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Abstract: Iterative Learning Control (ILC) is well established in
control of linear and nonlinear dynamic systems, both as to underly-
ing theory and experimental validation. This approach specifically
aims at applications with the same operation repeated over finite
time intervals and reset taking place between subsequent executions
(the trials). The main principle behind ILC is to suitably use in-
formation from previous trials in selection of the input signal in the
current trial with the objective of performance improvement from
trial to trial. In this paper, new computationally efficient results are
presented for an extension of the ILC approach to the uncertain 2D
systems that arise from time and space discretization of partial dif-
ferential equations. This type of application implies the need to use
a spatio–temporal setting for the analysis of the control procedure.
The resulting control laws can be computed using Linear Matrix
Inequalities (LMIs). An illustrative example is provided.
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1. Introduction

Iterative learning control (ILC) is a technique for controlling systems operating
in a repetitive (or pass-to-pass) mode with the requirement that a reference
trajectory yref (t), defined over a finite interval 0 ≤ t ≤ tN , where tN is the
trial length (or duration), is tracked with high accuracy. Since the original work
of Arimoto, Kawamura and Miyazaki (1984), the general area of ILC has been
the subject of intense research effort. Examples of systems to which ILC has
been applied successfully are robotic manipulators that are required to repeat
a given task, chemical batch processes or, more generally, the class of track-
ing systems. There exist also spatio-temporal applications where ILC could be
employed. For example, Moore and Chen (2006), describe an irrigation appli-
cation in dry-land farming governed by a set of partial differential equations,
where the independent variables are one time and three space coordinates. It
is also straightforward to see the natural connections between spatio-temporal
systems and multidimensional systems theory, see e.g. Rabenstein and Traut-
mann (2003). The starting point for the work reported in this paper is the
discretization method applied to the governing partial differential equations
(PDEs). Here, we consider an implicit discretization scheme, i.e., the Crank-
Nicolson method, see e.g. Crank and Nicolson (1947), Cichy, Gałkowski and
Rogers (2012). The main advantage of this method is its unconditional numer-
ical stability for many PDEs including the heat equation being the benchmark
here. In this paper, we develop new modified ILC results for a class of uncertain
spatio-temporal systems based on the stability analysis of 2D discrete systems
in the Fornasini-Marchesini model form, see Fornasini and Marchesini (1978).
In this framework, it is necessary to mention the exceptionally rich contribution
of T. Kaczorek to 2D systems theory, see e.g. Kaczorek (1985) and Kaczorek
(1998) and many other related publications. In particular, a major novelty of
the presented approach in comparison with Cichy et al. (2012) is that there is
no need in the novel approach for inverting tridiagonal model matrices, which
allows us to consider process uncertainties directly and to design a robust ILC
scheme in a simple manner.
Throughout this paper, M ≻ 0 (respectively ≺ 0) denotes a real symmetric

positive (respectively negative) definite matrix. The zero matrix and the identity
matrix with appropriate dimensions are denoted by 0 and I, respectively. When
it is not clear from the context, we use It which denotes a unit matrix of the
dimension t × t. The symbol ⊗ represents the Kronecker product of matrices,
and diag (W1,W2) is a block diagonal matrix with blocks W1 and W2. Finally,
tridiagonal matrices are defined as follows

tri (β, γ, η) =




γ β 0
η γ β
. . .
. . .
. . .

η γ β
0 η γ




.
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2. Approximation of a heat transfer process as a 1D dis-

crete linear dynamic system

To illustrate the use of ILC for spatio-temporal systems, we consider the scalar
heat equation

∂x(t, w)

∂t
= ρ2

∂2x(t, w)

∂w2
+ δu(t, w), (1)

where x(t, w) represents the temperature, u(t, w) is a distributed input variable,
and t and w are the time and space variables, respectively. Moreover, ρ and δ
are real scalars denoting process parameters.
The starting value x(0, w) is given by the initial condition x(0, w) = θ(w),

where the initial value θ(w) is a given spatial function. The process is defined
on a finite interval on the space axis with length L (0 < w < L ). It is spatially
isotropic. The behavior at the boundaries w = 0 and w = L is given by the
boundary conditions x(t, 0) = χ(t) and x(t, L) = ϑ(t), where the boundary
values χ(t) and ϑ(t) are given time functions.
Now, we apply a finite difference discretization, where signals are considered

only at discrete points in time and space according to t = lT and w = ph,
with T and h being the time and space sampling periods, respectively. Due
to the aforementioned advantages, we apply the Crank-Nicolson discretization
method with its characteristic approximations of signals and differentials, see
Crank and Nicolson (1947), Cichy et al. (2012). For this purpose, we introduce
the following approximations for x(t, w) and its derivatives, as well as for u(t, w),
at the points of time t = lT and the position w = ph according to

x(t, w) ≈
xl+1(p) + xl(p)

2
,

∂x(t, w)

∂t
≈

xl+1(p)− xl(p)

T
∂x(t, w)

∂w
≈

xl(p+ 1)− xl(p− 1)

4h
+

xl+1(p+ 1)− xl+1(p− 1)

4h
∂2x(t, w)

∂w2
≈

xl(p+ 1)− 2xl(p) + xl(p− 1)

2h2

+
xl+1(p+ 1)− 2xl+1(p) + xl+1(p− 1)

2h2

(2)

and u(t, w) ≈ ul(p). Then, by evaluating the model (1) over lT with l =
0, 1, . . . , N and over ph with p = 1, 2, . . . , α− 1 and αh = L, the equation

A1xl+1(p+ 1) +B1xl+1(p) + C1xl+1(p− 1)

= A2xl(p+ 1) +B2xl(p) + C2xl(p− 1) + δul(p)
(3)

is obtained, where

A1 = −A2 = C1 = −C2 = −
ρ2

2h2
, B1 =

1

T
+

ρ2

h2
, B2 =

1

T
−

ρ2

h2
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holds with the associated boundary conditions

x0(p) = θ(p), 1 ≤ p ≤ α− 1

xl(0) = χl, xl(α) = ϑl, l > 0 .
(4)

In (4), θ(p), (ϑl, χl) are known scalar functions of p (respectively l) that come
from the discretization with the sampling period h (respectively T ) of the bound-
ary conditions in (1). The sequences {ϑl}, {χl} are assumed to be bounded.
This discrete approximation is in the form of an implicit 2D equation that can-
not be directly used to construct a discrete recursive model approximation of
the process dynamics. Consequently, introduce the vector of system states

X (l) = [xl(1) xl(2) . . . xl(α − 1) ]T (5)

and boundary points

XB(l) = [xl(0) xl(α) ]
T . (6)

Then, (3) can be rewritten as

A1X (l + 1) = A2X (l)− C1XB(l + 1) + C2XB(l) + BU(l) (7)

with

U(l) = [ul(1) ul(2) . . . ul(α − 1) ]T . (8)

In addition, X (0) =
[
θ(1) θ(2) . . . θ(α − 1)

]T
and the remaining boundary

conditions are given as in (4). The remaining matrices in (7) are defined as

Ai = tri (Ai, Bi, Ci) , B = δI, CT
i =

[
Ci 0 · · · 0 0
0 0 · · · 0 Ai

]
, i = 1, 2.

This type of model can be extended in future work to the case of PDEs depend-
ing on more than one significant space coordinate.

3. ILC problem formulation

The objective is to achieve iteratively a prescribed reference signal xl(p) = x∗

l (p)
in space and time over the finite rectangle

R = {(l, p) : l = 0, 1, . . . , N ; p = 1, 2, . . . , α− 1}

which can be represented in vector form as

X (l)∗ = [x∗

l (1) x∗

l (2) . . . x∗

l (α− 1) ]T .

A new positive integer variable k is introduced to denote the trial-to-trial update.
Hence, the state X (l) is replaced by its realization in the kth trial X (k, l); the
equation (7) now becomes

A1X (k, l + 1) = A2X (k, l)− C1XB(k, l + 1) + C2XB(k, l) + BU(k, l). (9)
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Note that the process matrices {Ai, B, Ci, i = 1, 2} in the state-space model (7),
which are defined on the basis of (3), are frequently not precisely known, and
that (according to the 1D systems case) a particular structure for the uncer-
tainty can usually be specified. In this case, the source of uncertainty is the
space discretization period h, which is motivated by the fact that the location
of sensors and actuators along the space axis can often not be adjusted precisely.
A further source for uncertainty can be related to the uncertain parameter ρ
in the considered heat equation and to variations of the time discretization pe-
riod. Here, we consider the case when the model matrices belong to a convex
bounded uncertain domain D of polytope type, where any uncertain matrix can
be written as a convex combination of its vertices

D =
{
[Ai(ξ(k, l)),B(ξ(k, l)), Ci(ξ(k, l))] : Ai(ξ(k, l)) =

nv∑

v=1

ξv(k, l)Aiv,

B(ξ(k, l)) =
nv∑

v=1

ξv(k, l)Bv, Ci(ξ(k, l)) =
nv∑

v=1

ξv(k, l)Civ,

nv∑

v=1

ξv(k, l) = 1, ξv(k, l) ≥ 0, i = 1, 2, k ≥ 0, 0 ≤ l ≤ N
}
,

(10)

where Aiv,Bv, Civ are the corresponding matrix vertices and nv denotes their
number. This formulation allows us to handle also variability of the model
parameters in both the time l and the trial number k but within the assumed
polytope.
To construct a robust ILC scheme, the uncertain matrices of the polytope

(10) are substituted for the constant, precisely known matrices in (9). Using
the reference signal X (l)∗, the tracking error

E(k, l) =̂ X (l)∗ −X (k, l) (11)

can be defined over 0 ≤ l ≤ N and 1 ≤ p ≤ α − 1 with the following boundary
conditions and input increments

ΘB(k + 1, l) = XB(k + 1, l)−XB(k, l)

∆U(k + 1, l) = U(k + 1, l)− U(k, l).
(12)

Finally, after simple algebraic manipulations, see Cichy et al. (2012), the control
law

∆U(k + 1, l) = K1E(k + 1, l) +K2E(k, l) +K3E(k, l + 1) (13)

leads to the closed-loop system, representing an ILC scheme in a parameter-
dependent form

A1(ξ(k, l))E(k+1, l+1) = Â1(ξ(k, l))E(k+1, l)+Â2(ξ(k, l))E(k, l)

+Â3(ξ(k, l))E(k, l+1)+C1(ξ(k, l))ΘB(k+1, l+1)−C2(ξ(k, l))ΘB(k+1, l),

(14)
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where the matrices

Â1(ξ(k, l)) = A2(ξ(k, l))− B(ξ(k, l))K1

Â2(ξ(k, l)) = −A2(ξ(k, l))− B(ξ(k, l))K2

Â3(ξ(k, l)) = A1(ξ(k, l))− B(ξ(k, l))K3

(15)

are introduced.

During the design of the controller matrices, the terms ΘB(k +1, l+ 1) and
ΘB(k + 1, l), arising from the boundary conditions, are omitted as they do not
influence stability. Note also that (14) is in the form of a Fornasini-Marchesini
(1978) 2D model.

4. ILC design

In ILC, a major objective is to achieve convergence of the trial-to-trial error. To
obtain this feature, it is frequently sufficient to apply only the controller K3 in
(13). However, in such a case we are not able to control a process directly along
the trial, i.e., along the time variable l. Especially for a large time horizon N ,
this may result in a poor performance, see the discussion for systems governed by
ODEs in Hładowski (2010). One of the approaches to avoid such problems is to
employ the 2D systems approach and, particularly, the stronger stability notion
for this class of systems, which ensures signal attenuation in both directions,
namely along the trial and from trial to trial. Hence, we require the asymptotic
stability for the associated 2D system (14) in the Fornasini-Marchesini form,
which assumes that the trial time duration N tends to infinity and that the
process still has to be stable in both directions. This is a very similar situation
to ILC methods for systems governed by ODEs, based on the theory of repetitive
process, see again Hładowski (2010).

In this paper, the problem solution is based on the use of a Lyapunov function
interpretation of asymptotic stability for 2D discrete linear systems given in the
Fornasini-Marchesini (1978) form according to (14). This procedure leads to a
LMI design of the control law. Stability over the rectangleR of such a 2D system
is achieved, when the combined energy associated with the point (k+1, l+1) is
less than the energy associated with all preceding points (k+1, l), (k, l+1), and
(k, l). Hence, the following Lyapunov function candidates are defined, see Kar
and Singh (2003)

V (k + 1, l+ 1) = E(k + 1, l + 1)T

(
3∑

i=1

Pi

)
E(k + 1, l+ 1)

V (k + 1, l) = E(k + 1, l)TP1E(k + 1, l)

V (k, l + 1) = E(k, l + 1)TP2E(k, l + 1)

V (k, l) = E(k, l)TP3E(k, l),

(16)
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with Pi = I ⊗ Pi, and Pi ≻ 0, i = 1, 2, 3. Next, the increment

∆V (k, l) = V (k + 1, l+ 1)− V (k + 1, l)− V (k, l)− V (k, l + 1) (17)

has to comply with the requirement

∆V (k, l) < 0 (18)

for any choice of the positive integers N and α > 1 and for all k > 0 and each
system representative from the polytope (10). Fulfilling the inequality (18) is
sufficient for asymptotic stability of the Fornasini-Marchesini model with N
tending to infinity. It is easy to obtain an equivalent result for the situation
when the space horizon is very large and the time is hidden in the process
structure. Due to the fact that we only work with finite, but possibly large time
and space horizons, we can limit our interest to the rectangle R. The stability of
the ILC scheme will then be denoted as stability over the rectangle R, see Cichy
et al. (2012). Now, as a preliminary step to the problem solution, we consider
the case with no uncertainty, i.e., each model (14) is known and fixed. Hence,
the dependency on ξ(k, l) is omitted. First, left multiply the model (14) by A−1

1

(assuming that A1 is non-singular) to achieve the commonly used state-space
form, which allows us to rewrite (18) in the form of

ÃTPÃ− P̃ ≺ 0, (19)

with

Ã = A−1
1 Â, Â =

[
Â1 Â2 Â3

]
, P =

3∑

i=1

Pi, P̃ = diag (P1,P2,P3) (20)

and matrices Â1, Â2, Â3, which are those of (15) but with vanishing uncer-
tainty.

Now, the following theorem, which can be used for the controller design, can
be stated and proved.

Theorem 1. A discrete linear 2D system described by (14), for the case with no
uncertainty, is stable over a rectangle R for any choice of the positive integers
N and α > 1 if there exist scalars Nij, Qi > 0, i, j = 1, 2, 3, and some non-zero
scalar G such that the following LMI is feasible

[
−Q̂ Y T

Y Q−A1G − (A1G)T

]
≺ 0, (21)

where G = Iα ⊗G,

Y =
[
A2G − BN1 −A2G − BN2 A1G − BN3

]
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and

Qi = Iα ⊗Qi, Q̂ = diag (Q1,Q2,Q3) , Ni = tri (Ni3, Ni2, Ni1) ,

Q =

3∑

i=1

Qi

(22)

provided that A1 is non-singular. If (21) holds, the stabilizing control matrices
in (13) are given by

Ki = NiG
−1, i = 1, 2, 3, (23)

where the structure of the matrices Ki is

Ki = tri (Ki3,Ki2,Ki1) . (24)

Proof. Consider first the (2, 2)-block of (21), that is,

Q−A1G − (A1G)
T ≺ 0

which yields

H = −A1G − (A1G)
T ≺ 0

for Q ≻ 0. Assume now that G is singular, and hence there exists a non-zero
vector z such that Gz = 0. However, then zTHz = 0, which contradicts the
previous inequality. Therefore, G is non-singular.
Next, note that (23) yields Y = ÂĜ. Then, left multiply (21) by

[
Ĝ−T ÂTA−T

1 G−T

]
, where Ĝ = diag (G,G,G)

and right multiply the result by its transpose to achieve

(A−1
1 Â)TG−TQG−1(A−1

1 Â)− Ĝ−T Q̂Ĝ−1 ≺ 0

which, after introduction of new variables P̃ = Ĝ−T Q̂Ĝ−1 and P = G−TQG−1,
gives the result (19) and completes the proof.
Note that the computation of the control matrices according to Theorem 1

does not require inverting the matrixA1. However, we require its non-singularity,
which almost always is the case. This is a significant advantage of the method as
a possible need of inverting the matrix A1 complicates drastically the extension
of the approach to the uncertain case, because it is commonly very difficult to
characterize the uncertainty of A−1

1 A2 and A−1
1 A3. Now, the major result in

this paper, i.e., application of ILC to the uncertain polytopic case is presented.

Theorem 2. An uncertain discrete linear 2D system described by (14) is stable
over a rectangle R for any choice of the positive integers N and α > 1 if there
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exist scalars Nij, Qi > 0, i, j = 1, 2, 3, and some non-zero scalar G such that
the following LMI is feasible

[
−Q̂ Y T

v

Yv Q−A1vG − (A1vG)T

]
≺ 0, (25)

where G = Iα ⊗G,

Yv =
[
A2vG − BvN1 −A2vG − BvN2 A1vG − BvN3

]
, (26)

with v = 1, . . . , nv representing the underlying vertices of the uncertain ma-
trices. The remaining notations are as in the previous theorem, provided that
A1(ξ(k, l)) is non-singular at each point of the considered polytope. If (25)
holds, the stabilizing control matrices in (13) are given as in (23) with (24).

Proof. We exploit the fact that a system with uncertainty modeled in the poly-
topic form (10) is stable if each ’vertex’ system is stable. Hence, Theorem 1
holds for all matrix vertices with a vertex-independent Lyapunov function and
control law, which obviously leads to some conservativeness. Finally, allowing
for any convex combination of (25), we obtain that the underlying system is
stable under the assumed polytopic uncertainty.
Finally, to apply the control law defined in (13), note that after simple

algebraic manipulations we obtain

U(k + 1, l) = U(k, l) +K1

(
X (l)∗ −X (k + 1, l)

)
+K2

(
X (l)∗ −X (k, l)

)

+K3

(
X (l+1)∗ −X (k, l + 1)

)
.

(27)

Hence, to apply this control law we need to recover a state vector X (k, l) for
each required ξ(k, l). To accomplish this task, the equation (14) has to be solved
for each required ξ(k, l) by applying, e.g., the Gauss method. However, when
applying this approach to a real process, we may measure the state variable or
— if this is impossible — an observer can be employed.

5. Numerical example

Consider again the heat equation (1) with ρ = 0.5 for the heated rod of the
length L = 224 m and apply the Crank-Nicolson discretization scheme with
T = 26 (given in s), and

h ∈ [2.4, 3.2] given in m, (28)

which is a feasible choice since the Crank-Nicolson scheme is unconditionally
numerically stable. The parameters defining the rectangle R in this case are

N = 100 and α = 81 (L = 80 · (2.4+3.2)m
2 = 80 · 2.8m). Due to the uncertainty

of the space discretization period h, which is motivated by uncertainty of the
placement of actuators and/or sensors, we obtain the following parameters of
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Figure 1. Reference signal X (l)∗

the polytopic model vertex matrices (nv = 2):

vertex 1:
A1 = C1 = −0.0102, A2 = C2 = 0.0102

B1 = 0.0629, B2 = 0.014, B = 5

vertex 2:
A1 = C1 = −0.0217, A2 = C2 = 0.0217

B1 = 0.0819, B2 = −4.9412× 10−3, B = 5.

The reference signal is shown in Fig. 1. Although the boundary conditions
do not influence stability of the ILC process (14), they have to be specified
when considering the process dynamics. They are clearly related to those for
the controlled process, i.e., for (4)–(6). Hence, they are introduced as

X (0, l) = 0, U(0, l) = 0, 0 ≤ l ≤ N

XB(k, l) = XB(l)
∗ =

[
χ
ϑ

]
, 0 ≤ l ≤ N, k ≥ 0

UB(k, l) = 0, EB(k, l) = 0, 0 ≤ l ≤ N, k ≥ 0,

where

XB(k, l) =

[
xl(k, 0)
xl(k, α)

]
, XB(l)

∗ =

[
x∗

l (0)
x∗

l (α)

]

UB(k, l) =

[
ul(k, 0)
ul(k, α)

]
, EB(k, l) =

[
el(k, 0)
el(k, α)

]
.
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Here, we have assumed that the boundary conditions for the ILC process, i.e.,
XB(k, l) are equal to the boundary values of the reference signal XB(l)

∗ for
each k ≥ 0, 0 ≤ l ≤ N and that they are the same as for the controlled
process, i.e., for (4). The LMIs of Theorem 2 are feasible and their solution,
determined numerically by means of SeDuMi (Sturm, 2001) in combination
with YALMIP (Löfberg, 2004), yields the required matrices (23) with (24) and
the following numerical values Kij , i, j = 1, 2, 3, in the control law (13):

K11 = K13 = 3.7821× 10−3, K12 = 3.8532× 10−4

K21 = K23 = K31 = K33 = −3.7821× 10−3

K22 = −3.8532× 10−4, K32 = 0.015.

To give an averaged measure of the error signal, we use the normalized root
mean square error defined as

Enrms(k) = Erms(k)/X
∗

rms , (29)

where Erms(k) denotes the root mean square error which is given as

Erms(k) =

√√√√ 1

α(N + 1)

N∑

l=0

E(k, l)TE(k, l) , (30)

and where X ∗

rms is defined as

X ∗

rms =

√√√√ 1

α(N + 1)

N∑

l=0

X (l)∗TX (l)∗ . (31)

Similarly, we introduce the root mean square control signal defined as

Urms =

√√√√ 1

αN

N−1∑

l=0

U(k, l)TU(k, l) . (32)

In the first scenario, we consider the process described by (3), where the
parameter h is chosen randomly from the range (28) for all values p and l. Here,
the constraint is taken into account that the total length of the bar is constant
and fixed to the overall length L. Moreover, we assume that the particular
values of h, which have been generated as uniformly distributed pseudo-random
numbers by using theMatlab function rand, remain constant over all iterations
k. The control errors for the trials k = 3 and k = 10 are depicted in Fig. 2,
showing strong error convergence. To further highlight the dynamics of the
convergence process, the normalized root mean square error is shown in Fig. 4.
Hence, it can be seen that the ILC process converges quickly and, moreover,
does not require excessive control action as presented in Fig. 3.
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Figure 2. Scenario 1: Errors for trial k = 3 and k = 10

In the second scenario, the space discretization period h is set to piecewise
constant values along the domain p. The corresponding values, furthermore,
remain constant along the time l and along the iteration domain k. In the
following example, we assume the minimum value h = 2.4 for the first 20 points
after p = 0. Then, the parameter h is switched to the maximum value h = 3.2
and is kept constant for the next 40 points. Finally, at p = 60, it is switched
back to the minimum value and remains constant until the end of rod, i.e., for
p = 80. The error and control signals are depicted in Figs. 5 and 6. The
normalized root mean square error is shown in Fig. 7. It can be seen that the
controller works also very well, however the error convergence is a bit slower in
comparison with Scenario 1.

Moreover, although the Crank-Nicolson discretization scheme is numerically
stable, it can be claimed that it is not possible to draw conclusions from the
control properties of the discretized system that has been simulated in the previ-
ous scenarios, with respect to the behavior of the continuous controlled process.
To give a partial solution to this problem, we consider Scenario 3, where a dis-
cretization of the same type is employed but with much smaller discretization
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Figure 3. Scenario 1: Input signal for trial k = 3 and k = 10

periods, i.e., T ′ = 2 (given in s), and

h′ ∈ [0.6, 0.8] given in m, (33)

which represents a discrete approximation that is much closer to the original
continuous process. Hence, we obtain the following model with polytopic un-
certainty:

vertex 1:
A1 = C1 = −0.1953, A2 = C2 = 0.1953

B1 = 0.8906, B2 = 0.1094, B = 5.

vertex 2:
A1 = C1 = −0.3472, A2 = C2 = 0.3472

B1 = 1.1944, B2 = −0.1944, B = 5.

Next, for the case of a stochastically variable space discretization period, the
previously calculated control law is applied to the process keeping it constant
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Figure 4. Scenario 1: Normalized root mean square error

within the rectangle of 13T ′ × 4h′, i.e., within the ’wide’ periods: It turns out
that the ILC scheme is still convergent, however more slowly, which is confirmed
by Fig. 8. Moreover, Fig. 9 shows that the output during the trial 20 is quite
close to the reference signal. However, there is some visible noise, which is
almost absent at the trial 40.

6. Conclusions

In this paper, we have presented new results on the application of ILC to un-
certain spatio-temporal systems described by partial differential equations. The
approach involves an implicit discretization scheme for the defining equations
followed by the use of Lyapunov functions that satisfy sufficient but not nec-
essary conditions for error convergence. Following this procedure, the control
design can be carried out efficiently using LMIs.

For comparison with existing methods, it has to be noted that a classical
controller could deal with the uncertainty considered in the paper. It would be
possible to parametrize such a controller in a robust way for worst-case bounds
of the uncertain parameters (e.g. by using a similar LMI approach like we have
used). Yet, this would result in some kind of ”along the pass control”. If there
is a need for further improvement between repeated trials, the only thing that
could be done is a parameter identification at the end of the experiment and
a subsequent control re-parametrization. However, this is troublesome and be-
comes obsolete when using the learning-type scheme. Moreover, in the learning-
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Figure 5. Scenario 2: Errors for trial k = 3 and k = 10

type controller, the error convergence from trial to trial is automatically proven,
which is often not the case for a combination of parameter identification with
control re-parametrization. Hence, this is the main advantage of using the ILC
approach for the problem under consideration.
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