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Abstract: An important issue in immunization theory is the
form of the interest rate process under which immunization is feasi-
ble. This paper generalizes Fisher and Weil immunization result to
convex interest rate shifts, and examines the practical significance of
this generalization. We examine the features of a linear factor model
that are consistent with a convex shift. In particular, we show that a
specific two factor linear model is sufficient and necessary for a con-
vex shift. This two factor specification allows parallel and damped
yield curve shifts, which in combination can twist the yield curve
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1. Introduction

Immunization is widely used by insurance companies and pension funds to build
dedicated portfolios.1 Redington (1952) first examined the problem of immu-
nizing a balance sheet of assets and liabilities against interest rate movements.
He showed that the surplus value is immunized against a small parallel change
in rates if the asset and liability durations are equal and the asset cash flows are
more spread out than liability flows. Fisher and Weil (1971) showed that for a
single liability, duration matching assures that the surplus value is immunized
against a parallel shift of any magnitude.2

It is widely believed that immunization is only valid when the yield curve
shifts in a parallel fashion (Lacey and Nawalkha, 1993, and Nawalkha and Latif,
2004). This paper extends the Fisher and Weil result to the class of convex
interest rate shifts, which includes a parallel shift, and examines the practical
significance of this generalization.

∗Submitted: February 2010; Accepted: January 2013.
1A dedicated portfolio is one where a pool of assets are invested to fund a future liability

stream.
2Immunization strategies have also been developed for non-level interest rate shifts in a

single-factor model (see Barber (1999), Rzadkowski and Zaremba (2000, 2010).
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The classical result by Fisher and Weil is based upon a simple parallel-shift
model that has many desirable properties. In particular, the model is parame-
terized in terms of a random factor, has positive and negative symmetric shifts,
and can be empirically estimated and tested. Imposing the above properties on
an interest rate shift model, naturally leads to a linear factor model, similar to
the form used by Ross (1976) in the development of the Arbitrage Pricing The-
ory. The linear factor model has been employed by a number of researchers to
examine the interest rate changes and yield curve movements (see, for example,
Litterman and Scheinkman, 1991; Barber and Copper, 1996; Falkenstein and
Hanweck, 1997; Geyer and Pichler, 1999; Golub and Tillman, 2000; Dungey,
Martin and Pagan, 2000; Lekkos, 2001; Brummelhuis et al., 2002; Soto, 2003).
Jarrow (1996) showed that principal components analysis could be used to es-
timate a linear factor model specification of forward rate movements in the
Heath-Jarrow-Morton (1992) model.

We examine the features of a linear factor model that is consistent with a
convex shift. In particular, we show that a specific two factor model is necessary
and sufficient for a linear interest rate model to be convex. This two factor
specification allows parallel and damped yield curve shifts, which in combination
can twist the yield curve.

2. Extension of Fisher-Weil Theorem

An amount M is due in year q. The amount is funded by a stream of positive
cash flows represented by a monotonic increasing cumulative cash flow function
C(t) for 0 < t ≤ T .3 The initial spot yield curve is given by y0(s) defined on
a set of maturities s contained in the interval (0, T ]. The present value of the
cash flow stream is given by the following Stieltjes integral:

V (0) =

∫ T

0

exp{−y0(s)s}dC(s).

Under the influence of a vector of K random factors f ∈ RK , the yield curve
shifts to y0(s) + H(s,f), where H(s,0) = 0. Hence, the present value of one
dollar promised at date s changes from exp{−y0(s)s} to exp{−y0(s)s}
exp{−H(s,f)s}. After an interest rate shock, the value of the cash flow stream
is given by

V (f) =

∫ T

0

exp{−y0(s)s} exp{−H(s, f)s}dC(s)

= V (0)

∫ T

0

exp{−H(s, f)s}dW (s)

where

dW (s) = dC(s) exp{−y0(s)s}/V (0).

3The cumulative cash flow at t equals the sum of the cash flows from time 0 up to an
including time t.
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Observe that W (s) has the properties of a probability distribution defined over
the interval [0, T ]. In particular, W is nondecreasing, W (0) = 0, and W (T ) = 1.
The value of the liability after the shock is given by

L(f)=M exp{−y0(s)s} exp{−H(q, f)q}

= L(0) exp{−H(q, f)q}

where L(0) is the initial value of the liability promised at date q.
The usual immunization condition that duration of assets equals the liability

due date is given by

∫ T

0

sdW (s) = q. (1)

Definition 1 An interest rate shock is convex if exp{−H(s,f)s} is a convex
function of s > 0 for all f∈RK .

Fisher and Weil (1971) showed that a single liability can be immunized for
the special case H(s,f) = f , where f is any real number. The proposition
below generalizes the Fisher and Weil result to convex interest rate shocks. It
also relaxes the assumption that the initial asset and liability values are equal,
and allows for a mixture of continuous and discrete cash flow streams.

Proposition 1 For convex interest rate shocks, a portfolio with positive cash
flow stream is immunized if condition (1) holds and the initial asset value V (0)
equals or exceeds the initial liability value L(0).

Proof. By Definition 1, exp{−H(s, f)s} is a convex function of s. Since W has
properties of distribution function, Jensen’s inequality along with the conditions
∫ T

0
sdW (s) = q and V (0) ≥ L(0) implies:

V (f) = V (0)

∫ T

0

exp{−H(s, f)s}dW (s) ≥ V (0) exp{−H(q, f)q}

≥ L(0) exp{−H(q, f)q} = L(f)

for all f∈RK .

3. Linear factor model and convex shift

Ideally, an interest rate shift model is specified in terms of a set of random
factors and generates positive and negative symmetric shifts associated with
each random factor. Further, it should be possible to empirically estimate and
test the parameters of the model. For example, the Fisher-Weil immunization
result is based upon a simple model in which a change in the yield curve equals
a random variable f :

y(s)− y0(s) = f for all f ∈ R.
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This simple model generates positive and negative symmetrical shifts. On the
other hand, the following convex-shift model does not generate negative shifts:

y(s)− y0(s) = h(s)f2 for all f ∈ R

where −h(s)s is a convex function. Now, suppose h is also a function of f such
that when f is positive −h(s, f)s is convex in s, and when f is negative h(s, f)s
is convex in s. Although the model

y(s)− y0(s) = h(s)f for all f ∈ R

is a convex-shift model and generates positive and negative shifts, the shape of
the shift is different for positive and negative shifts. For example, let

h(s, f) =

{

1 if f ≥ 0
log s if f < 0.

Then a positive shift is parallel and a negative shift is increasing in maturity. It
seems reasonable to require that the shape of the shift, indicated h, is indepen-
dent of the random factor f . Therefore, we explicitly assume that the shape of
the shift is independent of the random factor4

h(s, f) = h(s)f. (2)

A linear factor model has the desired properties and can be estimated using
principal component analysis (see Jarrow, 1996; Barber and Copper, 1996). Our
aim is to determine the necessary and sufficient conditions for a convex shift to
obtain under the linear factor model.

Definition 2 Linear Factor Model for yield curve shift:

H(s, f) ≡ y(s, f)− y0(s) =

K
∑

k=1

hk(s)fk (3)

where f1, ..., fK are random variables that can assume any real number and
h1, ..., hK are twice differentiable for s > 0.

We are not requiring that the yield curve be defined at every maturity. If the
yield curve is defined on a discrete set of dates, say at half-year intervals, then
y − y0 is a twice differentiable curve that fits the change in the observed yields
at half-year intervals. For example, based upon principal component analysis of
monthly yield curve changes from 1992 to 2001,5 we find that a linear two-factor
model explains roughly 93% of the variation of monthly yield curve shifts. Fig. 1

4There is no point in transforming the random factor, because the model can always be
specified in terms of the transformed factor.

5Yield curves are estimated from CRSP Treasury bond data for each month from 1992 to
2001 using McCulloch’s (1975) methodology .
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Figure 1. Principal components estimated from monthly yield curve changes
from 1992 to 2001
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shows the graphs of h1 and h2 versus the time to maturity. The first component
is roughly a parallel shift, and the second component is a twist. Given that the
actual treasury bond data is discrete, the functions h1, h2 are twice differentiable
curves fitted to the estimated values at discrete points. The assumption that the
fitted curves are twice differentiable simplifies the convexity analysis, but does
not require that the actual yield curves be continuous functions of maturity.

The linear factor model is parsimonious if it cannot be reduced to linear
model with fewer factors. A parallel shift is a single factor model wherein h
equals a constant. Obviously, a multifactor parallel shift specification is not
parsimonious, because it can be expressed in terms of a single factor not depen-
dent upon maturity:

y(s, f)− y0(s) = af1 + bf2 = u.

Proposition 2 Under a parsimonious linear factor model, the interest rate
shock is convex if and only if y(s,f)− y0(s) can be expressed as 1

s
f1+ f2, where

f1, f2 are random factors that can assume any real number.

Proof. Sufficiency. If y(s,f)− y0(s) =
1

s
f1 + f2, then

∂2

∂s2
exp{−f1 − f2s} = f2

2 e
−f1−f2s ≥ 0

for all f1, f2 ∈ R. Therefore, interest rate shock is convex.
Necessity. First, we establish the form of a two-factor model, and then,

second, show that additional factors are redundant. Suppose that y depends
upon two random factors u1, u2 ∈ R: y(s,u) = y0(s)+h1 (s)u1+h2(s)u2, where
h1, h2 are twice differentiable. For simplicity, let g1 = sh2 and g2 = sh2.Then
the interest rate model is convex if:

∂2

∂s2
exp{−g1u1 − g2u2} ≥ 0 for all u1, u2 ∈ R

or

−
∂2g1
∂s2

u1 −
∂2g2
∂s2

u2 +

(

∂g1
∂s

)2

u2

1 + 2
∂g1
∂s

u1

∂g2
∂s

u2 +

(

∂g2
∂s

)2

u2

2 ≥ 0 (4)

for all u1, u2 ∈ R. Notice if ∂2g1
∂s2

= ∂2g2
∂s2

= 0, the condition is satisfied. On the
other hand, if u2 = 0, then (4) becomes

−
∂2g1
∂s2

u1 +

(

∂g1
∂s

)2

u2

1 ≥ 0 for all u1 ∈ R (5)

which is only satisfied if ∂2g1
∂s2

= 0. Otherwise, the right-hand side of (5) is a
quadratic in u1 whose minimum value (coefficient on u2

1 is positive) is negative.

Therefore, the condition∂2g1
∂s2

= 0 is necessary for the shock to be convex. This
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condition implies that g1(s) = a+ bs, or h1(s) =
a
s
+ b, where a, b are positive

constants. By the same argument, we conclude that h2(s) =
c
s
+ d, where c, d

are constants. Therefore, the only interest rate models that satisfy (4) have the
form:

y(s)− y0(s) =
(a

s
+ b

)

u1 + (
c

s
+ d)u2)

=
1

s
(au1 + u2c) + (bu1 + du2)

=
1

s
f1 + f2

for all f1 = au1 + u2c ∈ R and f2 = bu1 + du2 ∈ R.Obviously, if we add
additional factors, the interest-rate model will always reduce to the two-factor
form shown above.

Proposition 3 If y(s,f) − y0(s) =
1

s
f1 + f2, a single liability due in T years

can be immunized if the duration of asset cash flows equals T and initial asset
value equals or exceeds initial liability value.

Multiple liabilities can be handled as an extension of the single liability case
by separately immunizing each liability cash flow (see Bierwag, Kaufman, and
Toevs, 1983).

Immunization is feasible under a linear factor model that generates parallel
and damped parallel shifts. A combination of a parallel and damped shift can
give rise to a twist, wherein short-term rates increase (decrease) and long-term
rates decrease (increase). A damped shift fits the empirical fact that long-term
rates are less volatile than short-term rates. In fact, the volatility function is
given by decreasing function of maturity s:

var(f)

s
.

In the limit, as maturity becomes large, the volatility approaches zero. This
feature is consistent with Dybvig, Ingersoll, and Ross’s (1996) proof that absence
of arbitrage implies the rate on a long (infinite in the limit) term zero coupon
bond can never rise. Another desirable feature of the two-factor model is that
a combination of a parallel and damped shift can give rise to a twist, wherein
short-term rates increase (decrease) and long-term rates decrease (increase).
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