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Abstract: Controllability of combination of antiangiogenic treat-
ment and chemotherapy is considered. A model used in the paper
is a finite-dimensional dynamical control system described by sec-
ond order semilinear time invariant ordinary differential state equa-
tions. Using a generalized open mapping theorem, sufficient condi-
tions for constrained local controllability in a given time interval are
formulated and proved. These conditions require verification of con-
strained global controllability of the associated linear second-order
dynamical control system.
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1. Introduction

Cancer is a disease of molecules and genes, and our increasing understanding
of these genes and molecules makes possible the development of exciting new
strategies for avoiding, preventing, and even correcting the changes that lead to
cancer (see, e.g., Camidge and Jordell, 2005). The site of action of almost all
traditional cytotoxic drugs is the cellular DNA or the processes associated with
this DNA. Drugs may interact directly with the DNA, intercalating between the
bases, chemically altering the structure of DNA (adduct formation) or substi-
tuting the bases with analogous structures. Some agents may deplete the pool
of bases required for DNA (and RNA) synthesis. Other group of drugs may
affect the microtubules that organize the chromosomes during mitosis. Drug
resistance in cancer is common. Some tumours are inherently unresponsive to
cytotoxic chemotherapy. Others may respond well initially but relapse rapidly
with drug-resistant disease. Many factors have been implicated in cellular re-
sistance and these mechanisms may be drug or class specific. Pharmacokinetic
factors also contribute towards mechanisms of resistance. For example, it is
important to realize that for many anticancer drugs the administered form of
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the drug is not necessarily the active form. Variability in, for example, levels
of activating or inactivating enzymes in the host tissues and in the tumour can
lead to significant additional inter- and intraindividual variation in terms of nor-
mal tissue toxicity and anti-tumour efficacy from such drugs. All of the targets
for traditional cytotoxics in malignant dividing cells are also expressed within
normal dividing cells. The cells in the normal human body which turnover most
rapidly and therefore are the most impacted by traditional cytotoxics are those
of the bone marrow, skin, hair follicle, and gastrointestinal mucosa. Different
normal tissues recover from a dose of chemotherapy at different rates. Malig-
nant cells tend to have impaired DNA damage repair machinery compared to
normal cells. If treatment is given intermittently, subsequent doses can be timed
to occur when the host has recovered but the tumour has not. For each dose
of chemotherapy it is thought that a constant fraction rather than an abso-
lute number of malignant cells are killed (the Skipper hypothesis). More than
sixty years ago, Glenn Algire, when studying physiological responses to tumour
growth in mice at the National Cancer Institute, observed that the growth of
tumour is dependent on the development of vascular supply. After observing the
same phenomenon, Judah Folkman (1971) suggested the substantial potential
of tumour angiogenesis as a therapeutic target.

Tumours, like normal tissues, have physiological constraints, on growth, such
as access to oxygen and nutrients for metabolism. The diffusion of oxygen in
tissues is limited to a distance of about 150µm, thus tissue growth is restricted
to a few cubic millimetres if no new vasculature is formed. For this reason,
tumours remain in a dormant state restricted to a few millimetres in diameter
unless they develop in a well-vascularised area or are able to recruit their own
vasculature. For vascularisation to occur, the nearest vessel or capillary needs
to become destabilised so that the endothelial cells lining the vessel can loosen
from their neighbours, migrate through the extracellular matrix towards the tu-
mour. Only after a tumour has recruited its own blood supply, it can expand in
size. Tumours do this via the production of angiogenic factors secreted into lo-
cal tissues and stroma; this process has been termed the angiogenic switch. The
angiogenic switch is a discrete step in tumour development that can occur at
different stages in the tumour-progression pathway, depending on the nature of
the tumour and its microenvironment. Most tumours start growing as avascular
nodules (dormant) (a) until they reach a steady-state level of proliferating and
apoptosing cells. The initiation of angiogenesis, or the ‘angiogenic switch’, has
to occur to ensure exponential tumour growth. The switch begins with perivas-
cular detachment and vessel dilation (b), followed by angiogenic sprouting (c),
new vessel formation and maturation, and the recruitment of perivascular cells
(d). Blood-vessel formation will continue as long as the tumour grows, and
the blood vessels specifically feed hypoxic and necrotic areas of the tumour to
provide it with essential nutrients and oxygen (e). Activators of endothelial-cell
proliferation and migration are mainly receptor tyrosine kinase ligands, such as
vascular endothelial growth factor (VEGF), fibroblast growth factors (FGFs),
platelet-derived growth factor (PDGF) and epidermal growth factor (EGF). Re-
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markably, many inhibitory molecules, such as ‘statins’, are derived from larger
proteins that have no effect on angiogenesis. In general, the levels of activators
and inhibitors dictate whether an endothelial cell will be in a quiescent or an
angiogenic state. It is believed that changes in the angiogenic balance mediate
the angiogenic switch.

Since in normal healthy adults, the process of angiogenesis is very limited,
thus it should, at least in theory, be possible to inhibit tumour angiogenesis
without affecting normal tissues. Antiangiogenic therapies have become one of
the most promising approaches in the anti-cancer drug development. Success-
ful preclinical research data lead to clinical trials based on different strategies.
Approaches currently under evaluation for inhibiting angiogenesis may either
be direct (targeting cell surface bound proteins/receptors) or indirect (target-
ing growth factor molecules). Because angiogenesis is a complex process with
multiple, sequential, and interdependent steps, this complexity creates many po-
tential targets for inhibition. Therefore, an antiangiogenic effect can be achieved
by targeting angiogenic stimulators, angiogenic receptors, extracellular matrix
proteins, extracellular matrix proteolysis, control mechanisms of angiogenesis,
or the endothelial cells directly. The targeting of antigens selectively expressed
on the surface of tumour capillary endothelial cells or tumour stromal fibrob-
lasts is currently being explored for the immunotherapy of cancer. By target-
ing or preventing the generation of angiogenic blood vessels or tumour stroma,
tumour lesions are deprived of the essential support functions or nutrients re-
quired for survival and growth. This targeting approach may also be applicable
to many tumour types because it is not dependant on a specific tumour cell
type. The theoretical advantages that antiangiogenic therapeutics may have
in the treatment of cancer are several-fold. First, endothelial cells involved in
angiogenesis show several fundamental differences compared with quiescent en-
dothelial cells, primarily their proliferation rate and antigen expression, which
can be exploited so that antiangiogenic therapeutics specifically target tumour
endothelial cells and not normal endothelium. Tumour blood vessels are also
highly irregular (varying diameters), tortuous, have arterio-venous shunts, blind
ends, lack smooth muscle, or enervation and have incomplete endothelial linings
and basement membranes. As a result, blood flow is often slow or highly irreg-
ular, and the vessels are much ‘leakier’ than those in normal tissues, enabling
the passage of large macromolecules. Second, antiangiogenic therapy may cir-
cumvent insufficient drug penetration into the interior of a tumour mass due to
high interstitial pressure gradients within tumours, because endothelial cells are
highly accessible to circulating drugs. Third, unlike targeting of tumour cells,
where failure to destroy a proportion of the cells results in those cells prolif-
erating and subsequent regrowth of the tumour, successful targeting of a few
endothelial cells within a growing vessel may be sufficient to completely destroy
that vessel. Consequently, disruption of a small percentage of the angiogenic
vasculature may result in ischaemic necrosis of a substantial volume of tumour.
Preclinical models support the use of antiangiogenic therapy as a single agent
for cancer treatment, but also suggest that the combination with chemother-
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apy might improve therapy effect. A number of antiangiogenic clinical trials
currently in progress have been designed to compare the effects of a particular
cytotoxic agent alone with the effects of the same agent in combination with
an angiogenesis inhibitor. The genetic instability and high mutation rate of
tumour cells is responsible, in part, for the frequent emergence of acquired drug
resistance with conventional cytotoxic anticancer therapy.

However, vascular endothelial cells, like bone marrow cells, are genetically
stable and have a low mutation rate. Therefore, Kerbel (1991) proposed a
hypothesis that antiangiogenic therapy would be a strategy to bypass drug re-
sistance. It is also worth mentioning that antiangiogenic therapy was found to
be efficient for slowly growing tumours, which are a difficult target for classical
chemotherapy. The administration of cytotoxic drugs often results in significant
side effects. Drug side-effects may reflect either the primary anti-proliferative
action of the drug, some less well understood but predictable toxicological ef-
fects, or they may be entirely idiosyncratic. Whereas over the years of appli-
cation, side-effects of chemotherapy are already relatively well investigated, we
still do not know much about side-effects of antiangiogenic therapy. Obvious
complications might be related to menstruation, diabetes and wound healing.
Nevertheless, long-term effects of therapy require attention. Additionally, it has
been observed that antiangiogenic agents do require a very high dose to ful-
fill their function. These effects of combination therapy, which have also been
observed for the combination of radiation therapy and angiogenesis inhibitors,
could play a significant role in the clinical evaluation and effects of angiogenesis
inhibitors. In some sense drawbacks of chemotherapy (induced drug resistance,
smaller efficiency for slowly growing tumours) could be supported by advan-
tages of antiangiogenic therapy and drawbacks of this therapy could be at least
slightly moderated by the advantages of chemotherapy. From the control the-
oretic point of view the combined therapy means that both direct and indirect
control is used to destroy cancer population (see Swierniak, 2008). Over the past
decades, there has been considerable progress in mathematical modelling of tu-
mour growth and associated vascular network development. Regrettably, while
most realistic models reflect these complex biological processes very accurately,
due to their complexity, they become difficult or even not suitable for analysis
of therapy protocols, see, e.g., Bartha and Rieger (2006). Hopefully, with a few
simplifying assumptions, it is possible to propose and carefully validate models
useful for analysis, preceding experimental and clinical studies. In our study we
consider a model of combined therapy, which belongs to the class of models pro-
posed in Hahnfeldt et al. (1999), where the authors suggested that the tumor
growth with incorporated vascularization mechanism can be described by the
Gompertz or logistic type equation with variable carrying capacity which defines
the dynamics of the vascular network. Roughly speaking, the main idea of this
class of models is to incorporate the spatial aspects of the diffusion of factors
that stimulate and inhibit angiogenesis into a non-spatial two-compartmental
model for cancer cells and vascular endothelial cells. Control properties of such
models in the context of the combined therapy were discussed in Swierniak
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(2012), Swierniak and Ploskonski (2010), where, following the line of reasoning
proposed in d’Onofrio and Gandolfi (2004), conditions for asymptotic tumour
eradication by constant and periodic therapy were given. Moreover, necessary
conditions for optimal treatment protocols in given finite time were considered.
The interesting finding is that for d’Onofrio-Gandolfi version of the model the
optimal trajectory does not contain singular arcs. This property was previously
found for a part of the models of this class for the antiangiogenic therapy, see
Swierniak (2009), while for the remaining models from this class the existence
of intervals of singular optimal control was rigorously proved by Ledzewicz and
Schättler (2007, 2008) and complete synthesis of optimal treatment protocols
was proposed. All the considerations related to finite time control are, however,
conditioned on the concept of controllability of the discussed dynamical system.

Systematic study of controllability was started at the beginning of the 1960s,
when the theory of controllability, based on description in the form of state space
for both time-invariant and time-varying linear control systems was worked out.
Roughly speaking, controllability generally means that it is possible to steer in
some time interval, the dynamical control system from an arbitrary initial state
to an arbitrary final state, using controls taken from the set of admissible con-
trols. Literature provides many different definitions of controllability, strongly
depending on the class of dynamical control systems and on the set of admis-
sible controls (see Klamka, 1991, 1993, 1996, 2004). In recent years various
controllability problems for different types of nonlinear dynamical systems have
been considered in many publications and monographs. However, it should
be stressed that most of literature in this direction has been mainly concerned
with controllability problems for finite-dimensional nonlinear dynamical systems
with unconstrained controls and without delays or for linear dynamical systems
with constrained controls and delays. Monographs by Kaczorek (1993, 2007)
present many valuable results for controllability, observability and duality for
different types of continuous and discrete linear dynamical systems. Similarly,
Kaczorek (2002) presents controllability, observability and duality results for
continuous and discrete positive linear dynamical systems. In the present pa-
per, we shall consider constrained local controllability problems for second-order
finite-dimensional semilinear stationary dynamical systems with point delay in
control, described by the set of ordinary differential state equations. The line of
reasoning is similar to that of our previous study, Swierniak and Klamka (2011),
in which, though, only antiangiogenic therapy was considered, in other words –
only one control variable was used.

The philosophy of this paper results from our experience. The first author
has spent almost four decades on studying conditions of controllability and ob-
servability of various dynamical systems. The other author has been involved
for the last thirty years in modeling cancer growth in the context of anticancer
therapies, studying properties of models constructed in cooperation with clin-
icians and biologists, and searching for optimal treatment protocols. In the
paper we formulate and prove sufficient conditions for constrained local con-
trollability in a prescribed time interval for semilinear second-order stationary
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dynamical systems, whose nonlinear term is continuously differentiable near the
origin, and apply them for the discuused model of the combined anticancer
therapy. It is generally assumed that the values of admissible controls are in a
given convex and closed cone with vertex at zero, or in a cone with nonempty
interior. Proof of the main result is based on the so called generalized open
mapping theorem, presented in a simplified version in Klamka (2004). Roughly
speaking, it will be proved that under suitable assumptions constrained global
relative controllability of a linear first-order associated approximated dynam-
ical system implies constrained local relative controllability near the origin of
the original semilinear second-order dynamical system. This is a generalization
of some previous results concerning controllability of linear dynamical systems
with unconstrained controls to the case of constrained controllability. On the
other hand, the conditions are formulated and then used in the way suitable for
the considered models of anticancer therapy.

2. Models of cancer growth including vascularization and

therapy

The class of models proposed in Hahnfeldt et al. (1999) is based on the idea
that the tumour growth with incorporated vascularization mechanism can be
described by self limiting growth mechanism (e.g. Gompertz or logistic type
equation) with variable carrying capacity, which defines the dynamics of the
vascular network. It is assumed that tumour cells multiply exponentially dur-
ing the early phases of tumour growth. The growth rate declines as tumour mass
increases, which results in a sigmoid exponential growth curve. This assumption
is justified by the existence of a geometric gradient of availability of oxygen and
nutrients, causing stratification in viability of cells: usually cycling cells are near
the surface or near blood vessels; further layers are occupied by dormant cells,
while the deepest regions form a necrotic core. Self-limiting growth might be
illustrated by the non-linear Gompertz-type equation. Hahnfeldt et al. (1999)
proposed modifying original Gompertzian equation, in order to describe propor-
tional relation between size of cancer cells population and parameter describing
the size of vascular network. To be more precise, Hahnfeldt suggested treating
the carrying capacity, which constraints tumour growth, as a varying tumour
volume sustainable by the vessels and roughly proportional to the vessel vol-
ume. The complete model requires additional equation describing changes of
the volume of the vessels. Equation below expresses the Gompertz–type growth

dN(t)

dt
= −βN(t) ln

N(t)

K(t)
. (1)

Here, N represents tumour volume as the size of cancerous cells population,
K describes the maximum tumour volume sustainable by supporting vascular
network, and β is a growth parameter. Likewise, the process of angiogenesis is
very complex, being a well-orchestrated sequence of events involving endothelial
cell migration; proliferation; degradation of tissue; new capillary vessel (sprout)
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formation; loop formation (anastomosis) and crucially, blood flow through the
network. Once there is blood flow associated with the nascent network, the sub-
sequent growth of the network evolves both temporally and spatially in response
to the combined effects of angiogenic factors, migratory cues via extracellular
matrix and perfusion-related haemodynamic forces.

The spatial aspects are usually approximated by simple reaction-diffusion
process, thus relating the change in number of tumour cells to their diffusion in
space, as well as their proliferation. As another point of view, there are several
models of angiogenesis, mainly focused on the proliferation and migration of
the endothelial cells in response to different molecular signals, e.g. those asso-
ciated with tumour angiogenesis factors. Recently, blood flow modelling in a
tumour-induced micro-capillary network has been suggested in order to study
the application of antiangiogenic and chemotherapy agents. Majority of models
mentioned above, intend to fully reflect the complexity of the biological process
and allow accurate simulations. Nevertheless, following the reasoning explained
earlier, it is wise to start analysis with models under simplifying assumptions.
Models considered in this study are based on that proposed by Hahnfeldt et
al., who have developed and biologically validated a two-dimensional model of
ordinary differential equations for interactions between primary tumour volume
and the carrying capacity of the vasculature network, which, in turn, is propor-
tional to the square of the tumour diameter. For simplification, it was necessary
to assume spherical symmetry of tumour mass. Therefore the expression for K
has the following form

dK(t)

dt
= γN(t) − λN(t)

2

3K(t) − µK(t) (2)

where γ represents the effect of the stimulation, λ the effect of the inhibition, µ
the natural cell death. Taking into account that tumour growth is relatively slow
compared to the rate of releasing pro- and antiangiogenic factors, it was possible
to assume that parameters γ, λ, µ are constant. The model (1), (2) may be
modified by introducing logistic type growth equation instead of the Gompertz-
type one and by changing the ratio between stimulating and blocking angiogenic
factors (see d’Onofrio and Gandolfi, 2004; Ergun et al., 2003). It leads to a
set of models which, although they behave similarly when uncontrolled, may
have different control properties (see Swierniak, 2009). For example, all the
models have the same equilibrium point, which is both locally and globally
asymptotically stable:

N∗ = K∗ = (( γ − µ ) /λ)
3/2

. (3)

On the other hand, conditions of tumour eradication under periodic therapy are
both sufficient and necessary for all the models except of the original Hanhfeldt
model, for which they are only necessary. Similar differences are observed when
optimal antiangiogenic treatment protocols are considered. Once more the orig-
inal Hahnfeldt model contains singular arcs in optimal trajectories, which are
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absent in other models. Ledzewicz and Schättler (2007, 2008) treat singular
arcs as a generic property of optimal protocols of antiangiogenic therapy. We
suggested in Swierniak (2008, 2009) that it is rather an exception than a rule.
To focus the attention we consider modification of the Hahnfeldt model pro-
posed in d’Onofrio and Gandolfi (2004), where inhibitors of angiogenesis act in
the same way as natural mortality factors:

dK(t)

dt
= γK(t) − λN(t)

2

3K(t) − µK(t). (4)

The model is strongly nonlinear but by logarithmic change of variable and
some scaling transformation we are able to transform it into the semilinear form.

More precisely, by transformation:

x = lnN/N∗,
y = lnK/K∗

x∗ = y∗ = 0, τ = βt
ϑ = (γ − µ)/β
x′ = dx/dτ,
y′ = dy/dτ

(5)

we are led for the model (1), (4) to the following quasi-linear system:

x′(t) = y(t) − x(t),

y′(t) = ϑ(e(2/3)x(t) − 1).
(6)

Application of antiangiogenic therapy can be incorporated into the model by a
factor increasing multiplicatively the mortal loss rate of the vessels. It leads to
the following equation:

dK(t)

dt
= γK(t) − λN(t)

2

3K(t) − µK(t) − ηK(t)u(t) (7)

where u(t)denotes the dose of the agent scaled to its effect on vascular network
and η is a constant parameter playing the role of a control variable. For the
constant dose U , the equilibrium points take the form:

N∗ = K∗ = (( γ − µ− ηU) /λ)3/2 , (8)

which, according to the conditions of stability given in d’Onofrio and Gandolfi
(2004) leads to the conclusion that for:

U = (γ − µ)/η ⇒ K∗, N∗ = 0. (9)

In other words, the vascular network and, in turn the tumour, can be eradicated.
This conclusion is crucial for the philosophy of the entire analysis. It is enough
to ensure that population of endothelial cells responsible for the angiogenesis
behave in the required way because the size of tumour population in some sense



Controllability of a model of combined anticancer therapy 131

tracks the same transients. The similar line of reasoning could be applied in the
case of combined antiangiogenic and chemo-therapy. In this case two control
variables are present. The main difference is that chemotoxic agents kill both
cancer and critical normal tissues, including endothelial cells. Thus, their effect
should be enclosed in both equations. In the case of d’Onofrio-Gandolfi model
the equations take the following form:

dN(t)

dt
= −βN(t) ln

N(t)

K(t)
− ψv(t) (10)

dK(t)

dt
= γK(t) − λN(t)

2

3K(t) − µK(t) − ηK(t)u(t) − ξK(t)v(t) (11)

where v(t), the second control variable, denotes the dose of the chemotherapy,
scaled to its effect on tumour and normal tissues, and ξ and ψ are constant
scaling parameters. Of course, the additional chemotherapy supports the effect
of antiangiogenic therapy. Moreover, the effect of tumour eradication may be
achieved easier and faster, although still the theoretical results based on theory
of stability have asymptotic form. For constant doses of antiangiogenic and
chemotoxic agents (denoted by Uand V , respectively) the equilibrium point is
given by (see Swierniak, 2012):

N∗ = ((γ − µ− ηU − ξV )/λ)3/2

K∗ = N∗eξV/β . (12)

In this case the equilibrium point is not the same for both populations but
it is related very closely, and it can be easily noticed that conditions of its
asymptotic stability, both local and global, are similar to those given above. The
main difference is that now both control actions “collaborate” in conditions for
convergence of solutions of the model equations to 0. More precisely, condition
(9) should be substituted by:

U + ξV/η = (γ − µ)/η ⇒ K∗, N∗ = 0. (13)

The use of the previously considered transformation of variables leads to the
following semilinear model of the combined anticancer therapy:

x′(t) = y(t) − x(t) − εv(t),

y′(t) = ϑ(1 − e(2/3)x(t)) + σu(t) + ςv(t),
σ = −η/β,
ε = ψ/β,
ς = −ξ/β.

(14)

3. Semilinear system description

In this section we study the general form of the semilinear stationary finite-
dimensional control system described by the following ordinary differential state
equation

x′(t) = Ax(t) + F (x(t), u(t)) +Bu(t) for t ∈ [0, T ], T>0 (15)
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with zero initial conditions: x(0) = 0, where the state x (t) ∈ Rn = X and
the control u(t) ∈ Rm = U , A is n × n dimensional constant matrix, B is
n×m dimensional constant matrix. Moreover, let us assume that the nonlinear
mapping F : X×U → X is continuously differentiable near the origin and such
that F (0,0)=0.

In practice, admissible controls are always required to satisfy certain addi-
tional constraints. Generally, for arbitrary control constraints it is rather very
difficult to give easily computable criteria for constrained controllability. How-
ever, for some special cases of the constraints it is possible to formulate and
prove simple algebraic constrained controllability conditions. Therefore, we as-
sume that the set of values of controls Uc ⊂ U is a given closed and convex cone
with nonempty interior and vertex at zero. Then, the set of admissible controls
for the dynamical control system (15) has the form Uad = L∞([0,T ], Uc).

For the semilinear stationary finite-dimensional dynamical system (15), it is
possible to define many different concepts of controllability. In the sequel we
shall focus our attention on the so called constrained controllability in the time
interval [0, T ]. In order to do that, first of all let us introduce the notion of
the attainable set at time T>0 from zero initial conditions, denoted shortly by
KT (Uc) and defined as follows:

KT (Uc) = {x ∈ X : x = x(T, u), u(t) ∈ Uc for a.e. t ∈ [0, T ]} (16)

where x (t, u), t >0 is the unique solution of the differential state equation
(15) with zero initial conditions and a given admissible control u∈ Uad =
L∞([0,T ], Uc). Under the assumptions stated on the nonlinear term F such
solution always exists.

Now, using the concept of the attainable set, let us recall the well known
definitions of constrained controllability in [0,T ] for semilinear dynamical system
(15).

Definition 1 The dynamical system (15) is said to be Uc-locally controllable
in [0, T ] if the attainable set KT (Uc) contains a neighborhood of zero in the space
X.

Definition 2 The dynamical system (15) is said to be Uc-globally control-
lable in [0, T ] if KT (Uc) = X .

Now, we shall introduce certain notations and present some important facts
from the general theory of nonlinear operators.

Let U and X be given spaces and g(u): U → X be a mapping contin-
uously differentiable near the origin 0 of U . Let us suppose for convenience
that g(0)=0. It is well known from the implicit function theorem that if the
derivative Dg(0):U → X maps the space U onto the whole space X, then the
nonlinear map g transforms a neighborhood of zero in the space Uonto some
neighborhood of zero in the space X.

Now, let us consider the more general case when the domain of the nonlinear
operator g is Ω, an open subset of Ucontaining 0. Let Uc denote a closed and
convex cone in U with vertex at 0.
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In the sequel, we shall use for controllability investigations some property of
the nonlinear mapping g which is a consequence of a generalized open-mapping
theorem. This result seems to be widely known, but for the sake of completeness
we shall present it here, though without proof and in a slightly less general form
sufficient for our purpose.

Lemma 1 Let X, U, U c, and Ω be as described above. Let g:Ω →X be a
nonlinear mapping and suppose that on Ω the nonlinear mapping g has deriva-
tive Dg, which is continuous at 0. Moreover, suppose that g(0) = 0 and assume
that linear map Dg(0) maps U c onto the whole space X. Then there exist neigh-
borhoods N 0 ⊂ X about 0∈X and M 0 ⊂ Ω about 0∈U such that the nonlinear
equation x= g(u) has, for each x∈ N0, at least one solution u∈M0∩Uc, where
M 0 ∩ Uc is a so called conical neighborhood of zero in the space U.

4. Controllability conditions

In this section, using Lemma 1, presented previously, we shall study constrained
local controllability in [0,T ] for semilinear dynamical system (15) using the
associated linear dynamical system.

z′(t) = Cz(t) +Du(t) for t ∈ [0, T ] (17)

with zero initial condition z(0)=0, where

C = A+ Fx(0, 0)D = B + Fu(0, 0)

are n× n-dimensional and n×m-dimensional constant matrices, respectively.

The main result is the following sufficient condition for constrained local
controllability of the semilinear dynamical system (15), which will be used to
study controllability of the model of combined anticancer therapy:.

Theorem 1 Klamka (1996): Suppose that

(i) F(0,0) = 0,

(ii) U c ⊂U is a closed and convex cone with vertex at zero,

(iii) the associated linear control system (17) is U c-globally controllable in
[0,T].

Then the semilinear stationary dynamical control system (17) is U c-locally
controllable in [0,T].

In the practical applications of Theorem 1, the most difficult problem is to
verify the assumption (iii) of constrained global controllability of the linear time
invariant dynamical system. In order to avoid this disadvantage, we may use
the following theorem:

Theorem 2 Klamka (1996): Suppose the set U c is a cone with vertex at zero
and nonempty interior in the space Rm. Then the associated linear dynamical
control system (17) is U c-globally controllable in [0,T] if and only if

1. it is controllable without any constraints, i.e. rank[D,CD,C 2D, ..., Cn−1D] =
n,

2. there is no real eigenvector w∈ Rn of the matrix C tr satisfying inequalities
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wtrDu 6 0, for all u∈ Uc.
It should be pointed out that for the single input scalar control associated

linear dynamical control system, i.e., for the case m =1, Theorem 2 reduces to
the following corollary, which was used by us to check the controllability of the
model of antiangiogenic therapy in Swierniak and Klamka (2011).

Corollary Klamka (1996): Suppose that m=1 and U c = R+.
Then the associated linear dynamical control system (17) is U c-globally con-

trollable in [0,T] if and only if it is controllable without any constraints i.e.,
rank[D,CD,C 2D, ..., Cn−1D] = n,
and matrix C has only complex eigenvalues.

5. Controllability of the model of therapy

Now, let us consider constrained local controllability of the model of combined
anticancer therapy described by the semilinear differential state equations (14)
defined in a given time interval [0,T ]. In this case, the state vector x =[x, y]T ,
the control vector u = [u, v]T , and z is the state of the associated linear system.

Taking into account the general form of the semi-linear dynamic system we
have:

A =

[

−1 1
0 0

]

F (x, y, u, v) =

[

0
−ϑ(e(2/3)x − 1)

]

B =

[

0 −ε
σ ζ

]

.

Hence, we get

F (0, 0, 0, 0) =

[

0
0

]

Fx(0, 0, 0, 0) =

[

0 0
−ϑ 2

3 0

]

C = A+ Fx(0, 0, 0, 0) =

[

−1 1
−ϑ 2

3 0

]

.

In order to consider controllability of dynamical system (15) we use the Theo-
rems and the Corollary presented in the previous section.

The admissible controls are assumed to be positive, hence the set of admis-
sible controls is a positive cone Uc in the space R2.

The characteristic polynomial for matrix Ctr has the form

P (s) = det(sI − Ctr) = det

[

s+ 1 2
3ϑ

−1 s

]

= s2 + s+ 2
3ϑ.

Therefore, the discriminate of the characteristic polynomial: ∆ = 1 − 8
3ϑ and

characteristic equation P (s) = 0 has two roots.
It is necessary to consider the following three cases:
I. ∆ <0, for ϑ > 3

8
In this case we have two complex eigenvalues

s1 = 0.5(−1 − j
√

∆) = 0.5(−1 − j
√

1 − 8
3ϑ)



Controllability of a model of combined anticancer therapy 135

s2 = 0.5(−1 + j
√

∆) = 0.5(−1 + j
√

1 − 8
3ϑ).

Since

rank
[

B CB
]

= rank

[

σ ξ + ε
0 2

3ϑε

]

= 2 = n

and eigenvalues are complex, then by the Corollary the system is constrained
controllable.

II. ∆ = 0, for ϑ = 3
8

In this case we have one real eigenvalue s12 = -0.5 with multiplicity 2.
Therefore, for controllability verification it is necessary to use Theorem 2. In
order to do that first we find eigenvector w of matrix Ctr.

From spectral equation Ctrw = −0.5w the real eigenvector has the following
form

w =

[

−1
2

]

thus

wtrBu =
[

− 1 +2
]

[

0 −ε
σ ξ

] [

u
v

]

= 2σu+(ε+2ξ)v > 0 for all positive

controls.
Therefore, there is no real eigenvector satisfying wtrDu60, for all u∈ Uc.
Hence, taking into account the Theorem, the system is controllable with

positive admissible controls.
III. ∆ >0, for ϑ < 3

8

In this case we have two different real eiganvalues. Hence, for controllability
verification we use Theorem 2.

Real eigenvalues have the following form:

s1 = 0.5(−1 −
√

1 − 8
3ϑ) < 0

s2 = 0.5(−1 +
√

1 − 8
3ϑ) < 0.

Therefore, the corresponding real eigenvectors are

w1 =

[

−1
−s−1

1

]

and w2 =

[

−1
−s−1

2

]

.

Thus,

wtr
1 Bu =

[

−1 −s−1
1

]

[

0 −ε
σ ξ

] [

u
v

]

= −s−1
1 σu+ (ε− s−1

1 ξ)v > 0 for

all positive controls;

wtr
2 Bu =

[

−1 −s−1
2

]

[

0 −ε
σ ξ

] [

u
v

]

= −s−1
2 σu+ (ε− s−1

2 ξ)v > 0 for

all positive controls.
Therefore, there is no real eigenvector satisfying wtrDu 60, for all u∈ Uc.
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Hence, taking into account the Theorem the system is controllable with
positive admissible controls.

Summarizing the above, the semilinear dynamical system (15) is constrained
controllable in a given time interval [0, T ] with positive controls. From the bi-
ological point of view it means that if the size of the tumour and its vascular
network is not too large, then there exists a combination of antiangiogenic ther-
apy and chemotherapy which enables practical eradication of the tumour. This
may not be the case if only one modality (e.g. only antiangiogenic therapy) is
used. As it has been proved in Swierniak and Klamka (2011), local constrained
controllability of the model of antiangiogenic therapy is guaranteed only when
its parameters satisfy additional condition related to oscillatory behavior in the
untreated case.

6. Conclusions and discussion

In this study we have shown how, using quite simple models, we can analyze
and design therapy protocols of combined antiangiogenic and chemotherapy.
This type of cancer treatment is still in experimental and clinical trials. The
results are promising, but the knowledge of the processes behind the evolution
of cancer vascular network, the equilibrium between stimulation and inhibitory
factors, different forms of antiangiogenic therapy, its side effects and the results
of combined use of different treatment modalities is still far from complete.
The important finding presented in the paper is that sufficient conditions of
local constraint controllability for the simple model of combined therapy are
satisfied independently of its parameters, which is not true for the model of
antiangiogenic therapy. A more realistic model should take into account drug
resistance of the cancer cell population caused by chemotoxic agents. Of course,
the model is more complicated than the two compartmental models considered
in the paper but, in our opinion, it may be treated similarly and may lead
to similar qualitative results. The simplest example in this class is a three
compartmental model proposed in Swierniak (2012).

A similar analysis may be proposed for the combined therapy in which an-
tiangiogenic therapy is associated with radiotherapy. In this case, however, the
realistic model should take into account the so called linear-quadratic effect or
α/β effect of ionizing radiation. The method presented in the paper is quite
general and covers a wide class of semilinear dynamical control systems. There-
fore, similar constrained controllability results may be derived for more general
class of semilinear dynamical control systems. For example, it seems that it is
possible to extend sufficient constrained controllability conditions given in the
previous sections for more general class of semilinear dynamical models with
single point delay in the control or with multiple point delays in the controls
or in the state variables. Such models are also used in analysis of anticancer
therapies, e.g. d’Onofrio and Gandolfi (2009), Forys and Poleszczuk (2011).
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