basic unit interval
monotonic function (BUM). Using this BUM function we obtain the OWAWA
weights v̂j for j = 1 to n as:

v̂j = f

(

j

n

)

− f

(

j − 1

n

)

. (61)

It can be easily shown that using this method, v̂j satisfy the conditions that the
sum of weights is 1 and v̂j ∈ [0, 1].

Remark 9. A further interesting type is the non-monotonic-OWAWA op-
erator based on Yager (1999). It is obtained when at least one of the weights
is lower than 0 and

∑n
j=1 v̂j = 1. A key aspect of this operator is that it does

not always achieve monotonicity. Therefore, strictly speaking, this particular
case is not an OWAWA operator. However, we can see it as a particular fam-
ily of operators that is not monotonic but nevertheless resembles an OWAWA
operator.

Remark 10. Using the measures explained in Section 4, we can develop
another group of methods for obtaining the OWAWA weights. The maximal
entropy OWAWA (MEOWAWA) method is especially noteworthy. This method
seeks to maximize the entropy, subject to an established degree of or-ness. It
can be solved by using the following mathematical programming problem:

maximize H(V̂ ) = −

(

β
n
∑

j=1

wj ln(wj) + (1− β)
n
∑

i=1

vi ln(vi)

)

,

subject to

β

n
∑

j=1

wj

(

n− j

n− 1

)

+ (1− β)

n
∑

j=1

vj

(

n− j

n− 1

)

= α(V̂ ), 0 ≤ α(V̂ ) ≤ 1, (62)

n
∑

j=1

v̂j = 1, 0 ≤ v̂j ≤ 1, j = 1, 2, . . . , n.

Note that if β = 1, we get the usual maximal entropy OWA (MEOWA) method
(Yager, 2009) and if β = 0, as is the case for the WA, we get the maximal
entropy WA (MEWA) method.

Remark 11. We have focused on situations where the weighting vector
of the OWA and the WA satisfy the same conditions of a particular family.
However, it is also possible to consider situations where only the OWA or the
WA satisfies these conditions. Furthermore, we may find that the OWA is a
member of a different family than the WA. For example, the OWA can use a
centered aggregation while the WA uses an olympic one. Thus, we are using
in the OWAWA a centered-OWA and an olympic-WA (centered-OWA-olympic-
WA). In Table 1, we briefly present families that use different types of weighting
vectors in OWA and in WA.

Remark 12. Other families of OWAWA operators could be used, follow-
ing the recent literature concerning different methods for obtaining the OWA
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Table 1. Mixing families of OWA and WA operators

WA

OWA
OWA Max Min AM Step Olympic Centered ME

WA OWAWA Max-WA Min-WA A-WA Step-WA Oly-WA Cent-WA ME-WA
Max OWA-Max Max Min-Max A-Max Step-Max Oly-Max Cent-Max ME-Max
Min OWA-Min Max-Min Min A-Min Step-Min Oly-Min Cent-Min ME-Min
AM OWA-AM Max-AM Min-AM AM Step-AM Oly-AM Cent-AM ME-AM
Step OWA-Step Max-Step Min-Step A-Step Step Oly-Step Cent-Step ME-Step
Oly. OWA-Oly. Max-Oly. Min-Oly. A-Oly. Step-Oly. Olympic Cent-Oly. ME-Oly.
Cent. OWA-Cent. Max-Cent. Min-Cent. A-Cent. Step-Cent. Oly-Cent. Centered ME-Cent.
ME OWA-ME Max-ME Min-ME A-ME Step-ME Oly-ME Cent-ME ME

Etc
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weights (Merigó and Casanovas, 2009; Merigó and Gil-Lafuente, 2009; Merigó
et al. 2011; Merigó and Wei, 2011; Yager, 1993; 1996a; Yager and Kacprzyk,
1997).

6. Construction of interval numbers and related struc-

tures with OWAWA operators

In this Section we describe how to construct interval numbers and other re-
lated structures such as fuzzy numbers by using OWAWA operators. First, we
consider the use of the classical OWA operator. Next, we analyze the use of
the OWAWA operator. Finally, we discuss several implications of using this
methodology.

6.1. Construction of interval numbers with OWAWA operators

The OWA operator provides a parameterized family of aggregation operators
between the minimum and the maximum. In order to represent the information
in a more complete way we can construct an interval number when aggregating
the information with OWA operators. Depending on our interests this construc-
tion will only consider the simplest interval considering only the minimum and
the maximum, or more complex structures by using triplets, quadruplets and
so on. In the following, we present the methodology to use in the construction
of interval numbers with OWA operators.

Assume a set of arguments A = (a1, a2, . . . , an). For the construction of a
2-tuple interval number (Moore, 1966), we simply aggregate the information of
the OWA operator in the following way: C = [Min{ai}, Max{ai}]. Thus, we are
considering an interval number that considers the lowest and the highest result
of the set of arguments A. Note that in this construction process we aggregate
the information from n arguments ai into an interval number. That is, OWA:
Rn → Ω, where Ω is the set of interval numbers.

Another type of interval number that we could construct is a triplet. In this
case, we can use the minimum, the maximum and the OWA aggregation that
is more in accordance with the interests of the decision maker. In this case, we
get: C = [Min{ai}, OWA, Max{ai}]. And so on.

By using OWAWA operators, it is also possible to construct interval and
fuzzy numbers. The main advantage of using OWAWA operators is that we
are considering subjective information and the degree of orness of the decision
maker in the same formulation. Thus, the OWAWA operator leads to a new
type of interval and fuzzy numbers: the subjective interval number (SIN) and
the subjective fuzzy number (SFN). Their main advantage is that they include
the degree of importance of each argument by using the weighted average in
the aggregation. Note that by using the OWAWA operator we can consider the
relevance of the OWA and the WA in the aggregation process.

In the construction of subjective interval numbers with the OWAWA op-
erator, it is worth noting the construction of subjective triplets, quadruplets,
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quintuplets and sextuplets. The subjective triplet and the subjective quadru-
plet follow the same methodology as OWA. That is: C = [Min{ai}, OWAWA,
Max{ai}] and C = [Min{ai}, OWAWA∗, OWAWA∗, Max{ai}]. Note that if β =
1, the OWAWA becomes the OWA operator and thus we get the same results
as in Section 6.1. If β = 0, the OWAWA becomes the WA and thus we can
construct an interval number where we do not use the OWA but we consider a
subjective importance of the arguments. That is: C = [Min{ai}, WA, Max{ai}]
and C = [Min{ai}, WA ∗, WA ∗, Max{ai}]. Note that in Section 6.1. we assume
that we do not know the subjective importance of the arguments.

As it has been explained in Theorem 4, with the OWAWA operator we obtain
semi boundary conditions when we use the WA with the OWA bounds. Thus, we
can reduce the bounds considering the information given by the WA. Note that
this reduction is artificial according to the information obtained from the WA
but the result can always move from the minimum to the maximum. However,
sometimes the usual bounds are too broad and we need to reduce them in order
to reduce the uncertainty and be able to make better decisions with the avail-
able information. In these situations, it becomes useful to consider subjective
quintuplets and sextuplets in the analysis. Thus, we get: C = [Min{ai}, Min–
WA, OWAWA, Max–WA, Max{ai}] and C = [Min{ai }, Min–WA, OWAWA∗,
OWAWA∗ , Max–WA, Max{ai }]; where Min–WA is the convex combination
β ×Min{ai }+(1− β)×WA, and Max–WA is β ×Max{ai}+(1− β)×WA.

Example 5. Assume the following arguments A = (20, 40, 10, 70, 80).
When using one weighting vector (for triplets), we assume W = (0.1, 0.2, 0.2,
0.2, 0.3). When using quadruplets, we assume W∗ = (0.1, 0.1, 0.2, 0.3, 0.3),
W ∗ = (0.15, 0.2, 0.2, 0.2, 0.25) and the following weighting vector for WA:
V = (0.3, 0.3, 0.2, 0.1, 0.1). In this example we assume that OWA has degree
of importance of 40% and WA of 60%. Thus, we can construct the following
subjective interval numbers (SIN):

• Subjective triplet: C = [Min{ai}, OWAWA, Max{ai}] = [10, 37.8, 80].

– Note that for OWAWA we use: OWAWA = 0.4 × (0.1 × 80 + 0.2 ×
70+0.2× 40+0.2× 30+0.3× 20)+0.6× (0.3× 20+0.3× 40+0.2×
10 + 0.1× 70 + 0.1× 80) = 37.8.

• Subjective quadruplet: C = [Min{ai}, OWAWA∗, OWAWA∗, Max{ai}] =
[10, 36.2, 39, 80].

– Note that for OWAWA∗ we use: OWA∗ = 0.4 × (0.1 × 80 + 0.1 ×
70+0.2× 40+0.3× 30+0.3× 20)+0.6× (0.3× 20+0.3× 40+0.2×
10 + 0.1× 70 + 0.1× 80) = 36.2.

– For OWAWA∗we use: OWA∗ = 0.4 × (0.15 × 80 + 0.2 × 70 + 0.2 ×
40 + 0.2 × 30 + 0.25× 20) + 0.6 × (0.3 × 20 + 0.3 × 40 + 0.2 × 10 +
0.1× 70 + 0.1× 80) = 39.

• Subjective quintuplet: C = [Min{ai}, Min–WA, OWAWA, Max–WA,
Max{ai}] = [10, (25, 37.8, 53), 80].
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– Note that for Min-WA we use: 0.4× 10+ 0.6× (0.3× 20+ 0.3× 40+
0.2× 10 + 0.1× 70 + 0.1× 80) = 25.

– For Max-WA we use: 0.4 × 80 + 0.6 × (0.3 × 20 + 0.3 × 40 + 0.2 ×
10 + 0.1× 70 + 0.1× 80) = 53.

• Subjective sextuplet: C = [Min{ai}, Min–WA, OWAWA∗, OWAWA∗,
Max–WA, Max{ai}] = [10, (25, 36.2, 39, 53), 80].

Note that with the OWAWA operator we can also construct subjective FNs
(SFNs). For subjective triplets and quadruplets, we follow the same procedure
as with the OWA operator. Thus, for example, we can assume that the inter-
nal values can be represented with linear functions that connect the points of
the interval obtaining the α-cut representation of the subjective TFN (STFN)
and the subjective TpFN (STpFN) as follows: Cα = [Minfaig + (OWAWA−
Minfaig)× α,Maxfaig − (Maxfaig −OWAWA)× α] and Cα = [Minfaig +
(OWAWA∗ −Minfaig)× α,Maxfaig − (Maxfaig −−OWAWA∗)× α].

By using subjective quintuplets and sextuplets, it is also possible to con-
struct SFNs. However, dealing with them is more complex because we have to
introduce several linear functions and there are many ways for doing so. For
example, when using quintuplets we can construct an α-cut representation from
the minimum and the maximum to the OWAWA and from the Min-WA and the
Max-WA to the OWAWA forming an interval-valued SFN (IVSFN). Thus, we
get: Cα = [Minfaig+ (OWAWA−−Minfaig)×α,Min−WA+ (OWAWA−
−Min−WA)×α,Max−WA−−(Max−WA−−OWAWA)×α,Maxfaig−
−(Maxfaig − −OWAWA) × α]. With a sextuplet, we get the following rep-
resentation: Cα = [Minfaig + (OWAWA∗ − −Minfaig) × α,Min − WA +
(OWAWA∗ −−Min−WA)×α,Max−WA−−(Max−WA−−OWAWA∗)×
α,Maxfaig − −(Maxfaig − −OWAWA∗) × α]. Note that the interval-valued
SFN formed with the quintuplet can be represented graphically as shown in Fig
1.

Following Example 5, we could form the STFN: [10 + 27.8α, 80 – 42.2α];
and the STpFN: [10 + 26.2α, 80 – 41α]. By using quintuplets and sextuplets
we could form the IVSFNs: [10 + 27.8α, 25 + 12.8α, 53 – 15.2α, 80 – 42.2α]
and [10 + 26.2α, 25 + 11.2α, 53 – 14α, 80 – 41α].

Finally, note that more complex structures obtained by using a wide range
of families of OWAWA operators could be used for constructing interval and
fuzzy numbers. Those presented here represent an overview of the most basic
ones.

6.2. Analyzing different perspectives in the construction of interval

numbers

In previous subsections, we have seen that we can construct interval numbers by
using OWA and OWAWA operators. Thus, by aggregating a set of arguments
we can simply obtain a single representative number or a more complete rep-
resentation that includes this representative number and several other results,
including the bounds of this set of arguments.
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Figure 1. Interval-valued fuzzy number constructed with the OWAWA operator

Another interesting issue to consider in this analysis is the meaning of the
set of arguments aggregated because this may lead to different meanings (or
interpretations) of the interval numbers. Among others, we can aggregate a
set of arguments that represent the results obtained according to the states of
nature that may occur in the future, the different alternatives that we can select,
the different criteria that we can consider, the opinion of a group of experts (or
persons) and so on.

For example, in decision-making problems it is very interesting to consider
a set of arguments a that depend on a set of states of nature S and a set of
alternatives A. This information can be represented in the matrix shown in
Table 2.

Abbreviations:
T1 = [Minfa1ig,OWA,Maxfa1ig];
Th = [Minfahig,OWA,Maxfahig];
Tk = [Minfakig,OWA,Maxfakig];
U1 = [Minfa1ig,Min-WA,OWAWA,Max-WA,Maxfa1ig];
Uh = [Minfahig,Min-WA,OWAWA,Max-WA,Maxfahig];
Uk = [Minfakig,Min-WA,OWAWA,Max-WA,Maxfakig];
X1 = [Minfah1g,OWA,Maxfah1g];
Xi = [Minfah1g,OWA,Maxfah1g];
Xn = [Minfah1g,OWA,Maxfah1g];
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Table 2. Matrix with states of nature and alternatives

S1 Si Sn OWA OWAWA
A1 a11 . . . a1i . . . a1n T1 U1

. . . . . . . . . . . . . . . . . . . . . . . .
Ah ah1 . . . ahi . . . ahn Th Uh

. . . . . . . . . . . . . . . . . . . . . . . .
Ak ak1 . . . aki . . . akn Tk Uk

OWA X1 . . . Xi . . . Xn

OWAWA Y1 . . . Yi . . . Yn

Y1 = [Minfah1g,Min-WA,OWA,Max-WA,Maxfah1g];
Yi = [Minfah1g,Min-WA,OWA,Max-WA,Maxfah1g];
Yn = [Minfah1g,Min-WA,OWA,Max-WA,Maxfah1g];

In order to establish a ranking of the interval numbers (or FNs) we have to
establish a method for doing this. In this paper, we assume that the interval
can be reduced to the OWA or OWAWA aggregation used.

As we can see, we can aggregate the arguments according to an alternative
selected. In this case, we are indicating the potential results that we can get
depending on the state of nature that occur in the future if we select a specific
alternative. Thus, we are analyzing actions and see their potential results.

Another choice is to aggregate the arguments according to a state of nature.
In this situation, we are analyzing the potential results that we can get for
each state of nature according to the alternatives that we have. Thus, we are
analyzing scenarios and see their potential results.

Moreover, we should note that it is possible to mix both type of aggregations
in the process, considering at the same time scenarios and alternatives.

Furthermore, it is possible to include the opinion of several persons in the
analysis. This case is usually considered as preceding step which results are
aggregated into a collective result that represents the aggregated opinion. How-
ever, it is worth noting that in this aggregation process we can also consider
the construction of interval numbers as a more complete representation of the
aggregation process.

7. Applicability of the OWAWA operator

In this section, we study the applicability of the OWAWA operator. First,
we give a general overview of potential applications. Second, we present some
basic examples on how to apply the OWAWA operator to different theoretical
problems.
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7.1. Introduction

The OWAWA operator can be applied in an astonishingly wide range of appli-
cations. Any study that uses either the OWA or the WA can be revised and
extended to use the OWAWA operator. However, we believe that in the future
there will be a need to produce various degrees of underestimated and overesti-
mated results. Thus, the use of OWAs in order to under- or over-estimate the
results given by the WA will become very common. Using the model presented
in this paper, we can vary the degree of importance of these different estimates
depending on the problem at hand. Note that it is also possible to modify
the OWA results by using the WA. In the following, we mention some of the
main research application areas. Within each field, there are many potential
applications.

• Statistics: The OWAWA is a key instrument to revise the majority of
the statistical sciences. For example, we can extend variance, covariance,
Pearson coefficient and correlation coefficient by using this new approach.
We can also implement it in linear and multiple regressions as well as
to probability theory and a lot of other related areas such as hypothesis
testing and inference statistics.

• Fuzzy Set Theory: All aspects of fuzzy set theory that use techniques
based on the WA or the OWA can be revised and extended with the
OWAWA operator. For example, in methods of ranking fuzzy numbers,
instead of a WA, we can use an OWAWA operator. Moreover, the whole
theory of aggregation operators is strongly affected by this new approach.

• Soft Computing: A lot of new applications can be developed in neural
network theory, in evolutionary computation and in chaotic computing.

• Business Administration: The OWAWA can be implement it in strate-
gic management, financial management, accounting, marketing and hu-
man resource management. Application may especially concern business
decision-making problems.

• Economics: We can use the idea for developing more complete economic
theories, for example, when calculating the aggregate demand or supply
in macroeconomic or microeconomic theory. On the other hand, we can
also use it in a wide range of economic problems concerning decisions
or analysis, e. g. when dealing with the public sector or when making
economic predictions.

• Politics: For example, when making political decisions concerning national
decisions. As it will be explained in the example, sometimes this area is
closely related to economics.

• Decision Theory: Decision theory is critically sustained on the use of a
wide range of aggregations operators. Therefore, the use of the OWAWA
can imply a lot of new improvements in the current models.

• Operational Research: We can implement it in several situations regarding
assignment and grouping problems.

• Biology: All the theories and techniques concerning biostatistics can be
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revised with the OWAWA operator.

So, any current or future research that uses either the OWA or the WA can
be revised and extended by using this new approach.

7.2. Some theoretical examples in statistics

Next, we present a method to apply the OWAWA operator to theories already
published in the literature. In the case of statistics (McClave and Sincich, 2003),
we can start revising the average and the variance of a population (discrete case)
using the OWAWA operator (Eq. (9)). For the variance, we obtain the following
formulation:

V ar −OWAWA(X) =

n
∑

j=1

v̂jDj , (63)

where Dj is the jth largest of the (xi − µ)2, xi is the argument variable, µ is
the average (in this case, the OWAWA operator), wj ∈ [0, 1] and

∑n
j=1 wj = 1,

each argument (xi − µ)2 has an associated weight (WA) vi with
∑n

i=1 vi = 1
and vi ∈ [0, 1], v̂j = βwj + (1− β)vj with β ∈ [0, 1] and vj is the weight (WA)
vi ordered according to Dj, that is, according to the jth largest of the (xi−µ)2.

Note that the use of the OWA operator in variance has been studied by
Yager (1996b; 2006). Obviously, once we have variance, it is straightforward to
obtain standard deviation (S.D.) with the OWAWA operator,

S.D. =

√

√

√

√

n
∑

j=1

v̂jDj . (64)

In a similar way, we can represent covariance by using the OWAWA operator
as follows:

Cov −OWAWA(X,Y ) =

n
∑

j=1

v̂jKj , (65)

where Kj is the jth largest of the (xi − µ)(yi – ν), xi is the argument variable
of the first set of elements X = {x1, . . . , xn} and yi the argument variable of
the second set of elements Y = {y1, . . . , yn}, µ and ν are the averages (in this
case, the OWAWA operator) of the sets X and Y respectively, wj ∈ [0, 1] and
∑n

j=1 wj = 1, each argument (xi −µ)(yi– ν) has an associated weight (WA)

vi with
∑n

i=1 vi = 1 and vi ∈ [0, 1], v̂j = βwj + (1 − β)vj with β ∈ [0, 1] and
vj is the weight (WA) vi ordered according to Kj , that is, according to the jth
largest of the (xi − µ)(yi – ν).

With this formulation, we can analyze the OWAWA covariance matrix (Mc-
Clane and Sincich, 2003), or measures of correlation, such as the Pearson co-
efficient (P.C.). The Pearson coefficient with the OWAWA (PC – OWAWA) is
formulated as follows:
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PC −OWAWA =
Cov −OWAWA(X,Y )

√

V ar −OWAWA(X)× V ar −OWAWA(Y )
. (66)

The PC – OWAWA is 1 in the case of an increasing linear relationship and
−1 in the case of a decreasing linear relationship. If the variables X and Y are
independent, then the PC – OWAWA is 0.

Furthermore, we can formulate linear regression using the OWAWA operator.
To construct the linear regression model yh = α+βxh, we calculate β as follows:

β̂OWAWA =
Cov −OWAWA(X,Y )

V ar −OWAWA(X)
. (67)

Next, we calculate the α̂OWAWA value as follows: α̂OWAWA = ȳOWAWA −
βx̄OWAWA, where x̄OWAWA and ȳOWAWA are the average of the sets X and
Y calculated by using an OWAWA operator. Once we have α̂OWAWAand
β̂OWAWA, we can construct the linear regression model with the OWAWA op-
erator as follows:

yh = α̂OWAWA + β̂OWAWAxh. (68)

Note that by using the OWAWA operator, we can revise these approaches and
also construct interval and fuzzy variants of these models by using the method-
ology from Section 6. Other existing methods can be revised and extended using
the OWAWA operator in a similar fashion. We can apply the OWAWA to many
other problems in descriptive statistics, inferential statistics, hypothesis testing,
correlation and regression, as well as in other scientific areas.

8. Multi-person decision-making with the OWAWA oper-

ator

In this paper, we consider a decision-making application in the selection of
financial strategies by an enterprise, using multi-person analysis. Multi-person
analysis provides a more complete representation of the problem because it is
based on the opinions of several people. Therefore, we can aggregate the opinion
of different people to obtain a representative view of the problem. This is very
useful because usually decisions are not individual, but are made by a group of
people in the company forming the board of directors.

The procedure to select strategies with the OWAWA operator in multi-
person decision-making is described in this section. Many other decision-making
models have been discussed in the literature (Chen and Zhou, 2011; Han and
Liu, 2011; Jin and Liu, 2010; Tan and Chen, 2010; Wei, 2011a; 2011b; Xu,
2010).

Step 1: Let A = (a1, a2, . . . , an) be a set of alternatives, S = (s1, s2, . . . , sn),
a set of states of nature (or attributes), forming the payoff matrix (ahi)m×n. Let
E = (e1, e2, . . . , ep) be a finite set of decision-makers. Let U = (u1, u2, . . . , up)
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be the weighting vector of the decision-makers such that
∑p

k=1 uk = 1 and uk ∈

[0, 1]. Each decision-maker provides his own payoff matrix (a
(k)
hi )m×n.

Step 2: Calculate the weighting vector V̂ = β × W + (1 − β) × V to be
used in the OWAWA aggregation. Note that W = (w1,w2, . . . , wn) is such that
∑n

j=1 wj = 1 and wj ∈ [0, 1] and V = (v1,v2, . . . , vp) is such that
∑n

i=1 vi = 1
and vi ∈ [0, 1].

Step 3: Use the WA to aggregate the information of the decision-makers E
using the weighting vector U . The result is the collective payoffmatrix (ãhi)m×n.
Thus, ahi =

∑p
k=1 uka

k
hi. It is possible to use other types of OWAWA operators

instead of the WA to aggregate this information.
Step 4: Calculate the aggregated results using the OWAWA operator ex-

plained in Eq. (9). Consider different families of OWAWA operators as described
in Section 5.

Step 5: Adopt decisions according to the results found in the previous steps.
Select the alternative(s) that provides the best result(s). Moreover, establish
an ordering of alternatives from the most- to the least-preferred alternative,
enabling consideration of more than one selection.

This aggregation process can be summarized using the following aggregation
operator that we call the multi–person – OWAWA (MP–OWAWA) operator.

Definition 8.1 An MP-OWAWA operator is a mapping MP-OWAWA : Rn ×
Rp → R that has a weighting vector U of dimension p with

∑p
k=1 up = 1 and

uk ∈ [0, 1] and a weighting vector W of dimension n with
∑n

j=1 wj = 1 and wj

∈ [0, 1], such that:

MP −OWAWA((a11, ..., a
p
1), ..., (a

1
n, ..., a

p
n)) =

n
∑

j=1

v̂jbj , (69)

where bj is the jth largest of the ai, each argument ai has an associated weight
(WA) vi with

∑n
i=1 vi = 1 and vi ∈ [0, 1], v̂j = βwj + (1− β)vj with β ∈ [0, 1]

and vj is the weight (WA) vi ordered according to bj, that is, according to the
jth largest of the ai, ai =

∑p
k=1 uka

k
i , a

k
i is the argument variable provided by

each person.

Note that the MP-OWAWA operator has similar properties to those explained
in Section 3, such as the distinction between descending and ascending orders,
and so on.

The MP-OWAWA operator includes a wide range of particular cases fol-
lowing the methodology explained in Section 5. Thus, it includes the multi-
person – WA (MP-WA) operator, the multi-person – OWA (MP-OWA) opera-
tor, the multi-person – arithmetic mean (MP-AM) operator, the multi-person
– arithmetic-WA (MP-AWA) operator and the multi-person – arithmetic-OWA
(MP-AOWA) operator.

It is possible to consider more complex situations by using different types of
aggregation operators to aggregate the expert opinions, though in Definition 10
we assume that the expert opinions were aggregated by using WA operators.
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9. Illustrative example

In the following, we present a numerical example of the new approach in a
decision-making problem regarding the selection of strategies. We analyze a
business problem regarding the selection of the optimal financial strategy in an
enterprise.

Step 1: Assume that a company that operates in Spain has to decide on the
financial strategy to use next year. They consider seven alternatives:

• A1 = Invest in the French market.
• A2 = Invest in the Italian market.
• A3 = Invest in the German market.
• A4 = Invest in the British market.
• A5 = Invest in the Polish market.
• A6 = Invest in the Romanian market.
• A7 = Do not make any investment.

In order to evaluate these strategies, the enterprise has brought together
a group of experts. This group considers that the key factor is the economic
situation of the world economy for the next period. They consider eight possible
states of nature that could happen in the future:

• S1 = Extremely bad economic situation.
• S2 = Very bad economic situation.
• S3 = Bad economic situation.
• S4 = Regular economic situation.
• S5 = Regular – Good economic situation.
• S6 = Good economic situation.
• S7 = Very good economic situation.
• S8 = Extremely good economic situation.

The experts are classified in three groups. Each group is led by one expert
and gives different opinions than the other two groups. The results of the
available strategies, depending on the state of nature Si and the alternative Ak

that the decision-maker chooses, are shown in Tables 3, 4 and 5.

Table 3. Payoff matrix – Expert 1 (group 1)

S1 S2 S3 S4 S5 S6 S7 S8

A1 60 70 80 40 30 50 60 90
A2 80 40 50 70 50 60 30 90
A3 90 90 90 20 20 60 60 60
A4 40 40 40 60 60 60 90 90
A5 10 10 30 50 70 90 90 90
A6 30 40 50 50 60 60 80 90
A7 40 60 70 30 50 60 80 90
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Table 4. Payoff matrix – Expert 2 (group 2)

S1 S2 S3 S4 S5 S6 S7 S8

A1 60 60 60 60 30 60 60 90
A2 70 30 50 70 40 60 50 90
A3 70 90 90 20 40 50 60 70
A4 40 40 40 60 60 60 90 90
A5 10 10 40 60 70 90 90 90
A6 40 50 50 50 60 70 80 80
A7 50 50 60 50 50 60 80 80

Step 2: In this problem, we assume the following weighting vector for the
three group of experts: U = (0.4, 0.3, 0.3). The experts assume the following
weighting vector for the OWA: W = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2, 0.2). They
assume the WA for each state of nature is: V = (0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1). First, we aggregate the information of the three groups into one collective
matrix that represents the information of all the experts of the problem. The
results are shown in Table 6.

Table 5. Payoff matrix – Expert 3 (group 3)

S1 S2 S3 S4 S5 S6 S7 S8

A1 60 60 60 60 40 60 60 80
A2 50 40 50 70 40 50 60 90
A3 80 90 90 20 50 50 60 60
A4 10 10 40 50 50 80 90 90
A5 20 30 50 50 80 80 80 80
A6 40 40 50 50 70 70 80 90
A7 40 50 60 50 80 60 80 70
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Table 6. Collective payoff matrix

S1 S2 S3 S4 S5 S6 S7 S8

A1 60 64 68 52 33 56 60 87
A2 68 37 50 70 44 57 45 90
A3 81 90 90 20 35 54 60 63
A4 31 31 40 57 57 66 90 90
A5 13 16 39 53 73 87 87 87
A6 36 43 50 50 63 66 80 87
A7 43 54 64 42 59 60 80 81

Step 3: Next, we calculate the attitudinal weights by mixing the weighting
vectors W and V . Note that the OWA operator has importance of 40% while
WA has importance of 60% in this particular example. The results are shown
in Table 7.

Table 7. Attitudinal weights

S1 S2 S3 S4 S5 S6 S7 S8

A1 0.1 0.1 0.16 0.16 0.1 0.1 0.14 0.14
A2 0.1 0.1 0.16 0.1 0.1 0.1 0.14 0.2
A3 0.16 0.1 0.16 0.1 0.1 0.1 0.14 0.14
A4 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
A5 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
A6 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
A7 0.1 0.1 0.1 0.1 0.1 0.16 0.2 0.14

Step 4: With this information, we can aggregate the expected results for
each state of nature in order to make a decision. For this, we use Eq. (10) to
calculate the OWAWA aggregation. In Table 8, we present the results obtained
using different types of OWAWA operators.

Step 5: If we establish an ordering of the alternatives, as we typically would
if we want to consider more than one alternative, then we get the results shown
in Table 9. Note that the first alternative in each ordering is the optimal choice.

Evidently, the order preference for the financial strategies may be different,
depending on the aggregation operator used. Therefore, the decisions as to
which strategy to select may be also different. However, in this example it is clear
that A3 or A7 should be the optimal choice. Note that the main advantage of the
OWAWA operator is that it can provide different results regarding uncertainty
according to the particular interests of the decision maker in the specific problem
considered.
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Table 8. Aggregated results

Max-WA Min-WA AM WA OWA AM-WA AM-OWA OWAWA
A1 71.04 49.44 60 60.4 56.5 60.24 58.6 58.84
A2 69.96 48.76 57.625 56.6 54.2 57.01 56.255 55.64
A3 75.84 47.84 61.625 66.4 54.8 64.49 58.895 61.76
A4 67.44 43.84 57.75 52.4 52.4 54.54 55.61 52.4
A5 63.84 34.24 56.875 48.4 48.4 51.79 53.485 48.4
A6 68.04 47.64 59.375 55.4 55.4 56.99 57.785 55.4
A7 67.2 51.6 60.375 58 56.8 58.95 58.945 57.52

Table 9. Ordering of the financial strategies

Ordering Ordering
Max-WA A3 ≻ A1 ≻ A2 ≻ A6 ≻ A4 ≻ A7 ≻ A5 OWA A7 ≻ A1 ≻ A6 ≻ A3 ≻ A2 ≻ A4 ≻ A5

Min-WA A7 ≻ A1 ≻ A2 ≻]A3 ≻ A6 ≻ A4 ≻ A5 AM-WA A3 ≻ A1 ≻ A7 ≻ A2 ≻ A6 ≻ A4 ≻ A5

AM A3 ≻ A7 ≻ A1 ≻ A6 ≻ A4 ≻ A2 ≻ A5 AM-OWA A7 ≻ A3 ≻ A1 ≻ A6 ≻ A2 ≻ A4 ≻ A5

WA A3 ≻ A1 ≻ A7 ≻ A2 ≻ A6 ≻ A4 ≻ A5 OWAWA A3 ≻ A1 ≻ A7 ≻ A2 ≻ A6 ≻ A4 ≻ A5
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10. Conclusions

We have developed a new aggregation operator that unifies the WA with the
OWA operator. We have called it OWAWA operator. The main advantage
of this unified formulation is that the WA and the OWA can be used simul-
taneously, with varying degrees of relative importance based on the specific
application. We have studied some of the main properties of the OWAWA by
analyzing its fundamental aspects such as the reordering process, the use of
mixture operators, the use of infinitary aggregation operators and the analysis
of new semi-boundary conditions.

We have analyzed different measures to characterize the weighting vector.
We have introduced a new or-ness measure that analyzes the or-ness of an
aggregation that uses both the OWA and the WA. We have presented a new
entropy measure that unifies Yager entropy with Shannon entropy. We have seen
that this new measure can be extended to the entirety of information theory
that uses the Shannon entropy. We have also developed a generalization of the
divergence measure and the balance operator applicable for OWAWA operators.

Furthermore, we have studied several families of OWAWA operators. We
have seen that the OWA and the WA are particular cases of this approach and
obtained a wide range of new interesting aggregation operators such as the Max-
WA, the Min-WA, the arithmetic-WA and the arithmetic-OWA operator. We
have also studied other families, such as the centered-OWAWA, the olympic-
OWAWA, the S-OWAWA and the MEOWAWA operator.

Likewise, construction of interval numbers and FNs by using OWA and
OWAWA operators was considered. We have seen that the OWA aggregation
can aggregate the information creating an interval or a FN that gives a repre-
sentative knowledge of the available information. By using OWAWA operators
we have found the subjective interval numbers and the subjective FNs. We have
seen that they permit to consider the subjective importance of the arguments in
aggregation. We have also developed different contexts where this methodology
could be used giving special attention to situations with a set of arguments that
depends on a set of alternatives and a set of states of nature.

The applicability of the OWAWA operator is quite broad because any study
that uses the WA or the OWA, can be extended using the OWAWA operator.
We have focused on a multi-person decision-making problem related to selection
of financial strategies. In this case, we have found a very general and interesting
aggregation operator: the MP-OWAWA operator. We have seen the usefulness
of using the OWAWA operator because we are able to consider WAs and OWAs
at the same time, which means that we can use subjective probabilities (or
degrees of importance) and the attitudinal character of the decision-maker.

In future research, we expect to develop further extensions to this approach
by adding new characteristics in the problem, such as the use of order-inducing
variables, uncertain information (interval numbers, fuzzy numbers, linguistic
variables, etc.), generalized and quasi-arithmetic means and distance measures.
We will also extend this approach to situations where we use the probability
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instead of the WA. We will also consider different applications, giving special
attention to statistics and business decision-making problems, such as political
and product management.
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