
Control and Cybernetics

vol. 42 (2013) No. 1

Constrained controllability of second order dynamical

systems with delay∗

by

Jerzy Klamka

Institute of Control Engineering,
Silesian University of Technology,

Akademicka 16, 44-100 Gliwice, Poland,
jerzy.klamka@polsl.pl

Abstract: The paper considers finite-dimensional dynamical
control systems described by second order semilinear stationary or-
dinary differential state equations with delay in control. Using a gen-
eralized open mapping theorem, sufficient conditions for constrained
local controllability in a given time interval are formulated and
proved. These conditions require verification of constrained global
controllability of the associated linear first-order dynamical control
system. It is generally assumed that the values of admissible con-
trols are in a convex and closed cone with vertex at zero. Moreover,
several remarks and comments on the existing results for control-
lability of semilinear dynamical control systems are also presented.
Finally, a simple numerical example which illustrates theoretical con-
siderations is also given. It should be pointed out that the results
given in the paper extend for the case of semilinear second-order dy-
namical systems constrained controllability conditions, which were
previously known only for linear second-order systems.
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1. Introduction

Controllability is one of fundamental concepts in mathematical control theory.
This is a qualitative property of dynamical control systems and is of particular
importance in control theory. Systematic study of controllability started at the
beginning of the 1960s, when the theory of controllability based on description
in the form of state space for both time-invariant and time-varying linear control
systems was worked out.

Roughly speaking, controllability generally means that it is possible to steer
in some time interval a dynamical control system from an arbitrary initial state
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to an arbitrary final state using controls taken from the set of admissible con-
trols. The literature provides many different definitions of controllability, de-
pending strongly on the class of dynamical control systems and on the set of
admissible controls (Klamka, 1991, 1993, 1996, 2004).

In recent years, various controllability problems for different types of nonlin-
ear dynamical systems have been considered in many publications and mono-
graphs. An extensive list of these publications can be found, for instance, in
the monograph Klamka (1991) or in the survey paper Klamka (1993). However,
it should be stressed, that the majority of literature in this direction has been
mainly concerned with controllability problems for finite-dimensional nonlinear
dynamical systems with unconstrained controls and without delays or for linear
dynamical systems with constrained controls and with delays.

The monograph of Kaczorek (1993) presents controllability, observability and
duality results for different types of continuous and discrete linear dynamical
systems. Similarly, the monograph of Kaczorek (2002) presents controllability,
observability and duality results for continuous and discrete positive linear dy-
namical systems. Moreover, in the papers by Kaczorek (2006, 2007a, b, and
c) controllability and reachability of special kinds of linear stationary control
dynamical systems are considered.

In the present paper, we shall consider constrained local controllability prob-
lems for second-order finite-dimensional semilinear stationary dynamical sys-
tems with point delay in control, described by the set of ordinary differential
state equations. Let us recall that semilinear dynamical control systems contain
both linear and pure nonlinear parts in the differential state equations.

We shall formulate and prove sufficient conditions for constrained local con-
trollability in a prescribed time interval for semilinear second-order stationary
dynamical systems, whose nonlinear term is continuously differentiable near the
origin, and with single point delay in control. It is generally assumed that the
values of admissible controls are in a given convex and closed cone with vertex
at zero, or in a cone with nonempty interior. Proof of the main result is based
on the so called generalized open mapping theorem presented in a simplified
version by Bian and Webb (1999) and Klamka (2004).

Roughly speaking, it will be shown that under suitable assumptions con-
strained global relative controllability of a linear first-order associated approx-
imated dynamical system implies constrained local relative controllability near
the origin of the original semi-linear second-order dynamical system. This is a
generalization to constrained controllability case of some previous results con-
cerning controllability of linear dynamical systems with unconstrained controls
(Klamka, 1991, 1993, 1996, 2004).

2. System description

Let us consider semi-linear finite-dimensional control system with single point
delay in control, described by the following second order differential equation:

w′′(t) = Gw(t)+ f(w(t), u(t), u(t−h))+Hu(t)+Ku(t−h) for t ∈ [0, T ] (1)
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where the state vector w(t) ∈ Rn = W and the control vector u(t) ∈ Rm = U,G

is n×n dimensional constant matrix, H and K are n×m dimensional constant
matrices, h > 0 is a single point delay.

Moreover, let us assume that nonlinear mapping f : W × U × U 7→ W is
continuously differentiable near the origin and such that f(0, 0, 0) = 0.

For simplicity of considerations we assume zero initial conditions, i.e.
w(0) = 0 and w′(0) = 0.
Using standard substitutions

x(t) =

[

x1(t)
x2(t)

]

=

[

w(t)
w′(t)

]

∈ R2n,

we may transform the second-order semilinear dynamical system (1) into the
equivalent first-order semilinear stationary 2n-dimensional control system de-
scribed by the following ordinary differential state equation

x′(t) = Ax(t)+F (x(t), u(t), u(t−h))+Bu(t)+Du(t−h) for t ∈ [0, T ], T>0 (2)

with zero initial conditions:
x(0) = 0 u(t) = 0 for t ∈[-h,0]

where the state vector x(t) ∈ R2n = X and the control u(t) ∈ R2m = U , A is
2n×2n dimensional constant matrix, B and D are 2n×m dimensional constant
matrices,

A = [
0 I

G 0
] B = [

0
H

] D =

[

0
K

]

,

and the nonlinear term has the form

F (x(t), u(t), u(t− h)) = [
0
f(x(t), u(t), u(t− h))

] ∈ R2n.

Moreover, from previous assumptions concerning the nonlinear term f(x(t),
u(t), u(t− h)) it follows that the nonlinear mapping F : X ×U ×U → X is also
continuously differentiable near the origin and such that F (0,0,0)=0.

It is well known that in practical applications admissible controls are al-
ways required to satisfy certain additional constraints. Generally, for arbitrary
control constraints it is rather very difficult to give easily computable criteria
for constrained controllability even in the linear and in finite dimensional cases
(Klamka, 1991, 1993). However, for some special cases of the constraints it
is possible to formulate and prove simple algebraic constrained controllability
conditions.

Therefore, in the sequel we shall assume that the set of values of admissible
controls Uc ⊂ U is a given closed and convex cone with nonempty interior and
vertex at zero. Then, the set of admissible controls for the dynamical control
systems (1) and (2) has the following form: Uad = L∞([0,T ],Uc).

Then for a given admissible control u(t) there exists a unique solution
w(t;u) ∈ Rn of the second-order differential equation (1) and similarly, unique



114 J.Klamka

solution x(t;u) ∈ R2n of the first-order ordinary differential state equation (2),
with zero initial condition. By transforming the semilinear differential equation
(2) into the nonlinear integral equation we get (Klamka, 1996)

x(t;u) =

t
∫

0

S(t− s)(F (x(s;u(s)), u(s), u(s− h)) +Bu(s) +Du(s− h))ds (3)

where the matrix semigroup S(t) = exp(At) for t >0 is 2n × 2n dimensional
exponential transition matrix for the linear part of the semilinear first-order
control system (2).

For the semilinear stationary finite-dimensional second-order dynamical sys-
tem (1) or, equivalently, for the first-order dynamical system (2), it is possible
to define many different concepts of controllability. However, in the sequel we
shall focus our attention on the so called constrained controllability in a given
time interval [0,T ].

In order to do that, first of all let us introduce the notion of the so called
attainable or reachable set for dynamical system (2) at given final time T>0
from zero initial conditions, denoted shortly by KT (Uc) and defined as follows
(Klamka, 1991, 1993, 1996, 2004):

KT (Uc) = {x ∈ X : x = x(T, u), u(t) ∈ Uc for a.e. t ∈ [0, T ]} (4)

where x(t, u), t >0 is the unique solution of the differential first-order state
equation (2) with zero initial conditions and a given admissible control u ∈
Uad = L∞([0,T ],Uc).

Now, using the concept of the attainable set KT (Uc), let us recall the well
known (see, e.g., Klamka, 1991, 1993, 1996, 2004) definitions of local and global
constrained controllability in [0,T ] for semilinear second-order dynamical system
(1).

Definition 2.1 The dynamical system (1) is said to be Uc-locally control-
lable in [0,T ] if the attainable set KT (Uc) contains a neighborhood of zero in
the space X .

Definition 2.2 The dynamical system (1) is said to be Uc-globally control-
lable in [0,T ] if KT (Uc) = X .

In the last part of this section we shall discuss the relationships between con-
trollability of the first-order system (2) for F (x(t),u(t)) = 0, and linear second-
order dynamical system (1) for the case when f(w(t),u(t)) = 0. Therefore, for
comparison, we shall consider the following two linear dynamical systems:

w′′(t) = Gw(t) +Hu(t) +Ku(t− h)t ∈ [0, T ] (5)

x′(t) = Ax(t) +Bu(t) +Du(t− h)t ∈ [0, T ]. (6)

Corollary 2.1 Second-order linear dynamical system (5) is controllable without
any control constraints in a given time interval if and only if the associated first-
order 2n-dimensional dynamical system (6) is controllable without any control
constraints in the same given time interval.
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Remark 2.1 However, it should be pointed out, that for the controllability
problem with constrained controls the above Corollary 2.1 does not hold and
there are no general direct relationships between constrained controllability of
first-order and second-order linear dynamical systems.

3. Preliminaries

In this section, for completeness of considerations, we shall introduce certain no-
tations and present some rather known important facts from the general theory
of nonlinear operators.

Let U and X be given spaces and g(u):U → X be a mapping continuously
differentiable near the origin 0 of U . Let us suppose for convenience that g(0)=0.
It is well known from the implicit-function theorem (Klamka, 2004) that, if the
derivative Dg(0): U → X maps the space U onto the whole space X , then the
nonlinear map g transforms the neighborhood of zero in the space U onto some
neighborhood of zero in the space X .

Now, let us consider the more general case when the domain of the nonlinear
operator g is Ω, an open subset of U containing 0. Let Uc denote a closed and
convex cone in U with vertex at 0.

In the sequel, we shall use for controllability investigations some property
of the nonlinear mapping g which is a consequence of the generalized open-
mapping theorem. This result seems to be widely known, but for the sake of
completeness we shall present it here, though without proof and in a slightly
less general form, sufficient for our purpose.

Lemma 3.1 Let X, U, U c, and Ω be as described above. Let g:Ω →X be a
nonlinear mapping and suppose that on Ω nonlinear mapping g has derivative
Dg, which is continuous at 0. Moreover, suppose that g(0) = 0 and assume
that linear map Dg(0) maps U c onto the whole space X. Then there exist neigh-
borhoods N 0 ⊂ X about 0∈X and M 0 ⊂ Ω about 0∈U such that the nonlinear
equation x=g(u) has, for each x∈ N0, at least one solution u∈ M0 ∩ Uc, where
M 0 ∩ Uc is a so called conical neighborhood of zero in the space U.

4. Controllability conditions

In this section we shall study constrained local relative controllability in [0,T ]
for semilinear dynamical system (1) using the associated linear 2n-dimensional
control dynamical system

z′(t) = Cz(t) + Eu(t) +Gu(t− h) for t ∈ [0, T ] (7)

with zero initial condition, z(0) = 0, where

C = A+DxF (0, 0, 0)

E = B +DuF (0,0,0)

G = D +Du(t−h)F (0, 0, 0) (8)
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The main result of the paper is the following sufficient condition for constrained
local controllability in a given time interval of the semilinear dynamical system
with single point delay in control (1).

Theorem 4.1 Suppose that
(i) F(0,0,0) = 0,
(ii) U c ⊂U is a closed and convex cone with vertex at zero,
(iii) the associated linear control system (7) is U c-globally controllable in

[0,T].
Then the semilinear stationary dynamical control system (1) is U c-locally

controllable in [0,T].
Proof. Let us define for the nonlinear dynamical system (5) a nonlinear map

g:L∞([0,T ],Uc) → X by g(u) = x(T ,u).
Similarly, for the associated linear dynamical system (7), we define a linear

map H :L∞([0,T ],Uc) → X by Hv = z(T ,v).
By the assumption (iii) the linear dynamical system (7) is Uc-globally relative

controllable in [0,T ]. Therefore, by Definition 2.2, the linear operator H is
surjective i.e., it maps the cone Uad onto the whole space X . Furthermore, by
Lemma 3.1 we have that Dg(0)= H .

Since Uc is a closed and convex cone, then the set of admissible controls
Uad = L∞([0,T ],Uc) is also a closed and convex cone in the function space
L∞([0,T ],U). Therefore, the nonlinear map g satisfies all the assumptions of
the generalized open mapping theorem stated in Lemma 3.1.

So, the nonlinear map g transforms a conical neighborhood of zero in the set
of admissible controls Uad onto some neighborhood of zero in the state space
X . This is by Definition 2.1 equivalent to the Uc-local relative controllability
in [0,T ] of the semilinear dynamical control system (1). Hence, our theorem
follows.

In practical applications of Theorem 4.1, the most difficult problem is to
verify the assumption (iii) of constrained global controllability of the linear
stationary dynamical system (7) (Klamka, 1991, 1993, 1996, 2004). In order to
avoid this disadvantage, we may use the following theorem.

Theorem 4.2 (Klamka, 1991, 1993, 1996, 2004). Suppose that the set U c

is a given convex cone with vertex at zero and a nonempty interior in the space
of control values Rm. Then the associated linear dynamical control system with
single point delay in control (7) is U c-globally controllable in given time interval
[0,T] for T6h if and only if

1. it is controllable without any constraints, i.e.
rank[E,CE,C2E, ..., C2n−1E] = 2n,

2. there is no real eigenvector v∈ R2n of the matrix C tr satisfying inequalities
vtrEu60, for all u∈ Uc.

Moreover, the associated linear dynamical control system (7) is U c-globally
controllable in [0,T] for T>h if and only if

3. it is controllable without any constraints, i.e.
rank[E,G,CE,CG,C 2E,C2G, ..., C2n−1E,C2n−1G] = 2n,

4. there is no real eigenvector v∈ R2n of the matrix C tr satisfying inequalities
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vtrDu60, for all u∈ Uc.

It should be pointed out that for the single input associated linear dynamical
control system (7), i.e. for the case of scalar controls and m =1, Theorem 4.2
reduces to the following Corollary.

Corollary 4.1 Suppose that the dynamical system (1) has single input, i.e.,
m=1 and U c = R+.

Then the associated linear dynamical control system (7) is U c-globally con-
trollable in [0,T], for T6h if and only if it is controllable without any constraints,
i.e.

rank[E,CE,C 2E, ..., C2n−1E] =2n,
and matrix C has only complex eigenvalues.

Moreover, the associated linear dynamical control system with single point
delay in control (7) is U c-globally controllable in given time interval [0,T], for
T>h if and only if it is controllable without any constraints, i.e.

rank[E,G,CE,CG,C 2E,CG2, ..., C2n−1E,C2n−1G] =2n,
and matrix C has only complex eigenvalues.

Remark 4.1. It should be stressed that the important advantage of the
Corollary 4.1 is that instead of a rather difficult condition 2 given in Theorem
4.2 it is enough to verify only eigenvalues of the matrix C.

Remark 4.2. Since all the dynamical systems considered in the previous
sections are system with constant coefficient and control values are restricted
only in direction and are not restricted in their values, then in fact all the results
presented in Section 4 are valid for any time interval [0,T ].

Remark 4.3. For dynamical systems with delays, controllability strongly
depends on the length of the time interval [0,T ]. It is well known (Klamka,
1991) that dynamical system with delay h>0 may be uncontrollable for T 6 h

however, this system may be controllable for the final time T>h.
Remark 4.4. The general assumption that all initial conditions given in

Section 2 are zero is not essential for controllability considerations for linear dy-
namical systems with cone constrained values of controls. It should be pointed
out that the same controllability conditions hold for any nonzero initial condi-
tions.

5. Example

Finally, let us consider constrained controllability of a simple illustrative exam-
ple of dynamical systems presented in the previous sections.

Let the semilinear second-order finite-dimensional dynamical control system
with point delay in control defined on a given time interval [0,T ], have the
following form

w′′

1 (t) = −w1(t) + u(t− h) + eu(t) − 1
w′′

2 (t) = −2w2(t) + sinw2(t) + u(t)
. (9)

Therefore, taking into account previous notations and equations we have n =
2, m = 1, w(t) = (w1(t), w2(t))

tr ∈ R2 = W, u(t) ∈ Uc = R+.
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Now, let us introduce the following standard substitution for the state vari-
ables:

x(t) =









x1(t)
x2(t)
x3(t)
x4(t)









=









w1(t)
w′

1(t)
w2(t)
w′

2(t)









.

Then, using the notations given in the previous sections, matrices A, B, C and
D and the nonlinear mapping f have the following forms:

A =









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −2 0









; B =









0
0
0
1









; D =









0
1
0
0









;

f(w(t), u(t), u(t− h)) =

[

eu(t−h) − 1
sinw2(t)

]

. (10)

Therefore, taking into account the form of equations (9) we have

F (w(t), u(t), u(t− h)) =









0

eu(t−h) − 1
0
sinw2(t)









.

Moreover, let the cone of values of controls be a cone of positive numbers i.e.,
Uc = R+, and therefore, the set of admissible controls is a cone of the following
form Uad = L∞([0,T ],R+).

Hence, we have

F (0, 0, 0) =









0
0
0
0









.

Moreover,

DxF (x(t), u(t), u(t− h)) =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 cosw2(t) 0









.

Therefore,

DxF (0, 0, 0) =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0









,
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and, consequently, we have

C = A +DxF (0, 0, 0) =









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









.

Similarly,

DuF (x(t), u(t), u(t− h)) =









0
0
0
0









; E = B+DuF (0, 0, 0) = B =









0
0
0
1









,

and, finally,

Du(t-h)F (x(t), u(t), u(t−h)) =









0

eu(t−h)

0
0









; Du(t-h)F (0, 0, 0) =









0
1
0
0









.

Hence,

G = D +Du(t-h)F (0, 0, 0) =









0
1
0
1









.

Thus, we have

C2 =









−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









; C3 =









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









.

Moreover,

sI-C =









s −1 0 0
1 s 0 0
0 0 s −1
0 0 1 s









.

Therefore, the characteristic equation for the matrix C is as follows
det(sI -C) = (s2+1)(s2+1)=0,

and so matrix C has only two different complex eigenvalues i and –i, each of
multiplicity 2.

Moreover, using the well known controllability matrix and rank controlla-
bility condition for linear dynamical system (7) for time interval [0,T ], T 6 h
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(Klamka, 1991, 1993, 1996, 2004) we have

rank
[

E,CE,C2E,C3E,C3
]

= rank









0 0 0 0
0 0 0 0
0 0 0 −1
1 0 −1 0









= 3 < 4 = 2n.

Thus, the associated first order linear dynamical system with point delay in
control is not controllable in the time interval [0,T ] for T 6 h.

However, using the well known controllability matrix and rank controllability
condition for linear dynamical system (7) for time interval [0,T ], T>h (Klamka,
1991, 1993, 1996, 2004), we have

rank
[

E,G,CE,CG,C2E,C2G,C3E,C3G
]

=

=









0 0 0 1 0 0 0 −1
0 1 0 0 0 −1 0 0
0 0 1 1 0 0 −1 0
1 1 0 0 −1 −1 0 0









= 4 = 2n.

Hence, both assumptions of Theorem 4.2 are satisfied and therefore, the associ-
ated linear 2n-dimensional dynamical control system (7) with the above matrices
C, E and G is R+ -globally controllable in a given time interval [0,T ], for T

>h. Moreover, all the assumptions stated in Theorem 4.1 are also satisfied and
thus the second-order semilinear dynamical control system with point delay in
control (9) is R+-locally controllable in [0,T ].

This example shows that controllability strongly depends on time interval
and delayed control.

6. Concluding remarks

In this paper, sufficient conditions for constrained local controllability near the
origin for semilinear second-order stationary finite-dimensional dynamical con-
trol systems with point delay in control have been formulated and proved. It
was generally assumed that control values are in a given convex cone with vertex
at zero and nonempty interior. In the proof of the main result the generalized
open mapping theorem has been used.

These conditions extend to the case of constrained controllability of second-
order finite-dimensional semilinear dynamical control systems with point delay
in control the results published previously in Klamka (1991, 1993, 1996, 2004).

The method presented in the paper is quite general and covers a wide class
of semilinear dynamical control systems. Therefore, similar constrained control-
lability results may be derived for more general class of semilinear dynamical
control systems.

For example, it seems that it is possible to extend sufficient constrained
controllability conditions given in the previous sections for more general class of
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semilinear dynamical control systems with multiple point delays in the control
or with multiple point delays in the controls and in the state variables and for
the discrete-time semilinear control systems. Moreover, quite similar method
can be used to derive sufficient conditions for local controllability of semilinear
dynamical systems with nonlinear term containing both state variables and
control function.
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