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Abstract: Hesitant fuzzy sets (HFSs) are useful means to de-
scribe and deal with uncertain data. In this article, a minimal span-
ning tree (MST) algorithm based clustering technique under hesitant
fuzzy environment is proposed. We first introduce the concepts of
graph, MST, HFS, and hesitant fuzzy distance. Then, we present a
hesitant fuzzy MST clustering algorithm to perform clustering anal-
ysis of HFSs via some hesitant fuzzy distances, and finally illustrate
the effectiveness of our algorithm through two numerical examples.
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1. Introduction

Clustering is a process aiming at grouping a set of objects into classes or clus-
ters according to the characteristics of data so that objects within a cluster have
mutual high similarity and objects in different clusters are dissimilar (Dong et
al., 2006). There have been many applications of clustering analysis to practical
problems in engineering, computer sciences, life and medical sciences, astronomy
and earth sciences, social sciences, economics, and so on (Anderberg, 1973; Har-
tigan, 1975; Everitt et al., 2001). The traditional (hard) clustering algorithms
strictly allocate an object to exactly one cluster. However, due to the fuzzy
nature of many practical problems, for objects so we cannot directly conclude
which class they should belong to in real life. Fuzzy sets (Zadeh, 1965) give an
idea of uncertainty of belonging, which is described by a membership function.
Then, Ruspini (1969) proposed the concept of fuzzy division, which opened
the door to research in fuzzy clustering. Subsequently, several extensions have
been developed, such as intutionistic fuzzy sets (Atanassov, 1986), type-2 fuzzy
sets (Dubois and Prade, 1980; Miyamoto, 2005), type-n fuzzy sets (Dubois and
Prade, 1980), fuzzy multisets (Yager, 1986; Miyamoto, 2000) and hesitant fuzzy
sets (Torra and Narukawa, 2009; Torra, 2010). So far, a lot of work has been
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done about the first four types of fuzzy sets, for example, Torra and Miyamoto
(2011) defined I-fuzzy partitions (or intuitionistic fuzzy partitions as they were
called by Atanassov, or interval-valued fuzzy partitions) to solve the difficulty of
comparing the results of fuzzy clustering methods and, in particular, the diffi-
culty of finding the global optimum, and applied I-fuzzy partitions to represent
sets of fuzzy partitions (Torra and Min, 2011a) as well as clustering uncertain-
ties (Torra and Min, 2011b). Meanwhile, a lot of research has been performed
on hesitant fuzzy sets. Torra and Narukawa (2009) and Torra (2010) discussed
the relationship between hesitant fuzzy sets and other three kinds of fuzzy sets,
Xia and Xu (2011) proposed some aggregation operators for hesitant fuzzy in-
formation, Xia et al. (2011) developed a series of confidence induced hesitant
fuzzy aggregation operators. Xu and Xia (2011a, b) gave a detailed study on
distance and similarity measures for hesitant fuzzy sets and hesitant fuzzy ele-
ments respectively. Graph theory (Harary, 1969) appears to be very convenient
to describe clustering problems. The graph theory-based clustering techniques
are an active research area. Zahn (1971) proposed clustering algorithm using
the minimal spanning tree (MST). Jain and Dubes (1988) provided a detailed
description and discussion of hierarchical clustering from the point of view of
graph theory. Dong et al. (2006) gave a hierarchical clustering algorithm based
on fuzzy graph connectedness. Chen et al. (2007) introduced the concept of
maximum spanning tree of fuzzy graph by constructing the fuzzy similarity re-
lation matrix, and used the threshold of fuzzy similarity relation matrix to cut
the maximum spanning tree, and then obtained classification on the respective
level. Zhao et al. (2012) developed two intuitionistic fuzzy minimal spanning
tree clustering algorithms, and extended them to clustering interval-valued in-
tuitionistic fuzzy sets. Yet, until now there has been no study on clustering of
data represented by hesitant fuzzy information. In real life, due to uncertainty
of information as well as vagueness of human feelings and recognition, the evalu-
ation data on the objects are sometimes expressed as hesitant fuzzy sets, and in
such cases, we need to develop clustering techniques to cluster such data. Based
on graph theory, this article develops a hesitant fuzzy minimal spanning tree
(HFMST) clustering algorithm to deal with hesitant fuzzy information. To do
so, we organize the article as follows: Section 2 reviews some concepts related to
graph theory, hesitant fuzzy sets and distance measures. Based on the minimal
spanning tree (MST), Section 3 develops a novel intuitionistic fuzzy clustering
technique, and then we illustrate its effectiveness via two numerical examples
in Section 4. The article finishes with some concluding remarks in Section 5.

2. Preliminaries

In what follows, we introduce some basic concepts and terminology to be used
in the next sections:
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2.1. The basic concepts related to HFSs

Hesitant fuzzy sets (HFSs) were first introduced by Torra and Narukawa (2009)
and Torra (2010), allowing the membership degree of an element to a set to
be represented with several possible values between 0 and 1. HFSs are very
useful in dealing with the situations where people hesitate when providing data
information.

Definition 1 (Torra and Narukawa, 2009; Torra, 2010). Let X be a fixed
set, a hesitant fuzzy set (HFS) on X is represented by a function that when
applied toX returns a subset of [0, 1], which can be expressed by a mathematical
symbol:

Q = {< x, hQ(x) > |x ∈ X} (1)

where hQ(x) is a set of values in [0, 1], denoting the possible membership degrees
of the element x ∈ X to the set Q. For convenience, we call h = hQ(x) a hesitant
fuzzy element (HFE) and S the set of all HFEs.

Given three HFEs represented by h, h1 and h2, Torra and Narukawa (2009)
and Torra (2010) defined some operations on them, which can be described as:

1) hc =
⋃

γ∈h

{1− γ};

2) h1 ∪ h2 =
⋃

γ1∈h1,γ2∈h2

max {γ1, γ2};

3) h1 ∩ h2 =
⋃

γ1∈h1,γ2∈h2

min {γ1, γ2}.

Torra and Narukawa (2009) and Torra (2010) showed that the envelope of a
HFE is an intuitionistic fuzzy value (IFV), expressed in the following definition:

Definition 2 (Torra and Narukawa, 2009; Torra, 2010). Given a HFE h, we
define the IFV Aenv(h) as the envelope of h, where Aenv(h) can be represented
as (h−, 1− h+), with h− = min {γ| γ ∈ h} and h+ = max {γ| γ ∈ h}.

2.2. The distance measures of HFSs

Let X = {x1, x2, · · · , xn} be a discrete universe of discourse. Consider that
the elements xi (i = 1, 2, · · · , n) in the universe X may have different impor-
tance, let w = {w1, w2, · · · , wn}

T be the weight vector of xi (i = 1, 2, · · · , n),

with wi ≥ 0, i = 1, 2, · · · , n,
n
∑

i=1

wi = 1, and let M and N be two HFSs on

X = {x1, x2, · · · , xn}. Xu and Xia (2011a) defined the generalized hesitant
weighted distance, the generalized hesitant weighted Hausdorff distance and
the generalized hybrid hesitant weighted distance, respectively:

(1) The generalized hesitant weighted distance:

z1(M,N) =





n
∑

i=1

wi





1

lxi

lxi
∑

j=1

∣

∣

∣
h
σ(j)
M (xi)− h

σ(j)
N (xi)

∣
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∣

λ









1/λ

. (2)
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In particular, if λ = 1, 2, then Eq.(2) reduces to the hesitant weighted Hamming
distance and the hesitant weighted Euclidean distance, respectively:

z2(M,N) =
n
∑

i=1

wi





1
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 (3)

z3(M,N) =
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i=1

wi
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. (4)

(2) The generalized hesitant weighted Hausdorff distance:

z4(M,N) =

[

n
∑

i=1

wimax
j

∣

∣

∣h
σ(j)
M (xi)− h

σ(j)
N (xi)

∣

∣

∣

λ
]1/λ

(5)

where λ > 0 .
Especially, if λ = 1, 2, then Eq.(5) reduces to the hesitant weighted Hamming-

Hausdorff distance and the hesitant weighted Euclidean-Haudorff distance, re-
spectively:

z5(M,N) =

n
∑

i=1

wi max
j

∣

∣
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σ(j)
M (xi)− h

σ(j)
N (xi)

∣
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∣ (6)

z6(M,N) =

[
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. (7)

(3) The generalized hybrid hesitant weighted distance:

z7(M,N) =
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(8)

where λ > 0 .
In particular, if λ = 1, 2, Eq.(8) reduces to a hybrid hesitant weighted Ham-

ming distance and a hybrid hesitant weighted Euclidean distance, respectively:

z8(M,N) =
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i=1
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z9(M,N) =
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In what follows, we define the concept of hesitant fuzzy distance matrix:
Definition 3 Let Aj(j = 1, 2, · · · ,m) be m HFSs, then Z = (zij)m×m is

called a hesitant fuzzy distance matrix, where zij = z(Ai, Aj) is the distance
between Ai and Aj , which has the following properties:

1) 0 ≤ zij ≤ 1, for all i, j = 1, 2, · · · ,m;
2) zij = 0 if and only if Ai = Aj ;
3) zij = zji, for all i, j = 1, 2, · · · ,m .

2.3. The graph and the minimal spanning trees

A graph G is a pair of sets G = (V,E), where V is the set of nodes and E is the
set of edges. In an undirected graph, each edge is an unordered pair {v1, v2}.
In a directed graph (also called a digraph in some literature), edges are ordered
pairs. The nodes v and w are called the endpoints of an edge. In a weighted
graph, ω is defined as a weight on each edge (Schaeffer, 2007). The graphs
considered in the rest of the article are undirected. Next, we introduce some
other notions through Fig. 1, where Fig. 1(a) depicts a weighted graph with 6
nodes and 9 edges.
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(c) Minimal spanning tree
Figure 1. A graph and the minimal spanning tree
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A sequence of edges and nodes that can be traveled between two different
nodes is called a path. For instance, it might be the case that two different
paths exist from node A to node H , such as the one denoted (ABCFH ) and the
one denoted (ABCDH ). A path where the start node and destination node is
the same is called a circuit, like (ABCA) or (ACFHDA). A connected graph has
paths between any pair of nodes. A connected acyclic graph that contains all
nodes of G is called a spanning tree of the graph. Obviously, Fig. 1(b) shows
such a graph. If we define the weight of a tree to be the sum of the weights of
its constituent edges then a minimal spanning tree of the graph G is a spanning
tree whose weight is minimal among all spanning trees of G, like in Fig. 1(c)
(Zahn, 1971).

The set E in a normal graph is a crisp relation over V ×V . That is to say, if
there exists an edge between the nodes v1 and v2 then the membership degree
equals 1, i.e., µE (v1, v2) = 1; otherwise µE (v1, v2) = 0, where (v1, v2) ∈ (V ×V ).
If a fuzzy relation R over V × V is defined, then the membership function
µR(v1, v2) takes values from 0 to 1 and such graph is called fuzzy graph. If R
is a hesitant fuzzy relation over V × V , then G = (V,R) is called hesitant fuzzy
graph.

Based on the hesitant fuzzy distance matrix given in Definition 3, we shall
use the idea of Zahn (1971) to develop a novel and handy hesitant fuzzy clus-
tering technique, a hesitant fuzzy minimal spanning tree (HFMST) clustering
algorithm, presented in the next section.

3. The HFMST clustering algorithm

Let X = {x1, x2, · · · , xn} be an attribution space and w = {w1, w2, · · · , wn}
T be

the weight vector of the elements xi (i = 1, 2, · · · , n), with wi ≥ 0, i = 1, 2, · · · , n,

and
n
∑

i=1

wi = 1. Let Aj(j = 1, 2, · · · ,m) be a collection of m HFSs expressing m

samples to be clustered, having the following forms:

Aj = {< xj , hA(xj) > |xj ∈ X}, j = 1, 2, · · · ,m. (11)

Then we propose a hesitant fuzzy minimal spanning tree (HFMST) clustering
algorithm, whose steps are as follows:

Step 1. Compute the hesitant fuzzy distance matrix and the fuzzy graph:

1) Calculate the distance zij = z(Ai, Aj) by Eqs.(2)(10) and get the hesitant
fuzzy distance matrix Z = (zij)m×m.

2) Build the hesitant fuzzy graph G = (V,E) where every edge between
Ai and Aj has the weight zij represented by HFSs as an element of the hesi-
tant fuzzy distance matrix Z = (zij)m×m, which shows the dissimilarity degree
between the samples Ai and Aj .

Step 2. Compute the MST of the hesitant fuzzy graph G = (V,E) by
Kruskal’s method (Kruskal, 1956) or Prim’s method (Prim, 1957)):

1) Sort the edges of G in increasing order by weight.
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2) Keep a sub-graph D of G, which is initially empty, and choose at each
step the edge e with the smallest weight to add to D, where the endpoints of e
are disconnected.

3) Repeat the process 2) until the sub-graph D spans all nodes. Thus, we
get the MST of the hesitant fuzzy graph G = (V,E).

Step 3. Perform clustering by using the minimal hesitant fuzzy spanning
tree. We can get a certain number of sub-trees (clusters) by disconnecting all the
edges of the MST with weights greater than a threshold λ. The clustering results
induced by the sub-trees do not depend on some particular MST (Gaertler,
2002).

For convenience, we express the clustering process of our algorithm above
by the flow chart of Fig. 2.

4. Numerical examples

In this section, two illustrative examples will be given in order to demonstrate
the practical usage and the effectiveness of our approach

Example 1. Jiangxi province is located in southeast of China and in the
middle reaches the Changjiang (Yangtze) River. The favorable physical condi-
tions, with a diversity of natural resources leading to the suitability for growing
various crops there. However, there are also some restrictive factors for de-
veloping agriculture such as tight man–land relations, constant degradation of
natural resources and growing population pressure on land resource reserves.
Based on the distinctness and differences in environment and natural resources,
Jiangxi Province can be roughly divided into ten cities: A1—Fuzhou, A2—
Nanchang, A3—Shangrao, A4—Jiujiang, A5—Pingxiang, A6—Yingtan, A7—
Ganzhou, A8—Yichun, A9—Jingdezhen, A10—Ji’an. Hence, in order to co-
ordinate the development and improve people’s living standards, local govern-
ment intends to classify these cities into different regions. Suppose that several
decision makers are invited to evaluate the ten alternatives (cities) based on two
attributes: x1—Ecological benefit and x2—Economic benefit. Some attribute
values for an alternative, provided by different decision makers may be repeated.
However, a value repeated more times does not necessarily have higher impor-
tance than other values repeated less times. For example, the value one time
may be provided by a decision maker who is an expert in this area, and the value
repeated twice may be provided by two decision makers who are not familiar
with this area. In such cases, the value given one time may be more important
than the one repeated twice. To get a more reasonable result, it is better that
the decision makers give their evaluations anonymously. We only collect all the
possible values for an alternative and an attribute, and each value provided only
means that it is a possible value, but its importance is unknown. As the number
of times that the values are repeated is unimportant, it is reasonable to allow
values repeated many times to appear only once. The HFS is just a tool to deal
with such cases, and all possible evaluations for an alternative can be consid-
ered as an HFS. The results evaluated by the decision makers are contained in
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Start

Calculate hesitant fuzzy 

distance matrix

Construct the hesitant 

fuzzy graph

Build hesitant fuzzy MST

Perform clustering 

analysis 
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Figure 2. The flow chart of the HFMST clustering algorithm
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 0 0.3502 0.4399 0.2272 0.2502 0.469 0.2107 0.134 0.3512 0.2035

0.3502 0 0.0952 0.2814 0.2272 0.131 0.2117 0.3983 0.1155 0.463

0.4399 0.0952 0 0.3766 0.2327 0.1366 0.3014 0.4916 0.1617 0.5417

0.2272 0.2814 0.3766 0 0.3722 0.276 0.4217 0

Z =

.2541 0.3255 0.1824

0.2502 0.2272 0.2327 0.3722 0 0.3176 0.2501 0.3263 0.2449 0.3505

0.469 0.131 0.1366 0.276 0.3176 0 0.2651 0.5081 0.1291 0.5689

0.2107 0.2117 0.3014 0.4217 0.2501 0.2651 0 0.3176 0.1405 0.4047

0.134 0.3983 0.4916 0.2541 0.3263 0.5081 0.3176 0 0.3969 0.2517

0.3512 0.1155 0.1617 0.3255 0.2449 0.1291 0.1405 0.3969 0 0.45

0.2035 0.463 0.5417 0.1824 0.3505 0.5689 0.4047 0.2517 0.45 0

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

a hesitant fuzzy decision matrix as follows:

A1 = {< x1, {0.8, 0.7, 0.6} > , < x2, {0.8, 0.7, 0.3} >},

A2 = {< x1, {0.9, 0.8, 0.3} > , < x2, {0.8, 0.7, 0.6} >},

A3 = {< x1, {0.9, 0.7, 0.1} > , < x2, {0.8, 0.7, 0.6} >},

A4 = {< x1, {0.9, 0.8, 0.3} > , < x2, {0.9, 0.8, 0.2} >}

A5 = {< x1, {0.8, 0.5, 0.4} > , < x2, {0.7, 0.6, 0.5} >},

A6 = {< x1, {0.9, 0.8, 0.2} > , < x2, {0.9, 0.8, 0.7} >},

A7 = {< x1, {0.8, 0.7, 0.6} > , < x2, {0.9, 0.7, 0.6} >},

A8 = {< x1, {0.9, 0.8, 0.7} > , < x2, {0.9, 0.8, 0.3} >},

A9 = {< x1, {0.9, 0.7, 0.3} > , < x2, {0.9, 0.7, 0.6} >},

A10 = {< x1, {0.7, 0.6, 0.5} > , < x2, {0.9, 0.8, 0.1} >}.

Let the weight vector of the attributes xj (j = 1, 2) be w = (0.45, 0.55)T .
We utilize the HFMST clustering algorithm to group these operational plans
Aj(j = 1, 2, · · · , 10):

Step 1. Construct the hesitant fuzzy distance matrix and the fuzzy graph
where each node is associated to a city to be clustered as expressed by a HFS:

1) Calculate the distance zij = z9(Ai, Aj) by Eq. (10), and then get the
hesitant fuzzy distance matrix Z = (zij)10×10 (above).

2) Construct the fuzzy graph G = (V,E) where every edge between Ai and
Aj has the weight zij represented by a HFS as an element of the hesitant fuzzy
distance matrix Z = (zij)10×10, showing the dissimilarity degree between the
samples Ai and Aj (see Fig. 3).
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Figure 3. The hesitant fuzzy graph G = (V,E)

Step 2. Compute the MST of the hesitant fuzzy graph G = (V,E) by
Kruskal’s method (Kruskal, 1956):

1) Sort the edges of G in increasing order by weights:

z23 < z29 < z26 < z18 < z36 < z79 < z39 < z4,10 < z1,10 < z27 < z25 =
z14 < z34 < z59 < z57 < z15 < z8,10 < z4,8 < z67 < z45 < z24 < z37 < z56
= z78 < z49 < z58 < z12 < z5,10 < z19 < z45 < z34 < z89 < z7,10 < z47
< z13 < z9,10 < z2,10 < z16 < z38 < z68 < z3,10 < z6,10

2) Keep an empty sub-graphD of G, and choose the edge e with the smallest
weight to add to D, in which the endpoints of e are disconnected, so we can
choose the edge e23 between A2 and A3.

3) Repeat the process 2) until the sub-graph D spans ten nodes. Thus, we
get the MST of the hesitant fuzzy graph G = (V,E) (see Fig. 4(a-j)).

Step 3. Select a threshold λ and disconnect all the edges of the MST
with weights greater than λ to get a certain number of sub-trees (clusters)
automatically, as listed in Table 1.

Obviously, based on Table 1, the Jiangxi Provincial Government can divide
its ten cities into different agroecological regions (clusters) in order to improve
its overall development. For instance, if the government intends to classify these
ten cities into four agroecological regions (clusters), thus, it can easily obtain
the results from Table 1, derived by utilizing our algorithm to compute the
assessment values of alternatives (cities) provided by decision makers (experts),
as follows:
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Figure 4. The sub-trees of the hesitant fuzzy graph G = (V,E)

Table 1. Clustering results with various thresholds λ

λ Corresponding clustering results Corresponding
MST

λ = z34 = 0.3766 {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10} Figure 4(a)
λ = z14 = z25 =
0.2272

{A1, A4, A8, A10},
{A2, A3, A5, A6, A7, A9}

Figure 4(b)

λ = z1,10 = 0.2305 {A5} , {A1, A4, A8, A10},
{A2, A3, A6, A7, A9}

Figure 4(c)

λ = z4,10 = 0.1824 {A5} , {A1, A8}, {A4, A10},
{A2, A3, A6, A7, A9}

Figure 4(d)

λ = z79 = 0.1405 {A5} , {A1, A8}, {A4}, {A10},
{A2, A3, A6, A7, A9}

Figure 4(e)

λ = z18 = 0.134 {A1, A8}, {A4}, {A5} , {A7} ,
{A10}, {A2, A3, A6, A9}

Figure 4(f)

λ = z26 = 0.131 {A1}, {A4}, {A5} , {A7} , {A8},
{A10}, {A2, A3, A6, A9}

Figure 4(g)

λ = z29 = 0.1155 {A1}, {A4}, {A5}, {A6}, {A7} ,
{A8}, {A10}, {A2, A3, A9}

Figure 4(h)

λ = z23 = 0.0952 {A1}, {A2, A3}, {A4}, {A5}, {A6},
{A7} , {A8}, {A9}, {A10}

Figure 4(i)

λ = 0 {A1}, {A2}, {A3}, {A4}, {A5},
{A6}, {A7} , {A8}, {A9}, {A10}

Figure 4(j)
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The first agroecological region includes: A5—Pingxiang; the second: A1—
Fuzhou, and A8—Yichun; the third: A4—Jiujiang and A10—Ji’an; and the
fourth:A2—Nanchang, A3—Shangrao, A6—Yingtan, A7—Ganzhou, and A9—
Jingdezhen.

It is noted that the numbers of values in different HFEs of HFSs are the
same in Example 1. However, in most cases, the numbers of values in different
HFEs of HFSs may be different. In Example 2, we will make further discussion
in detail.

To compare with the intuitionistic fuzzy MST (IFMST) clustering algorithm
and the fuzzy MST (FMST) clustering algorithm, we give another example with
six nodes for convenience. In Example 2, we will first make clustering analysis
under hesitant fuzzy environment, and then consider the HFSs envelopes, i.e.,
intuitionistic fuzzy data, and make an IFMST clustering analysis. Finally, we
will perform FMST clustering analysis when the considered IFSs reduce to the
FSs by considering only the membership degrees of the data.

Example 2. In order to complete an operational mission, six sets of oper-
ational plans are made (adapted from Zhang et al., 2009 and 2012). To group
these operational plans with respect to their comprehensive functions, a mil-
itary committee has been set up to provide assessment information on them.
The attributes which are considered here in assessment of the six sets of oper-
ational plans are: 1) x1 is the effectiveness of operational organization; and 2)
x2 is the effectiveness of operational command. The military committee eval-
uates the performance of the six operational plans according to the attributes
xj(j = 1, 2), and gives the hesitant fuzzy data as:

A1 = {< x1, {0.85, 0.70} > , < x2, {0.80, 0.75, 0.60}>},

A2 = {< x1, {0.65, 0.5, 0.4}> , < x2, {0.9, 0.8} >},

A3 = {< x1, {0.75, 0.6, 0.55}> , < x2, {0.85, 0.8, 0.7} >},

A4 = {< x1, {0.65, 0.44} > , < x2, {0.8, 0.7, 0.6} >},

A5 = {< x1, {0.65, 0.6, 0.5}> , < x2, {0.8, 0.75} >},

A6 = {< x1, {0.75, 0.6, 0.55}> , < x2, {0.85, 0.7, 0.57}>}.

Apparently the numbers of values in different HFEs of HFSs are different. To
operate correctly, Xu and Xia (2011a) gave the following rules:
let l(h(x)) be the number of values in h(x). If l(h1) < l(h2), then h1 should
be extended by adding the minimal value in it until it has the same length as
h2; If l(h1) > l(h2), then h2 should be extended by adding the minimal value
in it until it has the same length as h1. At the same time, we can extend the
shorter one by adding any value in it which mainly depends on the decision
makers’ risk preferences. Optimists anticipate desirable outcomes and may add
the maximum value, while pessimists expect unfavorable outcomes and may add
the minimal value. Then we consider that the decision makers are pessimistic
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in Example 2, so we change the hesitant fuzzy data by adding the minimal
values as below (for convenience of description, here we also list them in the
corresponding sets):

A1 = {< x1, {0.85, 0.7, 0.7}> , < x2, {0.8, 0.75, 0.6}>},

A2 = {< x1, {0.65, 0.5, 0.4}> , < x2, {0.9, 0.8, 0.8} >},

A3 = {< x1, {0.75, 0.6, 0.55}> , < x2, {0.85, 0.8, 0.7} >},

A4 = {< x1, {0.65, 0.44, 0.44}> , < x2, {0.8, 0.7, 0.6} >},

A5 = {< x1, {0.65, 0.6, 0.5}> , < x2, {0.8, 0.75, 0.75}>},

A6 = {< x1, {0.75, 0.6, 0.55}> , < x2, {0.85, 0.7, 0.57}>}.

Then we proceed to utilize the HFMST clustering algorithm to group these
operational plans Aj(j = 1, 2, · · · , 6):

Step 1. Construct the hesitant fuzzy distance matrix and the hesitant fuzzy
graph:

1) Calculate the distance zij = z9(Ai, Aj) by Eq.(10), and then we get the
hesitant fuzzy distance matrix Z = (zij)6×6 as:

Z =

















0.0000 0.3264 0.1474 0.1733 0.2052 0.1140
0.3264 0.0000 0.1480 0.1761 0.1899 0.2406
0.1474 0.1480 0.0000 0.1609 0.090 0.0965
0.1733 0.1761 0.6090 0.0000 0.1540 0.1216
0.2052 0.1899 0.0900 0.1540 0.0000 0.1735
0.1140 0.2406 0.0965 0.1216 0.1735 0.0000

















.

2) Construct the fuzzy graph G = (V,E) where every edge between Ai and
Aj has the weight zij represented by HFSs as an element of the hesitant fuzzy
distance matrix Z = (zij)6×6, which shows the dissimilarity degree between the
samples Ai and Aj (see Fig. 5):

Figure 5. The hesitant fuzzy graph G = (V,E)
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Step 2. Compute the hesitant fuzzy MST of the hesitant fuzzy graph G =
(V,E). See Step 2 in the HFMST clustering algorithm.

Step 3. Group the nodes (the operational plans) into clusters. See Step 3
in the HFMST clustering algorithm.

Hence, after the above steps, we obtain the clustering results listed in Table
2.

Table 2. The HFMST clustering results
λ Corresponding clustering results
λ = z23 = 0.1474 {A1, A2, A3, A4, A5, A6}
λ = z46 = 0.1216 {A2}, {A1, A3, A4, A5, A6}
λ = z16 = 0.114 {A2}, {A4}, {A1, A3, A5, A6}
λ = z36 = 0.0965 {A1}, {A2}, {A4}, {A3, A5, A6}
λ = z35 = 0.09 {A1}, {A2}, {A4}, {A6}, {A3, A5}
λ = 0 {A1}, {A2}, {A3}, {A4}, {A5}, {A6}

According to Definition 2, the IFV Aenv(h) is the envelope of the HFE h,
then we can transform the hesitant fuzzy data of Example 2 into intuitionistic
fuzzy data:

A1 = {< x1, 0.70, 0.15 > , < x2, 0.60, 0.20 >},

A2 = {< x1, 0.40, 0.35 > , < x2, 0.80, 0.10 >},

A3 = {< x1, 0.55, 0.25 > , < x2, 0.70, 0.15 >},

A4 = {< x1, 0.44, 0.35 > , < x2, 0.60, 0.20 >},

A5 = {< x1, 0.50, 0.35 > , < x2, 0.75, 0.20 >},

A6 = {< x1, 0.55, 0.25 > , < x2, 0.57, 0.15 >}.

and then the operational plans xi (i = 1, 2, · · · , 6) can be clustered with the
following IFMST clustering algorithm (Zhao, 2012):

Step 1. Compute the intuitionistic fuzzy distance matrix and the fuzzy
graph:

1) Calculate zij = z(Ai, Aj) by the following distance measure:

z10(A,B) = (12)
√

√

√

√

1

2

n
∑

i=1

wi((µA(xi)− µB(xi))2 + (vA(xi)− vB(xi))2 + (πA(xi)− πB(xi))2)

where the weight vector of the attributes xj(j = 1, 2) is w = (0.45, 0.55)T , and
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we get the fuzzy distance matrix:

Z =

















0.0000 0.2450 0.1225 0.1170 0.1725 0.1115
0.2450 0.0000 0.12250 0.1280 0.1000 0.1940
0.1225 0.1225 0.0000 0.1045 0.1000 0.0715
0.1170 0.1280 0.1045 0.0000 0.1095 0.0935
0.1725 0.1000 0.1000 0.1095 0.0000 0.1715
0.1115 0.1940 0.0715 0.0935 0.1715 0.0000

















.

2) Construct the fuzzy graph G = (V,E) where every edge between Ai and Aj

has the weight zij represented by an HFS as an element of the hesitant fuzzy
distance matrix Z = (zij)6×6, which shows the dissimilarity degree between the
samples Ai and Aj(see Fig. 5)

Step 2. Compute the MST of the intuitionistic fuzzy graph G = (V,E).
See also Step 2 in the HFMST clustering algorithm.

Step 3. Group the nodes (the operational plans) into clusters. See also
Step 3 in the HFMST clustering algorithm.

Obviously, after the above steps, we can obtain the clustering results listed
in Table 3.

Table 3. The IFMST clustering results
λ Corresponding clustering results
λ = z16 = 0.1115 {A1, A2, A3, A4, A5, A6}
λ = z25 = z35 = 0.1 {A1}, {A2, A3, A4, A5, A6}
λ = z46 = 0.088 {A1}, {A2}, {A5}, {A3, A4, A6}
λ = z36 = 0.0715 {A1}, {A2}, {A4}, {A5}, {A3, A6}
λ = 0 {A1}, {A2}, {A3}, {A4}, {A5}, {A6}

It is well known that both the IFS and the HFS are the extensions of the
traditional fuzzy sets. Compared with the IFS, which is composed of a mem-
bership degree, a non-membership degree and a hesitancy degree, the fuzzy set
is only composed of the membership degree. So the intuitionistic fuzzy data are
reduced to the fuzzy data when we only consider the membership degrees of the
intuitionistic data, and the operational plan information given by the military
committee become:

A1 = {< x1, 0.70 > , < x2, 0.60 >}, A2 = {< x1, 0.40 > , < x2, 0.80 >}

A3 = {< x1, 0.55 > , < x2, 0.70 >}, A4 = {< x1, 0.44 > , < x2, 0.60 >}

A5 = {< x1, 0.50 > , < x2, 0.75 >}, A6 = {< x1, 0.55 > , < x2, 0.57 >}

and then the operational plans xi(i = 1, 2, · · · , 6) can be clustered with the
following FMST clustering algorithm:

Step 1. Compute the fuzzy distance matrix and the fuzzy graph:
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1) Calculate zij = z(Ai, Aj) by the following distance measure:

z11(A,B) =
2

∑

i=1

wi(|µA(xi)− µB(xi)|) (13)

where the weight vector of the attributes xj(j = 1, 2) is w = (0.45, 0.55)T , and
we get the fuzzy distance matrix:

D =

















0.0000 0.2450 0.1225 0.1170 0.1725 0.0840
0.2450 0.0000 0.1225 0.1280 0.0725 0.1940
0.1225 0.1225 0.0000 0.1045 0.0500 0.0715
0.1170 0.1280 0.1045 0.0000 0.1095 0.0660
0.1725 0.0725 0.0500 0.1095 0.0000 0.1215
0.0840 0.1940 0.0715 0.0660 0.1215 0.0000

















.

2) Construct the fuzzy graph G = (V,E) where every edge between Ai and Aj

has the weight zij represented by an HFS as an element of the hesitant fuzzy
distance matrix Z = (zij)6×6, which shows the dissimilarity degree between the
samples Ai and Aj(see Fig. 5)

Step 2. Compute the MST of the fuzzy graph G = (V,E). See also Step 2
in the HFMST clustering algorithm.

Step 3. Group the nodes (the operational plans) into clusters. See also
Step 3 in the HFMST clustering algorithm.

Analogously, after the above steps, we get the clustering results listed in
Table 4.

Table 4. The FMST clustering results
λ Corresponding clustering results
λ = z16 = 0.0840 {A1, A2, A3, A4, A5, A6}
λ = z25 = 0.0725 {A1}, {A2, A3, A4, A5, A6}
λ = z36 = 0.0715 {A1}, {A2}, {A3, A4, A5, A6}
λ = z46 = 0.0660 {A1}, {A2}, {A3, A5}, {A4, A6}
λ = z35 = 0.0500 {A1}, {A2}, {A3, A5}, {A4}, {A6}
λ = 0 {A1}, {A2}, {A3}, {A4}, {A5}, {A6}

In order to provide a better view of the comparison, we put the clustering
results of those three algorithms into Table 5.

After calculations, we find that the clustering results of those three clustering
algorithms are quite different. The main reason is that the HFMST clustering
algorithm clusters the fuzzy information which is represented by several possi-
ble values, not by a margin of error (as in IFSs), while the FMST clustering
algorithm clusters the fuzzy information which only considers the membership
degrees and thus loses too much information. Obviously, compared with the
clustering results of the FMST clustering algorithm, both the HFMST cluster-
ing results and the IFMST clustering results are more reasonable. Moreover,



664 X. ZHANG AND Z. XU

Table 5. Clustering results
Classes The HFMST cluster-

ing
Algorithm

The IFMST clustering
algorithm

The FMST clustering
algorithm

6 {A1}, {A2}, {A3},
{A4}, {A5}, {A6}

{A1}, {A2}, {A3},
{A4}, {A5}, {A6}

{A1}, {A2}, {A3},
{A4}, {A5}, {A6}

5 {A1}, {A2}, {A4},
{A6}, {A3, A5}

{A1}, {A2}, {A4},
{A5}, {A3, A6}

{A1}, {A2}, {A4},
{A6}, {A3, A5}

4 {A1}, {A2}, {A4},
{A3, A5, A6}

{A1}, {A2}, {A5},
{A3, A4, A6}

{A1}, {A3, A5},
{A2}, {A4, A6}

3 {A2}, {A4},
{A1, A3, A5, A6}

{A1}, {A2},
{A3, A4, A5, A6}

2 {A2},
{A1, A3, A4, A5, A6}

{A1},
{A2, A3, A4, A5, A6}

{A1},
{A2, A3, A4, A5, A6}

1 {A1, A2, A3, A4, A5, A6} {A1, A2, A3, A4, A5, A6} {A1, A2, A3, A4, A5, A6}

when we encounter some situations where information is represented by sev-
eral possible values, the HFMST clustering algorithm demonstrates its great
superiority in clustering those hesitant fuzzy data.

5. Concluding remarks

The well-known MST clustering algorithm is an intuitively simple and effective
clustering technique, which has been extensively applied to various fields. How-
ever, the traditional MST clustering algorithm cannot cluster data represented
by hesitant fuzzy information. In this article, we have proposed the HFMST
clustering algorithm, which can be used for clustering hesitant fuzzy information
successfully. Furthermore, the computational tests on the HFMST clustering
algorithm, the IFMST clustering algorithm and the FMST clustering algorithm
have shown that the clustering results of the HFMST clustering algorithm and
the IFMST clustering algorithm are more reasonable than those of the FMST
clustering algorithm. At the same time, in situations where information is rep-
resented by several possible values, the HFMST clustering algorithm shows its
great superiority in clustering those hesitant fuzzy data and provides many de-
tailed clustering results. Because the HFSs are a powerful tool to deal with
vagueness and uncertainty, in the future, the developed algorithm can be used
in many applications including information retrieval, equipment evaluation, in-
vestment decision making, data mining, etc.
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