
Control and Cybernetics

vol. 41 (2012) No. 4

A framework for cost based optimization of hybrid CPU/GPU
query plans in database systems∗†

by

Sebastian Breß, Ingolf Geist, Eike Schallehn, Maik Mory andGunter Saake

Otto-von-Guericke University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg
{bress,geist,eike,maik.mory,saake}@iti.cs.uni-magdeburg.de

Abstract: Current database research identified the use of computa-
tional power of GPUs as a way to increase the performance of database
systems. As GPU algorithms are not necessarily faster than their CPU
counterparts, it is important to use the GPU only if it is beneficial for query
processing. In a general database context, only few research projects ad-
dress hybrid query processing, i.e., using a mix of CPU- and GPU-based
processing to achieve optimal performance. In this paper, we extend our
CPU/GPU scheduling framework to support hybrid query processing in
database systems. We point out fundamental problems and propose an
algorithm to create a hybrid query plan for a query using our schedul-
ing framework. Additionally, we provide cost metrics, accounting for the
possible overlapping of data transfers and computation on the GPU. Fur-
thermore, we present algorithms to create hybrid query plans for query
sequences and query trees.

1. Introduction

Graphics Processing Units (GPUs) are specialized processors designed to support gra-
phical applications. GPUs have advanced capabilities of parallel processing and have
more computing power than CPUs nowadays. Using GPUs to speedup generic applica-
tions is called General Purpose Computation on Graphics Processing Units (GPGPU).
In particular, parallelizable applications benefit from computations on the GPU (Sanders
& Kandrot, 2010).

Current research focuses on the acceleration of database systems by using the GPU
as co-processor (Bakkam & Skadron, 2010; He et al., 2008, 2009; Pirk, 2012; Pirk,
Manegold & Kersten, 2011; Walkowiak et al., 2010) GPUs are utilized for accelerating
query processing like relational operations (Bakkam & Skadron, 2010; Diamos et al.,
2012; Govindaraju et al., 2006; He et al., 2006, 2008; He & Yu,2011; Kaldewey et
al., 2012; Pirk, 2012; Pirk, Manegold & Kersten, 2011; Pirk et al., 2012), XML path
filtering (Moussalli et al., 2011), online aggregation (Lauer et al., 2010), compression

∗This paper is an extended version of previous work, Breß, Schallehn & Geist (2012).
†Submitted: October 2012; Accepted: November 2012.



716 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

(Andrzejewski & Wrembel, 2010; Fang, He & Lao, 2010) and scans (Beier, Kilias &
Sattler, 2012), as well as query optimization, e.g., GPU based selectivity estimation
(Augustyn & Zederowski, 2012; Heimel & Markl, 2012).

However, the data transfer between CPU and GPU memory introduces a large over-
head leading to a better performance of CPU algorithms for relatively small data sets
(Gregg & Hazelwood, 2011). Therefore, typical plans for a database query consists of
a combination of GPU and CPU algorithms. We call such a query plan ahybrid query.

We have to solve many problems to find a hybrid query plan that allows for an ef-
ficient usage of the GPU as co-processor during database query processing. Therefore,
we need a hybrid query optimizer (Heimel, 2011) to constructa good hybrid query
plan. The optimizer uses a cost model, which includes GPU andCPU costs. Schedul-
ing operations to GPU or CPU increases the search space for anoptimizer. Hence, we
have to reduce the search space by using two-step approachesor other heuristics.

In previous work, we presented a self-tuning decision model, which distributes
database operations response time minimal among CPU and GPUprocessing units
(Breß, Schallehn & Geist, 2012). The model is a black box approach that computes
estimated execution times for algorithms using statistical methods and observed ex-
ecution times. So far, we only considered single operations. In this paper, we will
present an extension how a hybrid query plan with low response time is constructed
from a logical query plan using the scheduling framework.

This paper is an extended version of prior work (Breß, Schallehn & Geist, 2012).
It summarizes our decision model (Breßet al., 2012; Breß, Mohammad & Schallehn,
2012) and our cost estimation approach for hybrid query plans for effective GPU co-
processing in relational DBMS (Breß, Schallehn & Geist, 2012). Current GPUs sup-
port concurrent processing and data transfer, which can reduce the overall execution
time (AMD, 2011; NVIDIA, 2012). Therefore, we contribute a new cost metric for
the computation of query response time assuming concurrentprocessing of database
operations and data transfer on the GPU are possible. Furthermore, we extend our op-
timization algorithms from query sequences (query plan as asequence of operations)
to query trees (query plan as operator tree).

The remainder of the paper is structured as follows. First, we present the neces-
sary background in Section 2.1. In Section 2.2, we discuss basic problems that occur
during the processing and optimization of hybrid queries. We introduce our notation
in Section 3. We give a short overview of the decision model inSection 4 and present
an approach for the construction of sequential hybrid queryplans in Section 5. Af-
terwards, we present our extended cost metrics and algorithms that consider possible
concurrency of data transfer and computation on GPU side in Section 6 and utilize
them in a new heuristic, which we describe in Section 7. In Section 8, we generalize
our concepts from query sequences to query trees. The paper closes with a discussion
of related work in Section 9, a discussion of future researchsteps in Section 10, and a
conclusion in Section 11.



Cost based optimization of hybrid CPU/GPU query plans 717

� �

�

�� ��

���	
���

��� ���

���

�� ��

���	
������

���

������� �	��� 
��� ��������	����
���

��
�����������
���������

��
���������

����	�������
���� 

��
������� ����! 

����	�����"����� #�$������� 


�����%!

�

Figure 1. Example: hybrid query plan and problems of hybrid query processing

2. Preliminaries

In this section, we provide a brief overview over graphics processing units and chal-
lenges for hybrid query processing.

2.1. Graphics Processing Units

Graphics Processing Units (GPUs) are specialized processors designed to support graph-
ical applications. In contrast to the CPU, the GPU is optimized for throughput, which
is achieved by massively parallel execution using large numbers of threads. Further-
more, the GPU is optimized for numerical computation, but control flow statements
brake the performance of a GPU algorithm. Hence, not all applications benefit from
GPU (Sanders & Kandrot, 2010).

A GPU can only process data that resides in the GPU memory. Hence, data has
to be transferred from CPU main memory to the GPU memory before processing on
the GPU. After the GPU processed the data, the result has to betransferred back into
the CPU memory (NVIDIA, 2012). The copy operations introduce an overhead, which
can lead to a higher total execution time of a GPU algorithm compared to its CPU
counterpart, even if the execution on the GPU is faster than on the CPU (Gregg &
Hazelwood, 2011).

2.2. Challenges for hybrid query processing

The main problem of hybrid query processing is to use the GPU only if it is beneficial
for the performance of a query. The physical optimization process in database query
processing should be revised to enable an effective usage ofthe GPU to increase the
performance of database systems. It is difficult to generalize query processing from
pure CPU based processing to a hybrid CPU/GPU solution. One possible approach
estimates the execution times of all algorithms for an operation, choosing for each
operation in a query the algorithm with the lowest expected costs.



718 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

If a GPU algorithm is selected, then additional communication costs will be in-
curred depending on the data storage location (Gregg & Hazelwood, 2011). We discuss
two common approaches.

First, is cost based optimization by pruning the optimization space and comparing
the costs of candidate query plans. Therefore, we need to create a set of hybrid query
plan candidates and then choose the plan with lowest costs. To keep the overhead low,
we have to reduce the optimization space while keeping promising candidates. Hence,
we need a cost model that can compute the cost of a hybrid queryplan in consideration
of data storage location and possibly parallel data transfer and data processing. We
discuss our cost metrics in Section 6 and discuss a cost basedoptimization algorithm
for query sequences in Section 7.

Second is a greedy strategy which computes exactly one hybrid query plan. Con-
sidering the growth of the optimization space, the overheadof a cost based approach
is likely to be high. Hence, we present a greedy approach in Section 5 for query se-
quences and in Section 8 for query trees.

The greedy strategy introduces lower overhead, whereas thecost based approach is
likely to find a query plan with lower cost. Fig. 1 illustrateshow a hybrid query plan is
created from a logical query plan. Note the necessary copy operations, if the optimizer
decides to change the processing device (CPU/GPU). We identify five problems:
Pipelining challenge Modern GPUs can enqueue kernels and concurrently process

them, but the inter-kernel communication is undefined (NVIDIA, 2012). Hence,
a regular pipelining between two GPU algorithms is not possible. However, it is
possible to integrate two operations into one kernel. In this case, several kernels
are combined and compiled together at run-time, if OpenCL isused (Heimel,
2011).

Execution time prediction challenge Database operations can be executed in paral-
lel, e.g., in Fig. 1, where two selections can be processed concurrently. The
concurrent processing of kernels is possible for current GPUs (NVIDIA, 2012),
but it is hard to predict the influence on execution times.

Copy serialization challengeConcurrent copy operations in the same direction are
not allowed (NVIDIA, 2012). As Fig. 1 illustrates, concurrent data transfer oc-
curs in query plans. Hence, copy operations have to be serialized, and the follow-
ing selections have to be serialized as well. A possible approach is to combine
the two data streams in one copy operation and reorganize thedata in the GPU
memory. In this way, the PCIe Bus is better utilized.

Critical query challenge Since the number of concurrent kernel executions (16 by
current NVIDIA GPUs, NVIDIA, 2012) and the PCIe Bus bandwidth are lim-
ited, not every query benefits from the GPU. Thus, a heuristicis needed, which
chooses ”critical queries” that, first, benefit from the GPU usage and, second,
have a certain degree of ”importance”, because some queriesrequire higher per-
formance than others.

Optimization impact challenge A further problem is the estimation how the execu-
tion of one query influences the performance of another hybrid query. We do not
consider this problem here and address it in future work.



Cost based optimization of hybrid CPU/GPU query plans 719

3. Notation

Let O be a database operation and letAPO = {A1, ..,Am} be an algorithm pool for oper-
ationO, where each algorithmAi in the algorithm pool is executable either on the CPU
or the GPU. The model assumes that the performance of an algorithm depends on the
input data setD, which abstracts the features of the real data set. This means a data set
contains all statistical information of the represented real data set. Examples are the
datasize, the data distribution, or the selectivity, if a selection operation is performed
on the data. Note that for the selection, the selectivity hasto be estimated according
to the operations parameters. Examples of selectivity estimation can be found in Au-
gustyn & Zedrowski (2012), Getoor, Taskar & Koller (2001), Heimel & Markl (2012).
Let Test(A,D) be the estimated andTreal(A,D) be the measured execution time of algo-
rithm A for a data setD. Let MPLA be a measurement pair list containing all current
measurement pairs (D,Treal(A,D)) of algorithmA.

A data setD is partitioned inn partsPi , where the parts are disjoint (Pi ∩Pj = /0
with i 6= j) and complete (D= P1∪P2∪·· ·∪Pn). The parts have to be disjoint, because
otherwise the same data has to be processed more than once. Overlapping of parts
also leads to wrong results. The partitioning has to be complete, because otherwise it
cannot be guaranteed that the complete data setD is processed. Note that the definition
allows that a data setD be a partP of itself (P = D∧P ⊆ D). The times to copy a
partPi completely from the CPU main memory to the GPU memory or vice versa are
denotedTcpy(Pi) andTcpyb(Pi), respectively. The estimated time an algorithmA needs
to process a partPi is Tcomp(Pi ,A). The result of an operationO for an input partPi is
denoted asPresult,i = O(Pi). Let NG(Pi) (not in GPU RAM) be a function that returns
1 if and only if a part is not stored in the GPU RAM. LetFR(Presult,i) (final result) be
a function that returns 1 if and only if the resulting partPresult,i is a final result.

We now introduce query sequences and query trees. A logical query sequence
QSlog = O1O2 · · ·On is a sequence of operations to be executed. Then,QShybrid is a
hybrid sequence query, if each operation inQSlog is replaced with an algorithmA.
Each algorithm uses either the CPU or the GPU. A logical querytreeQTlog is the result
of a logical query optimization using a traditional database optimizer. A hybrid query
treeQThybrid is constructed fromQTlog by assigning to each node inQTlog an algorithm.
In the case of GPU algorithms, necessary copy operations areinserted in the query tree.
Table 1 summarizes the notation.

4. Decision model

In this section, we provide a brief overview of our decision model, which we introduced
in previous work (Breßet al., 2012; Breß, Mohammad & Schallehn, 2012).

4.1. Overview

Every year, new features are introduced in GPUs. Hence, it becomes increasingly
complex to create analytical cost models to estimate the execution time of a GPU al-



720 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

Table 1. Notation used

Symbol Description

D Data set
A Algorithm
O Operation
APO Algorithm pool forO
Test(A,D) Estimated execution time ofA for D
Treal(A,D) Measured execution time ofA for D
Pi Parti of data setD
Presult,i = O(Pi) Result part
NG(Pi) Function, returns true if and only if

Pi is stored in GPU RAM
FR(Presult,i) Function, returns true if and only if

Presult,i is not processed by the GPU anymore
QSlog Logical query sequence
QShybrid Hybrid query sequence
QTlog Logical query tree
QThybrid Hybrid query tree

gorithm, which was done by, e.g., Baghsorkhi et al. (2010), He et al. (2009), Hong
& Kim (2009), Kothapalli et al. (2009), Schaa & Kaeli (2009) and Zhang & Owens
(2011).

Furthermore, a GPU algorithm is not necessarily faster thanits CPU counterpart,
mainly due to the overhead of data transfers (Gregg & Hazelwood, 2011). To decide on
the algorithm with lowest execution time, we introduced a self-tuning decision model
(Breßet al., 2012; Breß, Mohammad & Schallehn, 2012) and observed significant per-
formance improvements depending on the workload. Since thedecision model is a
central component of our framework, we will provide a brief summary.

Our model uses a learning based approach, to counter the problem of increasing
complexity for analytical cost models. The basic idea is to observe the execution be-
havior of algorithms and deduce estimated execution times from past measured execu-
tion times. Hence, an algorithm is the central component of abstraction. The model
learns the characteristic execution time curve of an algorithm for a specific data setD.

Let O be an operation andAPO = {A1, ..,Am} an algorithm pool, which contains all
available algorithms to executeO. Note that each algorithm uses either the CPU or the
GPU, but not both. He et al. (2009) discovered that no significant performance gain can
be achieved by processing the same operation on both processing units by dividing the
operation into two parts, where one part is processed on the CPU and the other on the
GPU. By choosing an algorithm that uses a certain processingunit, the corresponding
operation is processed by the CPU or the GPU.

BeTest(D,A) the estimated andTreal(D,A) the measured execution time of an algo-
rithm that processes a data setD. A measurement pairMP= (D,Treal(D,A)) is a tuple



Cost based optimization of hybrid CPU/GPU query plans 721

����������	
��������

���������	

���������	����

��� ��
�����	
��������

��

�������	�

���

�������

��

������������	
��������

�����������

���������������

����������

�� �������������

!�� ��"�� ��"����"��
��� ���

Figure 2. Overview of the decision model

of a data setD andTreal(D,A) the measured execution time of an algorithmA.

4.2. Architecture

An incoming operationO is passed to an algorithm pool which passes all available al-
gorithms to processO to an estimation component. The estimation component has the
data setD that is to process as additional input parameter and derivesestimated exe-
cution times for each available algorithm for the specified data setD. These estimated
execution times are then passed to a decision component, which decides on the optimal
algorithm by using a user specified optimization criterionOC. Note that the execution
time Treal(D,Ai) of the selected algorithmAi is measured and is inserted in the mea-
surement pair list ofAi together with the features of the data setD. The feedback loop
enables our model to refine future estimations by collectingmeasurement pairs. Fig. 2
summarizes the architecture of our model.

4.3. Estimation component

To enable the estimation component to compute estimated execution times without us-
ing analytical cost models, we have to specify three parameters for each algorithm:
(1) a statistical method, (2) an approximation functionFA(D), which is dictated by the
statistical method, and (3) a measurement pair listMPLA, which contains recent obser-
vations of the algorithms execution. Our model updates the approximation function of
an algorithm by applying the assigned statistical method tothe measurement pair list
of the algorithm. More details are available in Breß, Mohammad & Schallehn (2012).

4.4. Decision component

The decision component currently supports only response time as possible optimization
criterionOC. Hence, our model tries to select the algorithm for execution that has the
lowest execution time. We implemented the response time criterion by selecting the
algorithm that is most likely to be the fastest. Therefore, we let the model choose the
algorithm with the lowest estimated execution time to execute operationO.



722 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

5. Constructing hybrid query sequences

We present a greedy approach to construct a hybrid query sequence using our decision
model. The approach does not guarantee optimal results, butintroduces only a low
overhead. We assume for simplicity that a logical query sequence is a sequence of
operationsQSlog = O1O2 · · ·On. We construct a hybrid query sequence by choosing
for each operationOi in QSlog the response time minimal algorithm, which leads to a
hybrid query sequenceQShybrid. Depending on whether an algorithm uses the CPU or
GPU, the operation is executed on the corresponding processing unit. LetCA(D,O)
be a function, which chooses the fastest algorithmA for a given data setD and an op-
erationO. It uses the functionTest to compute the estimated execution times for the
algorithms.Test considers the time needed to copy data to and from the GPU memory
in the case a GPU algorithm is selected. Hence,CA(D,O) chooses a GPU algorithm
only if the execution time of a CPU algorithm is higher than the execution time of a
GPU algorithm and the needed data transfer times together. LetCAS(A) be a function
that returns an algorithm sequence needed to execute algorithm A. In case of a CPU
algorithm,CAS(A) returnsA. In the case of a GPU algorithm,CAS(A) returns a se-
quence of three algorithms. The first isAcpy(D), which copies the input data from the
CPU RAM to the GPU RAM (host to device). The second isAi,GPU(D) that processes
the data setD on the GPU. The third isAcpyb(Dresult,i), which transfers the result set
back to the CPU RAM (device to host). In case of a CPU algorithm, operationOi is
substituted byAi,CPU(D).

Test(D,A) =

{

Test(D,A) if A= ACPU

Test(Acpy(D)A(D)Acpyb(Dresult)) otherwise
(1)

CA(D,O) = A with Test(D,A) = min{Test(D,A)|A∈ APO} (2)

CAS(A) =

{

A(D) if A= ACPU

Acpy(D)A(D)Acpyb(Dresult) otherwise.
(3)

We formalize our approach in Algorithm 1. In lines1–6, we construct the optimal
query sequence using the functionsCA(D,O) andCAS(A) of our decision model by
choosing the best expected algorithm for each operation in the query. The algorithm
leads to two succeeding copy operations in different directions, when two succeeding
operations are executed on the GPU. This unnecessary copy operations are removed by
the algorithm in lines 7–11.

Example: For the following example, we omit the data sets in the algorithm notation.
We consider selections (S), projections (P), joins (J), andgroupings (G). The query
plan from Fig. 1 as query sequence is written like this:OSOSOJOPOG. The following
hybrid query sequence is the result of the first loop in algorithm:

AS,CPUAS,CPUAcpyAJ,GPUAcpybAcpyAP,GPUAcpybAG,CPU.



Cost based optimization of hybrid CPU/GPU query plans 723

Algorithm 1 Construction ofQShybrid from QSlog with the Greedy Algorithm

Input: QSlog = (O1,D1); · · · ;(On,Dn)
Output: QShybrid = A1 · · ·Am

1: QShybrid = /0
2: for Oi in QSlog do
3: A=CA(Di ,O)
4: AS=CAS(A)
5: appendASto QShybrid

6: end for
7: for Ai in QShybrid do
8: if (Ai = Acpyb(D) and Ai+1 = Acpy(D)) then
9: deleteAiAi+1 from QShybrid

10: end if
11: end for

After the removal of unnecessary copy operations in the second loop of the algorithm,
the final result is

AS,CPUAS,CPUAcpyAJ,GPUAP,GPUAcpybAG,CPU.

Since the decision model decided to use a GPU algorithm in twocases, we can assume
that the response time of the hybrid plan is smaller than the time of the pure CPU plan.

Discussion of the greedy algorithm: Our proposed algorithm is not guaranteed to
generate an optimal hybrid query sequence in all cases for this problem. Execut-
ing a single operation on the GPU might be more expensive thanusing the CPU.
However, executing a sequence of operations on the GPU may befaster than exe-
cuting them entirely on the CPU. We consider for the cost computation no concur-
rent copying and processing and hence, sum up the times of allalgorithms in a plan
to compute the execution time of a query sequence. In this example, we will use
the execution times shown in Table 2. Consider the query sequenceOSOSOJOPOG

and assume the algorithm processesOJ. ThenTest(AcpyAJ,GPUAcpy) is greater than
Test(AJ,CPU) (3+2+3= 8> 5) and the algorithm decides for the CPU algorithm for
the Join. However, if the algorithm had consideredOJ and the successorOP, then
it would have seen thatTest(AcpyAJ,GPUAP,GPUAcpyb) is less thanTest(AJ,CPUAP,CPU)
(3+2+1+3= 9 < 5+5), so the usage of the GPU algorithms for the Join and the
Projection would result in a cheaper query sequence. Since the algorithm only chooses
locally optimal solutions and does not look forward in the query sequence, it cannot
consider the possibility that the selection of a slower algorithm could lead to a faster
query sequence, because it cannot foresee the copy operation optimization. However,
the algorithm is able to create a promising candidate, for evolutionary or randomized
optimization algorithms.



724 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

Table 2. Example execution times of algorithms for the givenexample data sets
Processing unit OS OJ OP OG Ocpy Ocpyb

CPU 1 5 5 2 3 3
GPU 3 2 1 7 - -

6. Cost metric for computation of response time for query sequences

The use of concurrent GPU kernel execution and data transferusing page locked host
memory (NVIDIA, 2012) mitigates the negative impact of expensive copy operations.
In order to enable an optimizer to use this technique, cost metrics for computation of
total and response times of a query have to be developed. For this, we extend our
concept using sequential data transfer and GPU computationto parallel data transfer
and GPU computation. To the best of our knowledge, concurrent kernel execution
and data transfer of the GPU are not considered in cost metrics in prior work. Ilić
et al. (2011) report that they take into account the overlapping of computation and
communication. The authors claim that the performance approximations can accurately
model the real and improved performance of the GPU. However,they did not describe
their metrics. Hence, we provide the necessary metrics in this paper.

The input of the cost formulas are the estimated execution times of algorithms
for a given data set and device. The estimation component of our decision model
provides these times. To learn and improve the estimations,the real execution times of
every algorithm in a query plan are collected and added as measurements pairs to the
estimation component.

6.1. Extension of existing metrics

We now extend the sequential metrics. In general, a GPU can only process a data
set, if it is completely stored in the GPU RAM. However, in a database context we
can mitigate this restriction by partitioning the data set.That allows parallel copying
and processing of different parts. Partioning is possible for operations like selection,
projection, and aggregation. As the GPU RAM is comparably small compared to the
CPU RAM, it is beneficial to concurrently transfer data to theGPU, process the data
on the GPU, and copy processed data back to the CPU RAM.

Traditional approaches (He et al., 2009; Kothapalli et al.,2009; Schaa & Kaeli,
2009) model the cost of a database operationO by using the GPU algorithmAGPU as
follows. The execution time of a GPU algorithm is the sum of the time needed to copy
the input data from the CPU RAM to the GPU RAM (Tcpy(D)), the time to process the
data setD (Tcomp(D,A)), and the time needed to transfer the result data from the GPU
RAM back to the CPU RAM (Tcpyb(Dresult)),

Test(D,A) = Tcpy(D)+Tcomp(D,A)+Tcpyb(Dresult). (4)



Cost based optimization of hybrid CPU/GPU query plans 725

Equation (4) does not consider the capability of GPUs to concurrently transfer data
between CPU and GPU RAM and to process data on the GPU. Since the relative time
for copying data compared to the execution time of the GPU kernel increases with
processing power of the GPU (Gregg & Hazelwoód, 2011), such afixed cost metric
could lead to the decision to use the CPU, while the GPU would have been faster
if the concurrent data copying and processing would have been considered. Hence,
this metric is not suitable for the cost computation of a single operation and a query,
respectively.

For the new cost metric, we assume that the data is partitioned or can be quickly
partitioned. Furthermore, the new metric distinguishes between final results (result of
a query) and intermediate results. If data is processed on the GPU and the result is an
intermediate data set, then this data can be processed by thenext operation on the GPU
without the necessity to transfer data from the CPU RAM to theGPU RAM. If some
data is still missing, e.g., the second table needed for a join, then this data has to be
copied from the CPU to the GPU RAM.

For example, consider the selection on a table T1 that is followed by a join with a
second table T2, denoted as J(T1,T2). If the selection is performed on the GPU, then
the join J(T1,T2) can be processed without any additional copying cost if T1 and T2 are
located in the GPU RAM. If T2 is not yet in the GPU RAM, it has to be copied from
the CPU RAM. If the data is partitioned, the GPU can start the join processing after the
first part of T2 arrived in the GPU RAM. This principle was used by Pirk, Manegold&
Kersten (2011), too. However, caching of intermediate results would only be possible,
if there is enough space available in the GPU RAM. For large data sets, it is possible
that an execution of an operation needs the whole GPU RAM, or even a partitioning
of the input data becomes necessary, if the whole data set does not fit in the GPU
RAM. Therefore, the physical constraints of the hardware have to be considered during
optimization process. We now extend the traditional metrics for total and response time
computation considering partitioning and concurrent datatransfer.

6.2. Computation of total execution time

For total execution time computation, we extend the metric in Equation (4) to the parti-
tioning approach. We do not consider partitioning time, because we assume it is negli-
gible. A data setD is partitioned inton partsP1,P2, . . . ,Pn. This results in Equation (5)
for total execution time of a GPU algorithm:

Ttotal(D,A) =

(

n

∑
i=1

Tcpy(Pi) ·NG(Pi)

)

+
n

∑
i=1

Tcomp(Pi ,A)

+

(

n

∑
i=1

Tcpyb(O(Pi)) ·FR(O(Pi))

)

. (5)

The total executionTtotal time consists of the sum of the execution times of each
part. Thereby, we consider the location of a part. If a partPi is located in the GPU



726 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

RAM, the transfer timeTcpy(Pi) · NG(Pi) is zero (NG(Pi) = 0). Equally, if the re-
sult is not final and reused in a later operation, the data willnot be copied back. So,
Tcpyb(O(Pi)) ·FR(O(Pi)) is zero in this case.

6.3. Computation of response time for single operations

Equation ( 5) does not consider the concurrent execution of data transfer to and from
GPU RAM and processing on the GPU. The steps that can be done concurrently are not
considered in (5). Let the data setD be partitioned intoP1,P2, . . . ,Pn. The algorithmA
processesD on the GPU. The GPU algorithm starts the processing ofD directly after
the first partP1 has been completely transferred into the GPU RAM. The corresponding
resultPresult,1 is either transferred back to the CPU RAM or kept in the GPU RAMif
it will be needed in a subsequent operation. After this initialization step, the execution
time of subsequent processing partsPi+1 is the maximum time of the data transfer of
the following partPi+2 to GPU RAM, the computation of the partPi+1, or transfer back
of the last partPi to the CPU RAM. We summarize this in the function

max(max(Tcpy(Pi+2),Tcomp(Pi+1,A),Tcpyb(Presult,i)).

Besides the initialization step, we also have to process serially the last part, i.e., the
GPU processing of partPn and the data transfer ofPresult,n. Furthermore, we will in-
clude the location of a part into the basic formula by using the functionNG(Pi) and
FR(Presult,i). If a part is already in the GPU RAM (NG= 0), we do not have to transfer
it. If a result is not a final result (FR(Presult,i) = 0), we keep the data in the GPU RAM.

Equation (6) summarizes all concepts and provides the computation of the response
time of an algorithmA for a partitioned data setD = P1P2 · · ·Pn.

Tresp(D,A) = Tcpy(P1) ·NG(Pi)+max(Tcpy(P2) ·NG(Pi),Tcomp(P1,A)) (6)

+
n−2

∑
i=1

max(Tcpy(Pi+2) ·NG(Pi),Tcomp(Pi+1,A),Tcpyb(Presult,i) ·FR(Presult,i))

+max(Tcomp(Pn,A),Tcpyb(Pn−1) ·FR(Presult,i))+Tcpyb(Pn) ·FR(Presult,i).

We now discuss the usage of the response time metric for the selection of the re-
sponse time minimal sequential query plan in considerationof concurrent copying and
processing.

6.4. Computing the response time of a hybrid query sequence

The estimated costTest(QShybrid) of a hybrid queryQShybrid is the sum of all es-
timated execution timesTest(A) for each algorithmA in QShybrid with respect to con-
current copying and processing ifA is a GPU algorithm. The costs correspond to the
response time of the operation sequence. Algorithm 2 outlines the computation of the
response time. If a data transfer and a computation are concurrently processed, the



Cost based optimization of hybrid CPU/GPU query plans 727

Algorithm 2 Computation of response time for hybrid query sequence
Input: QShybrid

Output: Tresponseof QShybrid

1: time=0
2: for Ai ∈ QShybrid do
3: if Ai == copyOperationthen
4: continue
5: end if
6: if Ai−1 == Acpy then
7: Ai−1.D.NG= 1
8: else
9: Ai−1.D.NG= 0

10: end if
11: if Ai+1 == Acpyb then
12: Ai+1.D.FR= 1
13: else
14: Ai+1.D.FR= 0
15: end if
16: time = time +Tresponse(Ai)
17: end for

flagsFR (copy back to host in parallel) orNG (copy to device in parallel) are set to
true or false. The flags are evaluated by the functionsFR(P) andNG(P), whereP is a
part. Depending on the values, the data transfer time is partof the overall sum or not.

6.5. Data partitioning

We now address challenges for data partitioning, which haveto be resolved. To be
able to utilize metrics from this section, we have to supportefficient partitioning of the
data. We could use common partitioning schemes like range orhash partitioning. The
problem is to choose the size of the parts. Larger parts mean less parts, which lead
to better PCIe bus utilization but also to higher latency, before processing can start.
Hence, it is not a trivial task to create a partition, which results in minimal processing
time. Furthermore, data needs to be partitioned, if the dataset is larger than the avail-
able GPU RAM. Note that some operations cannot be processed independently, e.g.,
sorting operations. A system can presort data parts, but thefinal sorting order must be
determined by a global merge step on the whole data set. If multiple GPUs are avail-
able, it is beneficial to use them for query processing. If thedata is already partitioned,
the parts of the data setD can be distributed on a GPU and processed concurrently,
which is likely to significantly decrease the query responsetime. We address this issue
in future work.



728 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

7. The 2-copy-operation heuristic

Algorithm 3 Construction ofQShybrid from QSlog using two copy heuristic

Input: QSlog = (O1,D1); · · · ;(On,Dn)
Output: QShybrid = A1 · · ·Am

1: Tminimal resp= ∞
2: QShybrid = /0
3: QShybrid min= /0
4: for i =; i < |QSlog|; i ++ do
5: for j =; j < |QSlog|− i; j ++ do
6: QShybrid =create_hybrid_query sequence _candidate(QSlog, i, j)
7: if Tresp(QShybrid)< Tminimal respthen
8: Tminimal resp= Tresp(QShybrid)
9: QShybrid min= QShybrid

10: end if
11: end for
12: end for
13: return QShybrid min

We already discussed the fact that the greedy hybrid query sequence construction
algorithm is not optimal. Therefore, we present an optimization algorithm that uses
the new cost metrics presented in Section 6 and that allows only two data transfers in
a sequence. The refined approach is based on the observation of Gregg & Hazelwood
(2011) that copy operations have significant overhead and GPU algorithms are often
faster. Hence, it is very likely that an optimal hybrid querysequence contains a min-
imum of copy operations. Therefore, we allow at most two copyoperations in one
hybrid query sequence. That means, all hybrid query sequences of the form

A1,CPUA2,CPU · · ·Ai,CPUAcpyAi+1,GPU · · ·A j ,GPUAcpyA j+1,CPU · · ·An,CPU.

where j > i,n ≥ i ≥ 1,n ≥ j ≥ 1, are allowed. The allowed set of sequences also
includes pure CPU plans as well as pure GPU plans. The 2-Copy-Operation heuristic
reduces the optimization space from exponential in number of operations to quadratic
in number of operations. Since the algorithms has to create aquery plan for each point
in the reduced optimization space, our optimization algorithm has cubic complexity in
the number of operations, see Algorithm 3.

After initialization of local variables (lines 1–3), the algorithm traverses the opti-
mization space using two nested loops. The algorithm tests all combinations of posi-
tions of data transfer algorithms (Acpy,Acpyb). That means, it changes the position and
length of the GPU part

AcpyAi+1,GPU · · ·A j ,GPUAcpyb= SubPlanGPU(i, j)



Cost based optimization of hybrid CPU/GPU query plans 729

Algorithm 4 Create hybrid query sequence candidate

Input: QSlog = (O1,D1); · · · ;(On,Dn), position,gpu_sequence_length
Output: QShybrid = A1 · · ·Am

1: QShybrid = /0
2: for Oi in QSlog do
3: if i<positionor i>position+gpu_sequence_lengththen
4: A=CACPU(Di ,O)
5: else
6: A=CAGPU(Di ,O)
7: end if
8: AS=CAS(A)
9: appendASto QShybrid

10: end for
11: //delete redundant copy operations
12: for Ai in QShybrid do
13: if (Ai = Acpyb(D) and Ai+1 = Acpy(D)) then
14: deleteAiAi+1 from QShybrid

15: end if
16: end for
17: return QShybrid

of the hybrid query sequence. The first loop changes the position of SubPlanGPU(i, j)
in the query plan where as the second loop varies the length ofSubPlanGPU(i, j) (lines
4–5). For every GPU sequence, the corresponding candidate plan is constructed by
executing Algorithm 4 (line 6). The algorithm computes the response time of the can-
didate. The candidate is the current result if and only if theestimated response time
of the query plan is lower than all previous observed candidate plans (lines 6–9). The
response time is computed by Algorithm 2 that we introduced in Section 6. We con-
sider possible concurrent data transfers and computation in this way. After completion
of the loops, the minimal hybrid query sequence plan found isreturned (line 13).

As already mentioned, Algorithm 4 creates a candidate plan for a logical query
sequence and the positionpositionand lengthgpu_sequence_lengthof the GPU part
of the query. First, the algorithm initializes the candidate plan (line 1). Second, the
algorithm traverses the logical query plan and chooses a GPUalgorithm for operation
Oi if i is greater than or equal the start positionpositionof the GPU part and less than
or equal the start position of the GPU part plus the length of the GPU part. Other-
wise, a CPU algorithm is selected (line 3–7). Note that the functionsCACPU(Di ,O)
andCAGPU(Di ,O) choose the best available CPU and GPU algorithm, respectively,
using our decision model. In the next step, the functionCASis called and the returned
algorithm sequence is added to the hybrid query sequence. Asin Algorithm 1, the use
of the functionCASmay lead to redundant copy operations that have to be removed
from the hybrid query plan (line 12–16). In the last step, theconstructed candidate plan



730 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

is returned (line 17).
Note that the 2-Copy-Operation heuristic is not guaranteedto find the response

time minimal query plan. If the optimal plan uses more than two copy operations,
the heuristic chooses a suboptimal plan. The 2-Copy-Operation heuristic considers the
investigation of sequences of operations. In contrast, thegreedy algorithm only uses lo-
cal decisions. Therefore, it is more likely that the 2-Copy-Operation heuristic produces
better hybrid query sequences than the greedy approach. However, the algorithm has a
cubic time complexity compared to the linear time complexity of the greedy approach.
Furthermore, the 2-Copy-Operation heuristic creates a quadratic number of candidate
hybrid query sequences, while the greedy approach creates exactly one query sequence.
We will investigate in future work, under what conditions, which algorithm is better.

8. Extension: query as tree of operations

We extend our discussed concepts and algorithms to support query trees using se-
quences as building blocks.

8.1. Optimization problem for query trees

Similar as for query sequences, we have to remove redundant copy operations from
a query tree. Therefore, we adapt our algorithms for sequences to trees. A tree node
nodeis a 7-tuple (id, name, parent, left, right, A, D), whereid is the unique identifier
of the node,nameis the name of the node,parent, left, right are the parent node, left
and right child andA is the algorithm executed by the node (or OperationO for logical
query tree).D is the result data set, after the algorithm of the node was executed.

For simplicity, we assume that neither the Critical Query Challenge, nor the Opti-
mization Impact Challenge of the discussed challenges in Section 2.2 occur for a hybrid
query tree. If the Copy Serialization Challenge or the Execution Time Prediction Chal-
lenge occur in a query tree, we can create the corresponding query sequence, because
the operations in a query sequence are processed sequentially.

8.2. Constructing hybrid query trees

To optimize query trees, we redefine the functionsCA(D,O) andTest(A,D) and modify
our algorithms.

LetCA(D,O) be a function, which chooses the fastest algorithmA for a given data
setD and an operationO. It uses the functionTest to compute estimated execution
times for algorithms.Test considers the time needed to transfer data to and from the
GPU RAM in the case of a selected GPU algorithm. Hence,CA(D,O) chooses a GPU
algorithm only, if the execution time of a CPU algorithm is greater than the execu-
tion time of a GPU algorithm plus the time needed for the data transfers. Note that
we can have two data transfers from the CPU to the GPU RAM, because we allow
binary operations. Hence, they are considered in Equation (7). TheCASfunction is
replaced by the functionCST(node) (create sub tree), which returns a sub tree needed



Cost based optimization of hybrid CPU/GPU query plans 731

Acpy(node.left.D) Acpy(node.right.D)

Acpyb(node.D)

AGPU(node.left.D,node.right.D)

performs computation on CPU

copies data from the 

CPU RAM to the GPU RAM

copies data back from the 

GPU RAM to the CPU RAM

performs computation on GPU

Figure 3. Example: subtree generated by algorithm 5

to execute algorithmA on the chosen processing device. In case of a CPU algorithm,
CST(node) returns a node whereA is the selected algorithm. In the case of a GPU
algorithm,CST(node) returns a sub tree with tree levels. Depending on whether the
OperationO is unary or binary, level 2 contains one node or two nodes, which execute
copy operations from the CPU RAM to the GPU RAM using theAcpy algorithm. The
computation node is stored in level 1 and does the actual processing. It has the nodes in
level 2 as its child nodes. If the computation node executes aunary operation, then the
preceding copy node is the left child. The parent of the computation node is stored in
level 0, which executes a copy operation from the GPU RAM to the CPU RAM using
theAcpyb algorithm. Fig. 3 displays an example subtree. Note that computation nodes
are either white or gray, where white nodes denote a GPU algorithm and a gray node a
CPU algorithm.

Test(node,A) =











































Test(node.D,A) if A= ACPU

Test(node.le f t.D,Acpy)

+Test(node.right.D,Acpy)

+Test(node.le f t.D,

node.right.D,AGPU)

+Test(node.D,Acpyb) otherwise

(7)

CA(node,O) = A with Test(node,A) = min{Test(node,A)|A∈ APO}. (8)

We adapt Algorithm 1 for trees as follows. We stick to the principle to choose a
GPU algorithm only if it is faster than a CPU algorithm including the copy overhead.
However, we have to implement the functionCST(node), which replacesCA(D,O), in
algorithm 5. The algorithm returns the passed node (line 25), if it executes a CPU algo-
rithm and constructs a subtree including copy operations for a node executing a GPU
algorithm (lines 2–23). The algorithm takes care of creating the nodes and integrate
them in the tree by updating the node pointers ofnode, the child nodes ofnodeand the
parent node ofnode.



732 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

Algorithm 5 ConstructSubtree(node)
Input: Treenode: node
Output: Qphy(Tree) f orGPUalgorithminnode

1: if node.A==AGPU then
2: leftchild = createNode(node.le f t.D,Acpy)
3: leftchild.parent=node
4: leftchild.left=node.left
5: if node.left!=NULLthen
6: node.left.parent=leftchild
7: end if
8: node.left=leftchild
9: if node.right!=NULLthen

10: rightchild = createNode(node.right.D,Acpy)
11: rightchild.parent=node
12: rightchild.right=node.right
13: node.right.parent=rightchild
14: end if
15: node.right=rightchild
16: newparent = createNode(node.D,Acpyb)
17: if node.parent.left!=nodethen
18: node.parent.left=newparent
19: else
20: node.parent.right=newparent
21: end if
22: newparent.parent=node.parent
23: node.parent=newparent
24: return newparent
25: else
26: return node
27: end if

Algorithm 6 constructs a hybrid query tree plan from a logical query tree plan
using theCST(node) algorithm 5. First, the logical query tree is copied to a working
copy, which will contain the final hybrid query tree (line 1).Second, the algorithm
calls thegetLevelorderfunction, which returns a queue that contains all nodes of the
hybrid query tree. For each node in the queue, the algorithm calls decision model
CA function, which returns the algorithm with lowest expectedexecution time and
assigns the algorithm to the current node (lines 3–4). Afterwards, the algorithm uses
the functionCST(node) to get an appropriate subplan. SinceCST(node) creates and
integrates the subplan automatically into the hybrid querytree, the algorithm can ignore
the return value.

After the algorithm created an initial hybrid query tree (lines 1–6), it has to remove
redundant copy operations from the plan (lines 7–16). It, therefore, traverses the tree



Cost based optimization of hybrid CPU/GPU query plans 733

Algorithm 6 Construct hybrid query tree for logical query tree
1: QThybrid = QTlog

2: queue = getLevelorder(QThybrid)
3: for all node in queuedo
4: node.A=CA(node.left.D,node.right.D,O)
5: tmp = ConstructSubtree(node)
6: end for
7: for all node inQThybrid do
8: if node.A==Acpyband node.parent.A==Acpy then
9: //update pointer

10: node.parent.parent.left=node.left
11: node.left=node.parent.parent
12: //delete unneccessary copy operations
13: delete node.parent fromQThybrid

14: delete node fromQThybrid

15: end if
16: end for
17: return QThybrid

and deletes copy nodes if the current node uses anAcpyb algorithm and the current
nodes parent uses anAcpy algorithm. We use the convention that if a node has a single
child node, the child node is the left child of the node. Hence, the algorithm updates
the left pointers of the parent and child nodes of the copy nodes (line 10–11). After-
wards, the copy nodes are deleted (line 13–14). As a last step, the algorithm returns the
constructed hybrid query tree (line 17). Fig. 4 illustratesthe algorithm for an example
logical query tree.

For a hybrid query tree constructed by algorithm 6, the following three assertions
have to be fulfilled. First, a white and a gray node must not be directly connected,
there has to be at least one copy operation between them. Second, no redundant copy
operations may occur in the plan. Third, at the end of the queries execution, the result
data have to be in the CPU RAM. If assertion one or three are notfulfilled, the query
plan is not executable. If only assertion two is not fulfilled, the plan is executable, but
unlikely to be beneficial with respect to the response time optimization criterion.

8.3. Estimating the response time of query trees

We now modify our algorithms to be able to perform the cost computation for a hybrid
query tree. The basic idea is to use the algorithm for the sequence queries to compute
the response time of a hybrid query tree.

For simplicity, we disallow concurrent executions of operations on the GPU, be-
cause of the Execution Time Prediction Challenge. Additionally, we forbid concurrent
copy operations in one direction, because of the Copy Serialization Challenge. Since
the decision model already assigned estimated execution times for each algorithm in



734 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

�

�

�

�

�

�

�

�

�

�

�

Acpy(node3.right.D)

Acpyb(node3.D)

AGPU(node3.left.D,node.right.D)

Acpy(node5.right.D)

Acpyb(node5.D)

AGPU(node5.left.D,node.right.D)�

�

Acpy(node4.right.D)

Acpyb(node4.D)

�

ACPU(node2.left.D)

AGPU(node1.left.D)

Acpy(node3.left.D)

AGPU(node4.left.D)

Acpy(node5.left.D)

1

2

3

4

5

6

7

Acpyb(node1.D)

Acpy(node1.left.D)

�

�

�

�

�

�

�

1

2

3

4

5

6

7

ACPU(node7.left.D)

ACPU(node6.left.D)

Figure 4. Example: constructing hybrid query tree

the hybrid query tree, we only need to find the critical path inthe plan. Therefore, we
have to create a sequence query for every possible path from the root node to one of
the leave nodes of the hybrid query tree, which is done in algorithm 7. We apply our
extended algorithm, which considers the overlapping of data transfer and computation,
to each created path. The path with the highest response timedictates the lower bound
of the response time of the hybrid query tree.

The upper bound is computed by turning the hybrid query tree into a hybrid query
sequence and compute its response time. Then, the database optimizer can decide to
use a hybrid query plan for execution or to use a different plan, e.g., a CPU only query
tree. Note that our cost estimation algorithm can be used with other algorithms that
construct hybrid query trees from logical query trees.



Cost based optimization of hybrid CPU/GPU query plans 735

Algorithm 7 Computation of response time for hybrid query tree
Input: QThybrid

Output: Tresponseof QThybrid

1: Tresponse=−∞
2: for all node inQThybrid.getLeaves()do
3: path = computePath(root,node)
4: time = computeResponseTime(path) //considers concurrentdata transfer and

computation
5: if time>Tresponsethen
6: Tresponse=time
7: end if
8: end for
9: return Tresponse

9. Related work

In this section, we will discuss related work. We discuss query optimization in a gen-
eral context, other hybrid scheduling frameworks, learning based execution time esti-
mation, and GPU co-processing.

9.1. Query optimization

Optimization in parallel database systems has similar tasks as optimization of GPU
co-processing: optimizing the response time and scheduling operations to resources
(Chaudhuri, 1998). Most approaches follow the two-phase optimization approach
(Hong & Stonebraker, 1993). First, the database optimizer creates a best sequen-
tial query plan. Second, an additional optimizer allocatesthe operators to the par-
allel ressources to minimize the response time (Hasan, Florescu & Valduriez, 1996).
Thereby, communication costs (Hasan, 1996) and different kinds of shared resources
(Garofalakis & Ioannidis, 1997) have to be taken into account. Lanzelotte et al. (1994)
noticed the enlarged search space and the problem of not optimal sub-plans during
dynamic programming style enumeration. The authors showedthat randomized search
approaches during optimization have a good performance forparallel database systems.
Our approach is also based on the two-phase model. We schedule a serial plan between
GPU and CPU. Intra-operator parallelism is covered by the self-adaptive model (Breßet
al., 2012; Breß, Mohammad & Schallehn, 2012). We focus on thecommunication costs
between main memory and device memory in this work. We also have to consider the
special situation that a GPU is a co-processor, and we do not have a symmetric system.
For scheduling, adapted deterministic and randomized approaches are compared.

The parallelization of queries using threads of multi-coresystems is also related.
Krikellas, Cintra & Viglas (2010) used several greedy and dynamic programming ap-
proaches to schedule an operator tree on different threads to minimize the response



736 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

time. Their approach is based on a symmetric environment anddoes not have to con-
sider communication costs.

9.2. Hybrid scheduling frameworks

Ili ć et al. (2011) showed that large benefits for database performance can be gained
if the CPU and the GPU collaborate. They developed a generic scheduling frame-
work (Ili ć & Sousa, 2011), which is a similar approach to ours, but doesnot consider
specifics of query processing. They applied their scheduling framework to databases
and tested it with two queries of the TPC-H benchmark. However, they do not explic-
itly discuss hybrid query processing.

Augonnet et al. (2011) develop StarPU, which can distributeparallel tasks on het-
erogeneous processors. Both frameworks are extensible andhave to be investigated to
which degree they can be customized, so they can be used in a database optimizer. The
biggest difference with our decision model is that it is tailor made for use in a database
optimizer, so it provides, e.g., no task abstractions.

9.3. Learning based execution time estimation

Akdere & Cetintemel (2012) examined how analytical workloads can be modeled.
Their approach can estimate execution times for single operations as well as queries
and is based on feature extraction. Matsunaga & Fortes (2010) develop the PQR2
method, an approach to estimate the resource usage of applications. The approach can
be used for execution time estimation, but needs several milliseconds to compute one
estimation. This property makes it difficult to use the PQR2 method in a database
optimizer. In contrast, we utilize the least squares methodof the ALGLIB1 for execu-
tion time estimation and observed execution times below 50 microseconds. Zhang et
al. (2005) use the ”transform regression technique” to estimate the execution time of
XML queries. Their approach a self-tuning optimizer similar to ours, but our goals and
used statistical methods differ.

9.4. GPU co-processing

Current research investigates the use of GPUs for database operations (Bakkum &
Skadron, 2010; He et al., 2009; Pirk, Manegold & Kersten, 2011; Walkowiak et al.,
2010). Walkowiak et al. (2010) discuss the usability of GPUsfor databases and show
the applicability on the basis of an n-gram based text searchengine. He et al. (2008,
2009) present the concept and implementation of relationaljoins on GPUs and of other
relational operations.

Pirk, Manegold & Kersten (2011) develop an approach to accelerate indexed for-
eign key joins with GPUs. The foreign keys are streamed over the PCIe bus while
random lookups are performed on the GPU. Furthermore, they introduce a new ap-
proach for GPU Coprocessing, which decomposes data bitwise. The approach uses

1http://www.alglib.net/



Cost based optimization of hybrid CPU/GPU query plans 737

the GPU to process a low resolution version of the input data in a GPU preselection
phase and then executes the CPU refinement phase, where the final results are com-
puted by eliminating false positives from the result list (Pirk, 2012; Pirk et al., 2012).
Hence, their approach tries to utilize CPU and GPU equally, similarly to our approach.
However, our model balances the load on the operation level.

Kerr, Diamos & Yalamanchili (2010) present an approach thatcan select a CPU
or a GPU implementation. In contrast to our decision model, their model decides for
a CPU/GPU algorithm statically, whereas our decision modelcan do it dynamically.
Their model does not introduce overhead at runtime.

Bakkum & Skadron (2010) develop a concept and implementation of the SQLite
command processor on the GPU. The main target of their work isthe acceleration of
a subset of possible SQL queries. Govindaraju et al. (2004) present an approach to
accelerate selections and aggregations with the help of GPUs.

He et al. (2009) developed a research prototype, which implements relational op-
erations on CPU and GPU, respectively. They presented a co-processing scheme that
assigns operations of a query plan to suitable processing devices (CPU/GPU). The
developed cost model computes estimated execution times ofsingle GPU algorithms
in consideration of copy operations. They used a two-phase optimization model for
queries. In the first phase, a relational optimizer creates an operator tree. In the second
phase, the optimizer decides for every operator whether an operation is executed on
GPU, CPU, or concurrently on both. He et al. (2009) proposed an exhaustive search
strategy for small plans and a greedy strategy for large plans for the second phase.
Since they used a calibration based method on top of an analytical cost model, their
approach works currently for relational databases only, whereas our approach is more
general and works with arbitrary algorithms, e.g., for XML databases. Our approach is
also more general because the black-box self-adaptive modeallows the consideration
of different load situations. From this research, we conclude that a GPU is an effective
co-processor for database query processing.

Heimel (2011) created the prototypeOcelotby implementing GPU algorithms of
common relational operations in MonetDB. He developed basic decision heuristics for
choosing a processing unit for query execution. However, hedid not consider hybrid
query plans, where the CPU and the GPU are used to execute a query. Furthermore,
Heimel identified two query optimizer problems. First, it isa necessity to have cost
metrics, which enable the comparison of CPU and GPU algorithms. Second, the search
space is bigger since placement of query plans (and hence operations) have many pos-
sibilities. Hence, he pointed out the need for a hybrid queryprocessor and optimizer.

10. Future work

To address the problem of parallel processing of different queries, we will present a
heuristic that will decide which database queries can benefit most from using the GPU,
because not all queries can benefit from GPU co-processing.

An alternative approach to deal with parallelism within andbetween queries would
be to allow both by default, and let the GPU schedule parallelrequests on its own. As



738 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

pointed out in Section 2.2, execution times will be harder toestimate and the benefit for
single queries will decline. Nevertheless, our self-learning cost-estimation will adjust
to this and can find a balance, because estimated execution times will increase due to
concurrency situations. Furthermore, only queries benefiting most from a GPU-based
execution will be executed as hybrid queries based on our described decision model.
This approach has to be carefully evaluated.

Since our algorithm does not generate an optimal plan in all cases, other solutions
have to be considered. Another approach to find the cheapest query plan would be
to generate a candidate set of hybrid query plans, and apply our cost metrics to each
of them and then choose the cheapest plan for execution. The possible benefit and
overhead of this according approaches will be examined in future work. Furthermore,
we will implement our framework in our prototype, which is a column oriented GPU
accelerated DBMS.

11. Conclusion

In this paper, we pointed out common problems that occur during the optimization
of hybrid query processing and need to be addressed to allow for an effective co-
processing by the GPU during database query processing.

Furthermore, we provided a simple algorithm for constructing a good hybrid query
sequence for a given logical query sequence using our scheduling framework and ex-
tended the algorithms and concepts for hybrid query trees. Additionally, we discussed
cost metrics which consider concurrent processing and datatransfer on GPU side to al-
low the optimizer to compute more realistic estimations forthe response time of hybrid
query sequences/trees.

12. Acknowledgement

The work in this paper has been partially funded by the GermanFederal Ministry of Ed-
ucation and Science (BMBF) through the Research Program under Contract No. FKZ:
13N10817. We thank Mario Pukall, Siba Mohammad as well as thereviewers of the
Second ADBIS workshop on GPUs In Databases for helpful feedback and discussions.

13. References

AKDERE, M. and CETINTEMEL, U. (2012) Learning-based Query Performance Mod-
eling and Prediction. International Conference on Data Engineering (ICDE).
IEEE, 390–401.

AMD CORPORATION(2011) AMD Accelerated Parallel Processing OpenCL Pro-
gramming Guide, rev1.3f edition, Dec 2011.

ANDRZEJEWSKI, W. and WREMBEL, R. (2010) GPU-WAH: Applying GPUs to Com-
pressing Bitmap Indexes with Word Aligned Hybrid. InInternational Con-
ferences on Database and Expert Systems Applications: PartII (DEXA (2)).
Springer, 315–329.



Cost based optimization of hybrid CPU/GPU query plans 739

AUGONNET, C., THIBAULT , S., NAMYST, R. and WACRENIER, P.A. (2011) StarPU:
a unified platform for task scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice & Experience, 23(2), 187–198.

AUGUSTYN, D.R. and ZEDEROWSKI, S. (2012) Applying CUDA Technology in DCT-
Based Method of Query Selectivity Estimation. In:Second ADBIS workshop on
GPUs In Databases (GID), Springer, 3–12.

BAGHSORKHI, S.S., DELAHAYE , M., PATEL , S.J., GROPP, W.D. and HWU, W.M.W.
(2010) An Adaptive Performance Modeling Tool for GPU Architectures.SIG-
PLAN Not.,, 45, 105–114.

BAKKUM , P. and SKADRON, K. (2010) Accelerating SQL database operations on a
GPU with CUDA. In:3rd Workshop on General-Purpose Computation on Graph-
ics Processing Units, GPGPU ’10, ACM, 94–103.

BEIER, F., KILIAS , T. and SATTLER, K.U. (2012) GiST Scan Acceleration using Co-
processors. In:Eighth Internationl Workshop on Data Management on New
Hardware, DaMoN’12, ACM, 63–69.

BREß, S., BEIER, F., RAUHE, H., SCHALLEHN , E., SATTLER, K.U. and SAAKE , G.
(2012) Automatic Selection of Processing Units for Coprocessing in Databases.
In: 16th East-European Conference on Advances in Databases andInformation
Systems (ADBIS), Springer, 57–70.

BREß, S., MOHAMMAD , S. and SCHALLEHN , E. (2012) Self-Tuning Distribution of
DB-Operations on Hybrid CPU/GPU Platforms. In:Grundlagen von Daten-
banken (GvD), CEUR-WS, 89–94.

BREß, S., SCHALLEHN , E. and GEIST, I. (2012) Towards Optimization of Hybrid
CPU/GPU query Plans in Database Systems. In:Second ADBIS workshop on
GPUs In Databases (GID), Springer, 27–35.

CHAUDHURI , S. (1998) An Overview of Query Optimization in Relational Systems.
In: Symposium on Principles of Database Systems (PODS), ACM, 34–43.

DIAMOS, G., WU, H., LELE, A., WANG, J. and YALAMANCHILI , S. (2012) Effi-
cient Relational Algera Algorithms and Data Structures forGPU. Technical re-
port, Center for Experimental Research in Computer Systems(CERS).

FANG, W., HE, B. and LUO., Q. (2010) Database Compression on Graphics Proces-
sors.Proceedings of the VLDB Endowment (PVLDB), 3, 670–680.

GAROFALAKIS , M.N. and IOANNIDIS, Y. (1997) Parallel Query Scheduling and Op-
timization with Time- and Space-Shared Resources. In:3rd International Con-
ference on Very Large Data Bases, VLDB’97. Morgan Kaufmann Publishers
Inc., 296–305.

GETOOR, L., TASKAR, B. and KOLLER, D. (2001) Selectivity estimation using prob-
abilistic models. In:International Conference on Management of Data, SIG-
MOD’06, ACM, 325–336.

GOVINDARAJU, N., GRAY, J., KUMAR , R. and MANOCH, D. (2006) GPUTeraSort:
High Performance Graphics Coprocessor Sorting for Large Database Manage-
ment. In: SIGMOD International Conference on Management of Data, SIG-
MOD’06, ACM, 325–336.

GOVINDARAJU, N.K., LLOYD , B., WANG, W., LIN , M. and MANOCHA, D. (2004)



740 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

Fast Computation of Database Operations using Graphics processors.SIGMOD
International Conference on Management of Data, SIGMOD ’04, pages 215–
226. ACM.

GREGG, C. and HAZELWOOD, K. (2010) Where is the data? Why You Cannot De-
bate CPU vs. GPU Performance without the Answer. In:Proceedings of the
IEEE International Symposium on Performance Analysis of Systems and Soft-
ware, ISPASS’11, IEEEE, 134–144.

HASAN, W., FLORESCU, D. and VALDURIEZ , P. (1996) Open Issues in Parallel Que-
ry Optimization.SIGMOD Record, 25(3), 28–33.

HE, B., LU, M., YANG, K., FANG, K., GOVINDARAJU, N.K., Luo, Q. and SANDER,
P.V. (2009) Relational Query Coprocessing on Graphics Processors.ACM Trans.
Database Syst., 34(21),1–21(39).

HE, B., YANG, K., FANG, R., LU, M., GOVINDARAJU, N., Luo, Q. and SANDER,
P. (2008) Relational Joins on Graphics Processors. InSIGMOD International
Conference on Management of Data, SIGMOD ’08, ACM, 511–524.

HE, B., and YU, J.X (2011) High-ThrouhputTransaction Executions on Graphics Pro-
cessors.Proceedings of the VLDB Endowment (PVLDB), 4(5), 314–325.

HEIMEL , M. and MARKL , V. (2012) A First Step Towars GPU-assisted Query Op-
timization. In: Third International Workshop on Accelerating Data Manage-
ment Systems Using Modern Processor and Storage Architectures (ADMS’12).
www.adams-conf.org/heimel_adms12.pgf.

HEIMEL , M. (2011) Investigating Query Optimization for a GPU-accelerated Data-
base. Master’s thesis, Technische Universität Berlin, Electrical Engineering and
Computer Science, Department of Software Engineering and Theoretical Com-
puter Science.

HONG, S. and KIM , H. (2009) An Analytical Model for a GPU Architecutre with
Memory-level and Thread-level Parallelism Awarness.SIGARCH Comput. Ar-
chit. News,, 37152–163.

HONG, W. and STONEBRAKER, M. (1993) Optimization of Parallel Query Execu-
tion Plans in XPRS.Distributed and Parallel Databases, 1(1), 9–32.

ILI Ć, A., PRATAS, F., TRANCOSO, P. and SOUSA, L. (2011) High Performance Sci-
entific Computing with Special Emphasis on Current Capabilities and Future
Perspectives. In:High-Performance Computing on Heterogeneous Systems:
Database Queries on CPU and GPU, IOS Press, 202-222.

ILI Ć, A. and SOUSA, L. (2011) CHPS: An Environment for Collaborative Execution
on Heterogeneous Desktop Systems.International Journal of Networking and
Computing (IJNC), 1(1).

KALDEWEY, T., LOHMAN , G., MUELLER, R. and VOLK , P. (2012) GPU Join Pro-
cessing Revisited. In:Eighth International Workshop on data Management on
New Hardware, DaMoN’12, ACM, 55–62.

KERR, A., DIAMOS, G. and YALAMANCHILI , S. (2010) Modeling GPU-CPU Work-
loads and Systems. In:3rd Workshop on General-Purpose Computation on
Graphics Processing Units, GPGPU ’10, ACM, 31–42.

KOTHAPALLI , K., MUKHERJEE, R., REHMAN , M.S., PATIDAR , S., Narayanan, P.J.



Cost based optimization of hybrid CPU/GPU query plans 741

and SRINATHAN , K. (2009) A Perfromance Prediction Model for the CUDA
GPGPU Platform. In:International Conference on High Performance Comput-
ing (HiPC), IEEE, 463–472.

K IRKELLAS , M., CINTRA , M. and VIGLAS, S. (2010) Scheduling threads for ibn-
traquery parallelism on multicore processors. Technical Report EDI-INFR-RR-
1345, University oof Edinburgh, School of informatics, http://www.inf.ed.ac.uk/
publications/report/1345.html.

LANZELOTTE, R.S.G., VALDURIEZ , P., ZAÏT and ZIANE , M. (1994) Invited project
review: Industrial-strength parallel query optimization: issues and lessons.Inf.
Syst., 19(4), 311–330.

LAUER, T., DATTA , A., KHADIKOV, Z. and ANSELM, C. (2010) Exploring Graphics
Processing Units as Parallel Coprocessors for Online Aggregation. In: Interna-
tional Workshop on Data warehousing and OLAP, DOLAP’10, ACM, 77–84.

MATSUNAGA, A. and FORTES, J.A.B. (2010) . On the Use of Machine Learning to
Predict the Time and Resources Consumed by Applications. In: International
Conference on Cluster Cloud and Grid Computing, 495–504. IEEE.

MOUSSALI, R., HALSTEAD, R., SAOOLUM , M., NAJJAR, W. and TSOTRAS, V.J.
(2011) Efficient XML Path Filtering Using GPUs. In:VLDB-Workshop on Acel-
erating Data Management Systems Using Modern Processor andStorage Ar-
chitecutres (ADMS). www.adams-conf.org/p9-MOUSSALLI.pdf.

NIVIDIA (2012) NVIDIA CUDA C Programming Guide. http://developer.download.
nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_
Guide.pdf, 30–34, Version 4.0, [Online; accessed 1-May-2012].

PIRK , H. (2012) Efficient Cross-Device Query Processing.Proceedings of the VLDB
Endowment.

PIRK , H., MANEGOLD, S. and KERSTEN, M. (2011) Accelerating Foreign-Key Joins
using Asymmetric Memory Channels. In:VLDB - Workshop on Accelerating
Data Management Systems Using Modern Processor and StorageArchitectures
(ADMS). VLDB Endowment, 585–597.

PIRK , H., SELLAM , T., MANEGOLD, S. and KERSTEN, M. (2012) X-Device Query
Processing by Bitwise Distribution. In:Proceedings of the Eighth International
Workshop on Data Management on New Hardware, DaMoN ’12, 48–54. ACM.

SANDERS, J. and KANDROT, E. (2010) CUDA by Example: An Introduction to Gene-
ral-Purpose GPU Programming. Addison-Wesley Professional, 1st edition.

SCHAA , D. and KAELI , D. (2009) Exploring the Multiple-GPU Desing Space. In:
International Symposium on Parallel & Distributed Processing, IPDPS’09. IEEE,
1–12.

WALKOWIAK , S., WAWRUCH, K., NOWOTKA, M., L IGOWSKI, L. and RUDNICKI , W.
(2010) Exploring Utilisation of GPU for Database Applications.Procedia Com-
puter Science, 1(1), 505–513.

ZHANG, N., HAAS, P.J., JOSIFOVSKI, V., LOHMAN , G.M. and ZHANG, C. (2005)
Statistical Learning Techniques for Costing XML Queries. In: International
Conference on Very Large Data Bases, VLDB ’05, VLDB Endowment, 289–
300.



742 S. BREß, I. GEIST, E. SCHALLEHN , M. MORY AND G. SAAKE

ZHANG, Y. and OWENS, J.D. (2011) A Quantitative Performance Analysis Model for
GPU Architectures.Computer Engineering, 382–393.


