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Abstract: Biochemical reaction networks may be modeled as
biochemical reaction systems consisting of differential equations with
rational functions. Biochemical reaction systems are defined as ra-
tional positive dynamic systems with inputs and outputs, and illus-
trated by examples. This formulation makes available the results
from algebraic system theory for rational systems and a relation
with computer algebra. It is shown how to decompose networks into
subsystems and how to relate them to graphs. The realization prob-
lem for this class of systems is briefly discussed. Finally, control
problems for biochemical reaction networks are formulated.
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1. Introduction

The purpose of this paper is to present concepts, results, and problems of control
and system theory for a subclass of the biochemical reaction systems which cover
many examples of biochemical cell reaction networks.

The recent advances in knowledge for the genome of plants, animals, and
humans now lead to increased interest in cell biology. Knowledge is needed on
how a cell as a functional unit operates, how it interacts with its environment,
and how the reaction network is influenced by the genome via the enzymes.
Metabolic networks, signal transduction networks, and genetic networks have
been analyzed by biologists and mathematicians. In principle, it is possible to
model the complete biochemical reaction network of a cell though this program
has so far been carried out only for small compartments of such networks.
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Mathematical analysis for biochemical reaction systems leads to systems
of ordinary or partial differential equations. Often the ordinary differential
equations are of polynomial or of rational form. The number of reactions in a
cell can be as high as 15000 (about half the number of estimated genomes) and
the number of chemical compounds as high as 20000. A detailed mathematical
analysis of a mathematical model of the complete cell reaction network may
therefore not be possible in the near future. Hence, there is an interest to develop
procedures to obtain from high-order mathematical models approximations in
the form of low-order mathematical models. The formulation of approximate
models requires understanding of the dynamics of the system, in particular of
its algebraic and graph-theoretic structure and of its rate functions. It is the
aim of the authors to contribute to this research effort.

In this paper attention is restricted to mathematical models for biochemical
cell reaction networks in the form of biochemical reaction systems. These sys-
tems are called positive because the state vector is positive, it represents masses
or concentrations of chemical species. Moreover, the external input representing
concentrations of externally available chemical species, and the input vector of
enzyme concentrations produced by the nucleus of the cell, are all positive. The
dynamics of the system is often modeled as a polynomial map but in this paper
attention is restricted to rational maps (each component equals a quotient of two
polynomials). Such a dynamics arises in the model of Michaelis-Menten kinetics
due to a singular perturbation of a bilinear system. The mathematical model
of glycolysis in the unicellular organism Trypanosoma brucei is phrased almost
entirely in terms of a biochemical reaction system and this model is regarded
as realistic, see Bakker (1998), Helfert et al. (2001).

The subclass of biochemical reaction systems considered in this paper is spe-
cific due to the conditions imposed by the modeling of biochemical cell reaction
networks. It is precisely because of these physically determined conditions that
the subclass merits further study. The properties of such systems differ to a mi-
nor extent from those of polynomial systems considered in, for example, Sontag
(2001). The graph-theoretic and the algebraic structure of biochemical reaction
systems make the analysis interesting.

A summary of the main results follows. A brief formulation of the algebraic
properties of positive real numbers and of rational positive functions is provided
because of their major differences with respect to rational real functions (Sec-
tion 2). A subclass of biochemical reaction systems is defined (Section 3). A
running example is formulated and further references to models of biochemical
cell reaction networks are mentioned (Section 3.3). With a biochemical reac-
tion system is associated a directed graph. The graph is decomposed according
to properties of connectivity (Section 4.1). It is established that the class of
biochemical reaction systems as defined in this paper is closed with respect to
a series interconnection. Decompositions of biochemical reaction systems are
treated (Section 4.2). Finally, problems are formulated for the way the enzyme
input controls the operation of the biochemical reaction system (Section 6).

The main contributions of the paper are:
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• The formulation of the concept of biochemical reaction systems.
• The system theoretic results on the decomposition and on the intercon-
nection of biochemical reaction systems.

• The discussion on the system theoretic properties of controllability and
observability of these systems, and the realization problem.

• The formulation of control problems for biochemical reaction systems.
A preliminary version of this paper was presented in van Schuppen (2004).

2. Rational positive functions

In this section, notation for polynomials and rational functions is introduced
and discussed.

Denote the set of integers by Z, of positive integers by Z+, and natural num-
bers by N = {0, 1, . . . , }, see Birkhoff and MacLane (1997, p. 9) and Jacobson
(1985, p. 15). For n ∈ Z+ denote the subsets Zn = {1, 2, . . . , n} ⊂ Z and
Nn = {0, 1, 2, . . . , n} ⊂ N.

Denote the set of real numbers by R. The set of positive real numbers
is denoted as R+ = [0,∞) and the set of the strictly positive real numbers
by Rs+ = (0,∞). This terminology is used in the literature and is preferred
above the term of ‘non-negative real numbers’. As an algebraic structure the
set of positive real numbers is a semi-ring, it has the operations of addition
and multiplication with neutral elements 0 and 1 for respectively addition and
multiplication but it does not have an inverse with respect to addition though it
has one with respect to multiplication when attention is restricted to the subset
(0,∞). Note that R+ is an integral domain, defined by the condition that for
all a, b ∈ R+, ab = 0 implies that either a = 0 or b = 0.

Consider for n ∈ Z+ the set of n-tuples of positive real numbers as the
positive vector space (R+,R

n
+) with the understanding that the first object of

this tuple is only a semi-ring as defined above and that vector addition does not
have an inverse.

A positive vector space can also be defined geometrically. A cone V ⊆ R
n
+

is defined to be a subset such that (1) V + V ⊆ V : ∀v1, v2 ∈ V , v1 + v2 ∈ V ;
and (2) R+V ⊆ V : ∀v ∈ V and ∀c ∈ R+, cv ∈ V . If S is a subset of Rn

+ then
there exists the smallest cone containing S, it is called the cone generated by S
and denoted by cone(S). A cone V ⊆ R

n
+ is said to be polyhedral cone if it is

the intersection of a finite number of half spaces. This definition is equivalent
to the statement that there exists a finite set of vectors {v1, . . . , vm} ⊂ R

n
+ such

that V = cone({v1, . . . , vm}). A finite set of vectors {v1, . . . , vm} ⊂ R
n
+ is said

to be positively dependent if there exists i ∈ Zn such that vi is a positive linear
combination of the other vectors, vi =

∑

j∈Zn\{i}
cjvj where for all j ∈ Zn\{i},

cj ∈ R+ . It is called positively independent otherwise. A finite set of vectors
{v1, . . . , vm} ⊂ R

n
+ is said to be a frame of a cone V ⊆ R

n
+ if the cone is

generated by the set and if the set is positively independent. Finally, we can
state the geometric interpretation. A subset V ⊆ R

n
+ is a finite-dimensional

positive vector space if and only if it is a polyhedral cone. In this case the
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space admits a representation in terms of a frame. For the theory of cones and
polyhedral cones, see Gerstenhaber (1951), Rockafellar (1970).

For n ∈ Z+ denote the set of positive matrices of size n × n by R
n×n
+ .

As an algebraic structure this set is a dioid because it has neither an inverse
with respect to matrix addition nor with respect to matrix multiplication even
if attention is restricted to nonsingular matrices (the inverse of a nonsingular
positive matrix may have negative elements). However, it is commutative with
respect to addition. Note that for all n ∈ Z+ with n > 1, Rn×n

+ is not an integral
domain as the following example shows,

A =

(

0 0
1 0

)

∈ R
2×2
+ , A2 = 0. (1)

Notation and terminology for polynomial functions and rational functions in
several variables follows. Fix n ∈ Z+, the dimension of the indeterminate, and
denote the indeterminate by x = (x1, x2, . . . , xn). Consider the multi index

k =
(

k1 k2 . . . kn
)T

∈ N
n.

Note that the vector k = 0 ∈ N
n is admitted in the above definition. A polyno-

mial in n variables with positive coefficients is denoted by

p(x) =
∑

k∈Nn

cp(k)

n
∏

j=1

x
kj

j =
∑

k∈Nn

cp(k)x
k, cp(k) ∈ R+, ∀k ∈ N

n,

p ∈ R+[x1, . . . , xn], abbreviated to R+[x].

The understanding in the above definition is that there exists only a finite
number of coefficients {cp(k) ∈ R+, k ∈ N

n} for which cp(k) 6= 0. Abuse of
notation will be made because p ∈ R+[x] denotes both a polynomial as an
algebraic object and the function p : Rn

+ → R+.
Note that R+[x] as an algebraic structure is a dioid with the addition and the

multiplication operation, but it has neither an inverse with respect to addition
nor an inverse with respect to multiplication. The neutral element with respect
to addition is the polynomial pz(x) = 0 ∈ R+ for all x ∈ X , and the neutral
element with respect to multiplication is the polynomial pone(x) = 1 ∈ R+ for
all x ∈ X .

Definition 1. Consider the subset of positive polynomials,

R+,1[x] = {p ∈ R+[x], cp(0) = 1},

R+,0[x] = {p ∈ R+[x], cp(0) = 0}.

For a polynomial with the above representation define the total degree of p
as

deg(p) = max
{k∈Nn|cp(k) 6=0}

n
∑

i=1

ki ∈ N.
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Define an order relation on R+,1[x] by the relation order(p) = deg(p). The poly-
nomials p, q ∈ R[x] are called relatively prime if the they do not have common
zeroes.

Recall that an integral domain is a commutative ring with no proper zero
divisors. Hence, R[x] is an integral domain because it is a commutative ring and
because for all p, q ∈ R[x] it holds that p 6= 0 and q 6= 0 imply pq 6= 0. However,
because R+[x],R+,1[x] and R+,0[x] are not commutative rings, neither of them
is an integral domain. Nevertheless, it still holds for all R+[x], R+,1[x] and
R+,0[x] that if p, q ∈ R, where R denotes R+[x], R+,1[x] or R+,0[x] and pq = 0,
then either p = 0 or q = 0.

Note that the set of units in R+[x], defined as the invertible elements within
R+[x], equals the set of strictly positive real numbers Rs+ = (0,∞). An element
p of an integral domain R is said to be irreducible if (1) p is not a unit of R;
and (2) p = p1p2, where p1, p2 ∈ R, implies that either p1 is a unit in R or p2 is
a unit in R. Thus, p ∈ R+[x] is irreducible if (1) p 6∈ (0,∞); and (2) p = p1p2,
where p1, p2 ∈ R+[x], implies that either p1 ∈ (0,∞) or p2 ∈ (0,∞).

An integral domain R is called unique factorization domain if (1) for any
p ∈ R there exists a factorization of the form,

p =

n
∏

i=1

pi, where pi ∈ R is irreducible;

and if (2) the factorization is unique up to a reordering of the factors. Note that
R[x] is a unique factorization domain. The subset R+,1[x] of positive polynomi-
als does not satisfy the conditions for being a unique factorization domain, see
the following example.

Example 1. Consider the following factorizations of the positive polynomial

p(x) = (x+ 2b)(x+ 3b)(x2 − bx+ 4b2) ∈ R+[x],

= (x+ 2b)(x3 + 2bx2 + b2x+ 12b3)

= (x+ 3b)(x3 + bx2 + 2b2x+ 8b3), b ∈ (0,∞).

The first factorization is a factorization over R but not a factorization over R+,1

because of the term −bx. Moreover, the quadratic polynomial x2 − bx + 4b2 is
irreducible over R[x] because its discriminant satisfies D = 4b2−16b2 = −12b2 <
0. The second and the third factorizations are both factorizations over R+[x]
and, because of the first factorization, these factors are irreducible. Thus, p has
two different factorizations into irreducible factors.

Definition 2. Consider a finite set of positive polynomials {pj ∈ R+[x], j ∈
Zm}. Define the common multiple of this set as the positive polynomial p ∈
R+[x] such that for all j ∈ Zm there exists a positive polynomial qj ∈ R+[x]
such that p = qjpj. Define the least common multiple of the finite set as the
common multiple p ∈ R+[x] such that for any other common multiple p̄ ∈ R+[x],
order(p) ≤ order(p̄). Denote then,

p = lcm({pj ∈ R+[x], j ∈ Zm},R+[x], order) = lcm({pj ∈ R+[x], j ∈ Zm}),
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if the context is understood.

In this paper attention is restricted to a particular class of rational positive
functions for which singularities cannot occur. For this purpose, define

R+(x) =
{

p(x)
q(x) | p(x), q(x) ∈ R+[x], q(x) 6= 0

}

, (2)

R+(x) = R+(x1, . . . , xn), (3)

R+,s(x) =

{

p(x)
q(x) ∈ R+(x) | p(x) =

∑

k∈Nn cp(k)x
k, cp(0) = 0,

q(x) =
∑

k∈Nn cq(k)x
k, cq(0) = 1

}

. (4)

If p(x)/q(x) ∈ R+,s(x) then for all x ∈ R
n
+, q(x) ≥ 1 > 0, hence the quotient

is well defined. Addition and multiplication of elements of R+,s(x) are well
defined and produce elements in R+,s(x) as the following calculations show,

p1(x)

q1(x)
+

p2(x)

q2(x)
=

p1(x)q2(x) + p2(x)q1(x)

q1(x)q2(x)
,

q1(x)q2(x) =
∑

k∈Nn

cq1q2(k)x
k, cq1q2(0) = cq1(0)cq2(0) = 1,

p1(x)q2(x) + p2(x)q1(x) =
∑

k∈Nn

cp1q2+p1q2(k)x
k,

cp1q2+p2q2(0) = cp1
(0)cq1(0) + cp2

(0)cq2(0) = 0.

In the remainder of the paper rational functions p(x, xex)/q(x, xex) are consid-
ered for two sets of indeterminates (x1, . . . , xn) and (xex,1, . . . , xex,nex

). In this
case decompose the k ∈ N

n+nex vector as k = (kx, kxex
) with kx ∈ N

n and
kxex

∈ N
nex . The following notation will be used,

p(x, xex) =
∑

k∈Nn

cp(k)

n
∏

j=1

x
(kx)j
j

nex
∏

m=1

x
(kxex )m
ex,m ,

degx,ex(p) = max
{k∈Nn|cp(k) 6=0}

[

n
∑

i=1

(kx)i +

nex
∑

j=1

(kxex
)j ] ∈ N.

Rational functions on a variety are treated in Cox, Little and O‘Shea (1992)
while rings of quotients are treated in Lam (1999, Chapter 10).

3. Biochemical reaction systems

3.1. Example of a biochemical reaction system

An example is presented to introduce the definition of a rational positive system
for a biochemical reaction network. The reader is referred to the very nice papers
by M. Feinberg on modeling chemical reaction networks by ordinary differential
equations, see Feinberg and Horn (1974, 1977), Feinberg (1978, 1988).
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Example 2. Consider the academic artificial biochemical reaction network con-
sisting of two reactions only. There are five chemical species (A, C, D, E, F )
in the network, one external chemical species (B), and one chemical species is
available to the outside of the network. The chemical reactions follow.

A+ 4B ↔ 2C + 2D, (5)

2D + E → F. (6)

Define the state components, the external variable, and the output variable to be
the concentrations of the respective chemical species. Namely,

x1 = [A], x2 = [C], x3 = [D], x4 = [E], x5 = [F ],

xex = [B], z = [F ] = x3,

x =













x1

x2

x3

x4

x5













, xex, z.

The concentrations are of the dimension grams per cubic centimeter.

Reaction (5) is called Reaction 1, it is a reversible reaction, and Reaction (6)
is called Reaction 2, it is an irreversible reaction. Each reaction has a reaction
rate defined below.

The stoichiometric matrix relates the reaction rates to the differentials of
the concentrations. For the example, the system is displayed below in which the
symbol N denotes the stoichiometric matrix,

dx(t)/dt = NDiag(r(x(t), xex(t)))u(t)

=













−1 0
+2 0
+2 −2
0 −1
0 +1













(

r1(x(t), xex(t))u1(t)
r2(x(t), xex(t))u2(t)

)

,

N = N+ −N− =













0 0
+2 0
+2 0
0 0
0 +1













−













1 0
0 0
0 2
0 1
0 0













,

y(t) = Cx(t) =
(

0 0 0 1 0
)

x(t),

z(t) = HDiag(r(x(t), xex(t)))u(t)

=
(

0 0 0 0 1
)

Diag(r(x(t), xex(t))))u(t),
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r+1 (x, xex) =
x1x

4
ex

1 + c1x1 + c2x2 + c3x3 + c4xex

=
[A][B]4

1 + c1[A] + c2[C] + c3[D] + c4[B]
,

r−1 (x, xex) =
x2
2x

2
3

1 + c1x1 + c2x2 + c3x3 + c4xex

,

r1(x, xex) = r+1 (x, xex)− r−1 (x, xex),

r+2 (x, xex) =
x2
3x4

1 + c5x3 + c6x4

, r−2 (x, xex) = 0, r2(x, xex) = r+2 (x, xex).

Because Reaction 1 is reversible, it has both a forward rate function, r+1 (x, xex),
and a backward rate function, r−1 (x, xex). Below, the rate functions are multi-
plied by the enzyme concentrations to obtain the actual reaction rates. If both
the forward and the backward reaction rates of one reaction are rational func-
tions, then the denominators are usually identical. For an irreversible reaction
the backward reaction rate is zero to make the notation consistent.

The differential equations for the concentrations of the chemical species [A]
and [D] are then

dx1(t)/dt = N11r
+

1 (x(t), xex(t))u1(t)−N11r
−

1 (x(t), xex(t)u1(t)

= N11r1(x(t), xex(t))u1(t)

= −

[

x1(t)xex(t)
4

1 + c1x1 + c2x2 + c3x3 + c4xex

−
x2(t)

2x3(t)
2

1 + c1x1 + c2x2 + c3x3 + c4xex

]

,

dx3(t)/dt = N31r
+

1 (x(t), xex(t))u1(t)−N31r
−

1 (x(t), xex(t))u1(t) +

+N32r
+

2 (x(t), xex(t))u2(t),

= 2

[

x1(t)xex(t)
4
− x2(t)

2x3(t)
2

1 + c1x1 + c2x2 + c3x3 + c4xex

]

u1(t) +

−2

[

x3(t)
2x4(t)

1 + c5x3(t) + c6x4(t)

]

u2(t),

z(t) = H5r
+

2 (x(t), xex(t))u2(t) = r2(x(t), xex(t))u2(t)

= HDiag(r(x(t), xex(t))u(t).

To summarize, the biochemical reaction system of this example is described by
the following vector differential equation and output equation,

dx(t)/dt = NDiag(r(x(t), xex(t))u(t), (7)

z(t) = HDiag(r(x(t), xex(t))u(t). (8)

3.2. Concepts

Biochemical reaction systems are defined formally below.

Definition 3. A biochemical reaction system for a biochemical reaction net-
work is defined as a control system, as understood in system theory, defined by
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the system of differential equations

dx(t)/dt = NDiag(r(x(t), xex(t)))u(t), x(t0) = x0 ∈ X = R
n
+, (9)

y(t) = Cx(t), (10)

z(t) = HDiag(r(x(t), xex))u(t), (11)

or, per component i ∈ Zn,

dxi(t)/dt =

m
∑

j=1

Ni,jrj(x(t), xex(t))uj(t) (12)

=
m
∑

j=1

(N+

i,j −N−

i,j)[r
+

j (x(t), xex(t))− r−j (x(t), xex(t))]uj(t) (13)

= fi(x(t), xex(t), u(t)), xi(t0) = xi,0,

with the definitions, n, m ∈ Z+, nex, nz ∈ N,

T = [t0,∞), the time index set,

X = R
n
+, the state set,

Xex = R
nex

+ , the set of external concentrations,

U = R
m
+ , the set of enzyme concentrations,

N ∈ Z
n×m called the stoichiometric matrix,

with decomposition, N = N+ −N−, N+, N− ∈ N
n×m,

u : T → U, an input function,

r : X ×Xex → R
m, ∀j ∈ Zm,

rj(x, xex) = r+j (x, xex)− r−j (x, xex) =
p+j (x, xex)

q+j (x, xex)
−

p−j (x, xex)

q−j (x, xex)
, (14)

p+j (x, xex)

q+j (x, xex)
,
p−j (x, xex)

q−j (x, xex)
∈ R+,s(x, xex), q+j (x, xex) = q−j (x, xex),

Diag(r(x, xex)) = Diag((r1(x, xex)), . . . , (rm(x, xex))) ∈ R
m×m
+ , (15)

Diag(w), denotes a diagonal matrix with the elements of

the vector w on the diagonal,

z : T → R
nz , H ∈ N

nz×m,

where z represents the outflow rate of the system.

The following conditions are assumed to hold:
1. For all j ∈ Zm, the two tuples (p+j , q

+
j ) and (p−j , q

−
j ) are each assumed to

be relatively prime polynomials.
2. For all i ∈ Zn, j ∈ Zm, ∀x ∈ X and ∀xex ∈ Xex,

xi = 0 ∧ (N+
i,j −N−

i,j > 0) ⇒ r−j (x, xex) = 0;

xi = 0 ∧ (N+
i,j −N−

i,j < 0) ⇒ r+j (x, xex) = 0.
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3. For all i ∈ Znz
and j ∈ Zm, ∀x ∈ X and ∀xex ∈ Xex,

Hi,j > 0 ⇒ p−j (x, xex) = 0.

4. The components of r, thus {rj(.), j ∈ Zm}, are linearly independent func-
tions.

5. For T = [t0,∞), for any initial condition x0 ∈ R
n, any external con-

centration function xex : T → R
nex

+ , and any continuous input function
u : T → R

m
+ there exists a unique solution x : T → R to the system of

ordinary differential equations (9).

The reader should clearly distinguish between the state function and the vec-
tor of external concentrations xex ∈ R

nex

+ . The external concentrations represent
masses of concentrations or chemical species which are not part of the model and
whose dynamics is not part of the system. They may represent chemical species
which are available in abundance and whose values may not change over time
depending on the other state variables. Such an external concentration could
be assumed to be constant over time during the interval considered or could be
assumed to be time varying in a prescribed way. In the example of Subsection
3.3, the external concentrations are present in the model. Distinguish also the
outflow rate z and the state x.

Comments on the conditions of Definition 3 follow. The first condition is
to obtain a mathematically economical expression for the rate functions. If the
condition is not met then it can be obtained by canceling common factors. The
second condition is necessary and sufficient for the positive orthant Rn

+ to be a
positively invariant set of the system, see the next section. The third condition
is to enforce that the outflow rate refer to an outflow only, there is no inflow into
the systems. To relax the condition requires further modeling of the inflows into
the biochemical reaction system also from the outflows. The fourth condition
is to obtain a nonredundant set of reactions. If the condition is not met then
the corresponding enzyme inputs can be combined so that a system with one
reaction less is obtained. The last condition is needed for mathematical reasons.

For references on positive systems see Berman, Neumann and Stern (1989),
Farina and Rinaldi (2000), van den Hof (1996).

3.3. Examples

Biochemical reaction networks are used to represent metabolic networks, but
also signal transduction networks (with the purpose of controlling to communi-
cate signals), and genetic networks (with the purpose of controlling the operation
of a cell from the nucleus).

Other references on dynamic systems for biochemical cell reaction networks
are Fall et al. (2002), Heinrich and Schuster (1996). For models of polyno-
mial systems see Sontag (2001). General references on nonlinear systems as
considered in control and system theory include Isidori (1989, 1999), Sontag
(1998). Rational systems without the positivity condition have been treated in
Bartosiewicz (1987b), Wang, Sontag (1992).
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There follows an example of a biochemical reaction system.

Example 3. Glycolysis in the bacterium Trypanosoma brucei. The bacterium
Trypanosoma brucei is a parasite of humans. They live in the blood and tissue
fluids of mammals. In Africa, the parasites are transmitted by the tsetse flies,
which occur only in the sub-Saharan region. A subspieces of T. brucei causes
the African Sleeping Sickness in humans; approximately 200 000 new infections
occur every year. The infection is lethal unless treated. The few existing drugs
have severe side effects. The parasites also have a significant economic impact
through infection of lifestock. There is thus a need for medicine to counter the
effects of this parasite.

The bacterium gets its energy within a mammal by the well known chemical
process called glycolysis, meaning the splitting of sugar. Under aerobic condi-
tions, most glucose is metabolized to pyruvate although about 10% is converted
into glycerol. A mathematical model has been formulated for the dynamic behav-
ior of the biochemical reaction network of glycolysis. With the model, biologists
predict the effect of adjusting the external conditions on the network. Think for
this of adjusting the amounts of enzymes. The effects noticed can then be used
to select chemical compounds for medical drugs. The model has been formu-
lated by P. Michels (Brussels) and B.M. Bakker (Groningen) and co-workers,
see Bakker (1998) and Helfert et al. (2001). The readers who are not biolo-
gists may want to read in Campbell, Reece, Mitchell (1999, Ch. 9) about the
operation of glycolysis in a cell.

A specification of the model follows. The model has 28 chemical compounds,
20 reactions, one external input, and two output flows. The model consists of a
differential-algebraic system, that is, a set of differential equations and algebraic
equations for the state variables. The model takes too much space for this paper.
A part of the model follows below. For the full model see the references quoted
above.

Notation. The states represent chemical compounds in the cell, denoted by
xi for i ∈ Z28, the enzyme inputs are denoted by uj for j ∈ Z20, the reaction
rates are denoted by rk, for k ∈ Z20. Of the reactions, those numbered 3, 6,
9, 13, 15, 17, 19, and 20 are treated as in equilibrium and the corresponding
equations are not listed in this paper.

The states and the chemical compounds which they represent are denoted by,

x1 = GLCin, x2 = [hexose− P ], x3 = [Fru− 1, 6−BP ]g,

x4 = triose − P, x5 = [1, 3− BPGA]g, x6 = N,

x7 = [PY R]c, x8 = [NADH ]g, x9 = Pg,

x10 = Pc, x11 = ADP, x12 = ATP,

x13 = 3− PGA, x14 = DHAP, x15 = Gly − 3− P,

x16 = NAD+, x17 = GA− 3− P, x18 = Gly,

xex = GLCout.
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The notations for the input components and the corresponding enzymes are,

u1 transport of glucose through the plasma and glycolysis membrane,

u2 HK, u4 PFK, u5 ALD, u7 GAPDH, u8 PGK, u10 PYK,

u11 transport of pyruvate across the plasma membrane,

u12 GDH, u14 GPO, u16 GK, u18 ATP utilization.

The rate functions are only partly described and the algebraic relations are not
listed at all,

r1 = r+1 − r−1 = c2
c21xex − c22x1

c23 + x1 + xex + c24x1xex

,

r2 = r+2 = c1
c3x13c4x1

(1 + c3x12 + c5x11)(1 + c4x1)
,

r7 = r+7 − r−7 = c1
[c9x17c10x16 − c6c7x5c8x8]

(1 + c9x17 + c7x5)(1 + c10x16 + c8x8)
,

r8 = r+8 − r−8 = c1
[c11x5c12x11 − c13c14x13c15x12]

(1 + c11x5 + c14x13)(1 + c12x11 + c15x12)
,

r12 = r+12 − r−12 = c1
[c16x14c18x8 − c18c19x15c20x16]

(1 + c16x14 + c19x5)(1 + c17x8 + c20x16)
.

The differential equations can then be expressed in terms of the rates,

ẋ1(t) = c38[r1(x(t)) − r2(x(t))],

ẋ2(t) = c40[r2(x(t)) − r4(x(t))],

ẋ3(t) = c40[r4(x(t)) − r5(x(t))],

ẋ4(t) = c38[2r5(x(t)) − r7(x(t)) − r12(x(t)) − r14(x(t))],

ẋ5(t) = c40[r7(x(t)) − r8(x(t))],

ẋ6(t) = c38[r8(x(t)) − r10(x(t))],

ẋ7(t) = c39[r10(x(t)) − r11(x(t))],

ẋ8(t) = c40[r7(x(t)) − r12(x(t))],

ẋ9(t) = c40[r8(x(t)) + r16(x(t)) − r2(x(t)) − r4(x(t))],

ẋ10(t) = c39[r10(x(t)) − r18(x(t))].

The full system is then,

dx(t)/dt = NMDiag(r(x(t), xex(t))u(t),

M = Diag(c38, c40, c40, c38, c40, c38, c39, c40, c40, c39).

Due to the particular representation of the model, there is an extra matrix M
which is not stated in the formal definition.

Example 4. The following small example illustrates the transformation of a
mathematical model of the biochemical processes of a cell to a dynamic system.
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Figure 1. The biochemical network of the example

The model is derived from the example described by J.M. Rohwer in Rohwer
(1997, pp. 32, 37). See Fig. 1. The inputs and state variables are, in terms of
the notation used in that reference:

n = 5, nex = 2, nz = 1, m = 6,

x1 = S1, . . . , x5 = S5, u1 = e1, . . . , u6 = e6, xex,1 = X0, xex,2 = X6,

z = X7.

The stoichiometric matrix and the rate functions are:

N =













−1 1 0 0 0 0
1 −1 0 0 0 0
1 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1













,

r1(x, xex) =
10xex,1x1

1 + xex,1x1 + x2x3
−

x2x3

1 + xex,1x1 + x2x3

=
p+1 (x, xex)

q+1 (x, xex)
−

p−1 (x, xex)

q−1 (x, xex)
,

r2 =
10x2

1 + x1 + x2
−

x1

1 + x1 + x2
,

r3 =
5xex,2

1 + x3 + xex,2
−

x3

1 + x3 + xex,2
,

r4 =
10x3

1 + x3 + x4
−

x4

1 + x3 + x4
,

r5 =
10x4

1 + x4 + x5
−

x5

1 + x4 + x5
, r6 =

10x5

1 + x5
,

H =
(

0 0 0 0 0 1
)

∈ Z
1×m.
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The resulting dynamic system then has the form

ẋ(t) = N Diag(r(x(t), xex))u(t), x(t0) = x0,

z(t) = HDiag(r(x(t), xex))u(t).

Note that for each i ∈ Z6, in the function ri : R
n
+×R

nex

+ → R each of the terms in
the difference is a rational function in the indeterminates (x1, ..., xn, xex,1, ..., xex,nex

)
of which the numerator and the denominator degrees are equal. Note that for
i = 1,

x1 = 0 ∧ N11 = −1 ⇒ p+1 (x, xex) = 0;

x1 = 0 ∧ N12 = +1 ⇒ p−2 (x, nex) = 0; etc. for i = 2, . . . , 5.

4. System decomposition, interconnection, and interac-

tion

The motivation for the decomposition of high-dimensional biochemical reaction
networks is primarily to be able to evaluate the functioning of small networks,
to investigate the system reduction of subsystems of networks, and to combine
the reduced subsystems in a larger system.

4.1. Rational positive systems and their graphs

The dynamics of a biochemical reaction system is determined by a graph and
by the reaction rates as specified by the rate function r : X ×Xex → R

m. The
graph relates directly to the chemical reaction network of the system, because
the system is a model for such a network. How one can recover the graph
from a specification of the system is described below. Of course, the graph can
also be determined from the reaction network but typically this is not done by
biochemists. The resulting graph can be used to analyze the dynamics of the
system as illustrated in the following subsections.

At the interface of system theory and graph theory there have appeared
publications on how to use graphs to analyze the underlying network of system
states. For sources see Murota (2000), Reinschke (1988). For concepts and
theorems on graphs see Gondran and Minoux (1984).

A directed graph is a tuple (V,E) consisting of a set of vertices V and a set
of edges E ⊂ V × V . Denote the vertices by V = {v1, v2, . . . , vn} and an edge
e = (vi, vj) ∈ E denotes that there is an arrow from vertex vi to vertex vj . A
path from vertex vi to vertex vj is a sequence of edges

{(vi, v1), (v1, v2), . . . , (vm, vj)} ⊂ E.

Denote this by vi 7→ vj . It is called as elementary path if in the path no vertex
occurs twice except possibly at the start and terminal vertex of the path. An
elementary cycle is an elementary path from a vertex back to the same vertex.
Define the strong connection relation on vertices as (vi, vj) ∈ Rsc ⊂ V × V if
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there exists a path from vi to vj and there exists a path from vj to vi. Denote
by C = {C1, C2, . . . , Cp} the set of equivalence classes of the strong connection
relation and call p ∈ Z+ the connectivity number. The graph is said to be
strongly connected if the connectivity number p equals 1.

Of interest to biochemical reaction systems is the graph induced by (V,E)
on the set of equivalence classes induced by the strong connection relation.

Define the directed graph of strongly connected classes as the tuple (C,EC)
where C is the set of equivalence classes defined above and the set of oriented
edges is defined by (C1, C2) ∈ EC if there exist vertices vi ∈ C1 and vj ∈ C2

such that there is a path from vertex vi to vertex vj . From the definition of
the strong connection relation follows that the graph (C,EC) does not contain
a cycle.

Definition 4. Consider a biochemical reaction system as defined in Defini-
tion 3,

ẋi(t) =
m
∑

j=1

Ni,jrj(x(t), xex(t))uj(t) = fi(x(t), xex(t), u(t)), x(t0) = x0,

z(t) = HDiag(r(x(t), xex(t)))u(t).

Define the system graph (V,E) by the vertex set V = Zn+nz+nex
, where the

vertex i ∈ V corresponds: (1) the state nodes: for i ∈ Zn, to the i-the component
xi of the state vector x; (2) to the output nodes, for i = n + 1, . . . , n + nz, to
the output flows zi−n; and (3) to the external concentration nodes, for i =
n + nz + 1, . . . , n + nz + nex, to xex,i−(n+nz); and by the edge set E ⊂ V × V
where (i, j) ∈ E if (1) for j = 1, . . . , n the function fi depends on the state
component xj; (2) for j = n+ nz + 1, . . . , n+ nz + nv the function fi depends
on the external concentrations xex,j−(n+nz); and (3) for i = n + 1, . . . , n + nz

the function hi−n(x) depends on xj. Associate with the graph the graph matrix

A ∈ {0, 1}(n+nz)×(n+nz+nex), Ai,j =

{

1, if (j, i) ∈ E,
0, = otherwise.

The graph can be extended with nodes for the external input rate.

Algorithm 1. Computation of the system graph. Consider a biochemical
reaction system.
Input data: n ∈ Z+ and nex, nz ∈ N and the functions f and H.

1. Set V = Zn+nz+nex
.

2. For all j ∈ Zn determine the index set of reactions affecting the rate of
component j and the outflow component g ∈ Znz

, as

Kj = {k ∈ Zm|(N+
j,k −N−

j,k) 6= 0}, KH
g = {k ∈ Zm|Hg,k 6= 0}.

3. For all i, j ∈ V with j = 1, . . . , n and for all k ∈ Kj, include (i, j) ∈ E if
the positive component r+k (x, xex) of the rate function rk(x, xex) depends
directly on the variable xi or if that component depends on xex,i−(n+nz).
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For all i = n+1, . . . , nz, j ∈ V , and k ∈ KH
j include (i, j) ∈ E if the rate

function rk(x, xex) depends on xi or on xex,i−n.

Example 5. Consider Example 4. Recall that

N =













−1 1 0 0 0 0
1 −1 0 0 0 0
1 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1













, n = 5, nex = 2, nz = 1, m = 6.

Algorithm 1 is applied:

n+ nz + nex = 5 + 1 + 2 = 8,

V = {1, 2, 3, 4, 5, 6, 7, 8}, E ⊂ V × V, is computed as follows,

j = 1, K1 = {1, 2}, as follows from the first row of the matrix N,

(1, 1), (2, 1), (3, 1), (1, 7) ∈ E;

j = 2, K2 = {1, 2}, (1, 2), (2, 2), (3, 2), (2, 7) ∈ E;

j = 3, K3 = {1, 3, 4}, (1, 3), (2, 3), (3, 3), (4, 3), (3, 7), (3, 8) ∈ E;

j = 4, K4 = {4, 5}, (3, 4), (4, 4), (5, 4) ∈ E;

j = 5, K5 = {5, 6}, (4, 5), (5, 5) ∈ E;

j = 6, K6 = {5}, (5, 6) ∈ E.

Another way to see this is to note that in the description of Example 3 the
rate function r1 depends on the external variable xex,1. The components of the
right-hand sides of the differential equations, f1, f2, and f3 depend on the rate
function r1 according to the first column of the stoichiometric matrix N . Hence,
the seventh column of the matrix A has three one’s in the first three rows, see
(16). Similarly, the rate function r3 depends on the external variable xex,2,
the function f3 depends on r3 according to the stoichiometric matrix N , and
consequently the eighth column of the matrix A has a one in the third row.

The graph matrix of the system is then

A =

















1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 0
1 1 1 1 0 0 1 1
0 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0

















. (16)

Note that the graph, restricted to the state nodes 1, . . . 5, is strongly connected
and that there exist paths from the two external concentration Nodes 7, 8 to the
output Node 6. The diagram of the graph is displayed in Fig. 2 except that self-
loops have been omitted. A self-loop is an edge going from a node back to the
same node.
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Figure 2. The diagram of the system graph with the state nodes 1, . . . , 5, the
external input nodes 7, 8, and the outflow node 6. The self-loops have been
omitted

4.2. Decomposition of biochemical reaction systems

A biochemical cell reaction network may be considered as an interconnected
network of irreducible systems. It is therefore of interest to decompose the
network into irreducible systems as is regularly done for algebraic systems.

But a biochemical reaction system is an open system rather than a closed
system, it interacts with the outside world. The interaction with its environment
takes place through the external concentration and the outflow rate. Because of
this, the following concepts of the theory of compartmental systems are useful,
see Fife (1972), Jacquez (1985), Jacquez and Simon (1993):

Definition 5. Consider a biochemical reaction system as defined in Definition
3.
(a) A subsystem is another biochemical reaction system of which the state set

is a subset of the states of the original system, say indexed by I ⊆ Zn,
the dynamics is that of the original system restricted to those states, and
where the interconnections to the other states, those indexed by the state
components Zn\I, are formulated as external input rates and outflow rates.
For a subsystem indexed by I ⊆ Zn call the corresponding subsystem,
indexed by Zn\I, the complementary subsystem.

(b) A trap of the biochemical reaction system considered is a subsystem from
which there is no outflow, neither to the outside environment nor to the
complementary subsystem. A simple trap is a trap which does not strictly
contain a nontrivial trap.

(c) An internal source of the biochemical reaction system considered is a sub-
system that does neither have an external input rate nor an inflow from the
complementary subsystem. A simple internal source is an internal source
which does not strictly contain a nontrivial internal source.

Theory is needed on the characterization of biochemical reaction systems
with traps or internal sources and on the decomposition of the graph of a bio-
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chemical reaction system. The theory may be based on that for compartmental
systems, see Fife (1972), Foster and Jacquez (1975), Jacquez and Simon (1993).
In particular, characterizations are needed of a trap and of an internal source
in terms of dynamics, and a decomposition of the network is useful. These re-
sults will have an impact on the realization problem formulated elsewhere in the
paper.

4.3. Interconnections of biochemical reaction systems

In biochemical reaction networks one may combine networks in various ways. It
is therefore of interest to investigate the question whether the class of biochem-
ical reaction systems is closed with respect to interconnection operations. The
modular formulation of such networks is important.

A preliminary classification of the possible ways in which biochemical reac-
tion systems interact follows:

• The external concentration of a system is determined by another system,
hence there exists a chemical species, which is common to the two systems,
but there are no common reactions of the two systems.

• There are both common chemical species and common reactions between
the subsystems.

In this paper only the first case described above is discussed. The other case is
left for a future publication.

Theorem 1. Consider two biochemical reaction systems as defined in Defini-
tion 3.

dx1(t)/dt = N1Diag(r1(x1(t), xex,1(t)))u1(t), x1(t0) = x1,0, (17)

dx2(t)/dt = N2Diag(r2(x2(t), xex,2(t)))u2(t), x2(t0) = x2,0. (18)

Consider the series connection defined by the relation

xex,2(t) = Cx1(t) + xex,4(t), (19)

where the external concentration xex,4 is a new external concentration of the
interconnected system. The interconnection of the two subsystems is then again
a biochemical reaction system with the following representation and the corre-
sponding formulas:

dx3(t)/dt = N3Diag(r3(x3(t), xex,3(t)))u3(t), x3(t0) = x3,0, (20)

n3 = n1 + n2, m3 = m1 +m2, nex,3 = nex,1 + nex,2,

x3 =

(

x1

x2

)

, xex,3 =

(

xex,3,1

xex,3,2

)

, u3 =

(

u1

u2

)

,

r3(x3, xex,3) =

(

r1(x1, xex,1)
r2(x2, Cx1 + xex,4)

)

=

(

r3,1(x1, xex,3,1)
r3,2(x2, xex,3,2)

)

, (21)

N3 =

(

N1 0
0 N2

)

.
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Proof With the notation introduced above, one obtains,

r1(x1, xex,1) = r1(x1, xex,3,1) = r3,1(x, xex,3),

dx1(t)/dt = N1Diag(r1(x1(t), xex,1(t))u1(t)

=
(

N1 0
)

Diag(r3(x3(t), xex,3(t))u3(t),

r2(x2, xex,2) = r2(x2, Cx1 + xex,4,2) = r3,2(x3, xex,4,2),

dx2(t)/dt = N2Diag(r2(x2(t), xex,2(t))u2(t)

=
(

0 N2

)

Diag(r3(x3(t), xex,3(t)))u3(t),

dx3(t)/dt = N3Diag(r3(x3(t), xex,3(t)))u3(t).

The representation of a biochemical reaction system is then obtained. It re-
mains to prove that the interconnected system satisfies the conditions (1–5) of
Definition 3. By assumption of Condition 5 for the Subsystems 1 and 2 and by
interconnection, Condition 5 is met for System 3. Because the rate function of
the interconnected system is a composition of those of Subsystem 1 and Sub-
system 2, it meets Condition 1. For Condition 2, consider i ∈ Zn1

and j ∈ Zm1
.

From Condition 1 for Subsystem 1 it follows that x3,i = x1,i = 0 implies that
r3(x3, xex,3) = r−1 (x1, xex,1) = 0. Likewise, one proceeds to prove that Condi-
tion 3 holds for System 3. Condition 3 follows directly from that of Subsystem
2. Condition 4 follows, because the rate function of the interconnected system is
that of the Subsystems 1 and 2 combined, while their state variables are disjoint.
�

5. Realization of rational positive systems

The realization problem of system theory aims at studying dynamic systems as
relations between input and output functions. The conditions for the existence
and uniqueness of a realization reappear as conditions for the existence of control
laws or of observers for such systems. The results of the realization problem are
also relevant for identifiability and for system reduction.

In this section we will deal with the realization problem for the class of
positive rational systems modeling biochemical reaction networks. However, we
do not provide a complete solution to it. We expound the realization theory for
rational systems as it is introduced in Němcová and van Schuppen (2009, 2010)
and discuss several generalizations and open problems. The applied approach
has been motivated by the results on discrete-time polynomial systems, Sontag
(1979), continuous-time polynomial systems, Bartosiewicz (1985, 1988), and by
the framework for rational systems introduced in Bartosiewicz (1987b).

5.1. Rational systems

Throughout the section we assume without loss of generality that the enzyme
concentrations u(t) and the external concentrations xex(t), which appear in
rational systems introduced in Definition 3 as models of biochemical reaction
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networks, are piecewise constant functions. Despite the fact that the assump-
tion on inputs to be piecewise constant is not very realistic, it is still sufficient
to consider such inputs for modeling purposes. Note that any continuous input
(continuous functions are sufficiently general to describe any real behavior of
concentrations) can be approximated by piecewise constant functions. Then,
when the topology of uniform convergence is considered on inputs, the out-
puts depend continuously on inputs. The proof can be found, for example, in
Sussmann (1979). The way one proceeds with modeling is as follows:

Since the measurements are in practice usually very noisy and inprecise, it
is not necessary to require that the outputs (measurements) be modeled by sys-
tems with identical behavior, reasonable approximations are acceptable. There-
fore, if one models the outputs corresponding to continuous inputs by rational
systems, then it is sufficient to find a rational system with outputs which (1)
are ‘close’ to the measured outputs and (2) correspond to piecewise constant
inputs which approximate the continuous ones. It is possible owing to the as-
sumption that one can model the measurements by rational systems and owing
to the continuous dependence of outputs on inputs. Then, the problem whether
such rational system exists is a topic of realization theory. How to choose the
right approximative output/input to be modeled by a rational system is another
difficult problem.

Let γi = (αi, βi) ∈ Xex × U ⊆ R
nex+m
+ , i = 1, . . . , k, denote the constant

values of the external and enzyme concentrations such that

v = (γ1, t1)(γ2, t2) · · · (γk, tk), i.e. v(t) = γj for t ∈ (

j−1
∑

l=0

tl,

j
∑

l=0

tl),

is a piecewise-constant input to a rational system Σ. The length of the time
interval on which v is defined is denoted by tv =

∑k
l=0 tl. For the input v, the

dynamics of rational systems we consider, see Definition 3, is given as ẋ(t) =
f(x(t), v(t)), where f : R

n × R
nex+m
+ → R

n is such that for every γj , j =
1, . . . , k, the components fγj ,i, i = 1 . . . n of the vector field fγj

: Rn ∋ x 7→
f(x, γj) ∈ R

n are rational functions. The output functions are given either
as measurements of concentrations y(t) = Cx(t) or as outflows of the systems
y(t) = HDiag(r(x(t), xex))u(t).

To sum up, to deal with the realization problem for rational systems mod-
eling biochemical reaction networks we restrict attention to rational systems
Σ,

• defined on irreducible real affine varieties X ⊆ R
n (state spaces are the

sets of zero points of finitely many polynomials),
• with the dynamics given by the family of rational vector fields
fγ =

∑n
i=1 fi(x, γ)

∂
∂xi

=
∑n

i=1 fγ,i(x)
∂

∂xi
, where γ ∈ Xex × U ,

• with an output map y = h(x), having components, which are rational
functions,

• with an initial state x0 ∈ X .
We use the notation Σ = (X, f, h, x0). Note that in case of measurements of
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concentrations taken as outputs, the output map h is linear in x. In case outflows
of the system are considered outputs (with the assumption that xex(t) and u(t)
are constant in time), h is rational in x. Further, note that these rational systems
we consider to deal with realization problem are not necessarily positive.

5.2. Controllability

There are several notions of controllability introduced for nonlinear systems.
For the class of rational systems we adopt the notion introduced in Bartosiewicz
(1987b), i.e. controllability refers to the density in terms of the Zariski topology
of reachable sets in state spaces (in Zariski topology, closed sets are varieties).
This concept seems more natural for the systems with such obvious algebraic
structure as rational systems.

Let us recall that the state trajectory of a rational system Σ = (X, f, h, x0),
corresponding to an input v = (γ1, t1)(γ2, t2) · · · (γk, tk) is a continuous piecewise-
differentiable function xΣ,v(·) : [0, tv] → X such that xΣ,v(0) = x0 and

d
dt
xΣ,v(t) =

f(xΣ,v(t), v(t)) for t ∈ [0, tv]. The set of all piecewise-constant inputs for which
there exists a trajectory of Σ is denoted by U(Σ).

Definition 6. A rational system Σ = (X, f, h, x0) is called controllable if the
reachable set R(x0) = {xΣ,v(tv) | v ∈ U(Σ)} is Zariski-dense in X, i.e. the
smallest variety which contains R(x0) equals X.

It is possible to provide an algebraic characterization of such concept of
controllability. For polynomial systems it was derived in Bartosiewicz (1988).
The extension for rational systems, presented in Němcová and van Schuppen
(2010), is as follows:

Proposition 1. Consider a rational system Σ = (X, f, h, x0). If Σ is control-
lable then there are no ideals (0) 6= I ⊆ A, where A denotes all polynomials on
X, such that for every ϕ ∈ I it holds that ϕ(x0) = 0 and { (numerator of fγϕ) ∈
A | γ ∈ Xex × U} ⊆ I.

With stronger assumptions on the inputs (see the condition (iii) in Section
5.4), the condition above is also sufficient for controllability. However, checking
this condition can be very difficult. Some relations with other concepts of con-
trollability, see for example Isidori (2001), Nijmeijer and van der Schaft (1990),
are determined in Němcová and van Schuppen (2010). Moreover, if the external
concentration is assumed constant, the considered rational system is a nonlinear
system affine in inputs and the Lie algebraic approach to check controllability
can be applied directly.

5.3. Observability

Observability refers to the property of being able to determine the state of a
system from its past inputs and past outputs. There are several approaches
to study observability introduced in the literature. In case of rational systems
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we focus on algebraic approaches. There are two slightly different concepts of
algebraic observability known. The first one, which strongly relies on the no-
tions of differential algebra, was introduced by Diop and Fliess in (1991). It
refers to the existence of algebraic relations between state variables and suc-
cessive derivatives of inputs and outputs. According to the second notion, de-
veloped by Sontag in (1979) for discrete-time polynomial systems, a system is
algebraically observable if the initial state can be expressed as a polynomial
function of finitely many observations. Sontag’s notion of algebraic observabil-
ity was adopted and further developed by Bartosiewicz in Bartosiewicz (1985,
1988) for continuous-time polynomial systems and in Bartosiewicz (1987b) for
continuous-time rational systems. Let us recall this notion below. A similar ap-
proach to study observability of nonlinear systems was used in Hermann (1977),
Baillieul (1980, 1981) and Bartosiewicz (1995).

Definition 7. Let Σ = (X, f, h, x0) be a rational system. Let Q denote the
field of rational functions on X. The observation algebra Aobs(Σ) of Σ is the
smallest subalgebra of Q which contains the components of h and which is closed
with respect to the derivatives determined by the vector fields fγ, γ ∈ Xex × U .
In particular, Aobs(Σ) = R[{h, fγh | γ ∈ Xex × U}]. The observation field
Qobs(Σ) of Σ is the field of quotients of Aobs(Σ), i.e. Qobs(Σ) = R({h, fγh | γ ∈
Xex × U}).

Definition 8. A rational system Σ is called observable if Qobs(Σ) = Q, where
Q denotes the field of rational functions on the state space of Σ.

5.4. Problem formulation, response maps

In order to formulate the realization problem for the class of rational systems
specified in Section 5.1, we have to define the notion of a response map. To this
end, we have to recall the notion of an admissible input set U .

Let γi = (αi, βi) ∈ Xex×U ⊆ R
nex+m
+ , i = 1, . . . , I and let v = (γ1, t1)(γ2, t2)

· · · (γI , tI) be a piecewise-constant input to a rational system Σ such that the
corresponding trajectory exists on the interval [0, tv]. A set U of such piecewise-
constant inputs is called a set of admissible inputs if:

(i) ∀v ∈ U ∀t ∈ [0, tv] : v[0,t] ∈ U , (v[0,t] denotes the input v restricted to the
time-domain [0, t]),

(ii) ∀v ∈ U ∀γ ∈ Xex × U ∃t > 0 : (v)(γ, t) ∈ U ,
(iii) ∀v = (γ1, t1) · · · (γk, tk) ∈ U ∃δ > 0 ∀ ti ∈ [0, ti + δ], i = 1, . . . , k :

v = (γ1, t1) · · · (γk, tk) ∈ U .

These conditions are technical, but necessary for the development of realization
theory for rational systems.

Let us assume for the rest of this section that U is a set of admissible inputs.

We say that p : U → R
r is a response map if for every component pi, i =

1, . . . , r of p and for every sequence of input values γ1, . . . , γk ∈ Xex×U , k > 0,
the function pi;γ1,...,γk

is analytic. The definition of pi;γ1,...,γk
is as follows:



Biochemical reaction systems - system theory and decomposition 205

Denote by Tγ1,...,γk
the set of all k-tuples (t1, . . . , tk) ∈ [0,+∞)k such that

the input (γ1, t1) · · · (γk, tk) belongs to U . Then, for all (t1, . . . , tk) ∈ Tγ1,...,γk
,

the map pi;γ1,...,γk
: Tγ1,...,γk

→ R is defined by pi;γ1,...,γk
(t1, . . . , tk) = pi((γ1, t1)

· · · (γk, tk)).

One can prove that the setA(U → R) of all real functions defined on U , which
are analytic with respect to switching times of the inputs of U , is an integral
domain (for this proof the conditions (i)-(iii) above are necessary). This allows
for taking the quotient field of A(U → R), denoted by Q(U → R).

Let us formulate the realization problem.

Problem 1. Let p : U → R
r be a given response map. The realization problem

for the class of rational systems consists of three sub-problems:

• find a rational system Σ, which is a realization of p. In particular, find
a rational system Σ = (X, f, h, x0) such that U ⊆ U(Σ) and p(u) =
h(xΣ,v(tv)) for all v ∈ U ;

• find a rational realization which is controllable, observable, minimal;
• provide constructive procedures for the first two problems.

The results on the realization problem for rational systems (without posi-
tivity constraint) are presented in Němcová and van Schuppen (2009, 2010).
Note that the approach applied in those papers is similar to the approach
in Bartosiewicz (1988), Jakubczyk (1980), Sontag (1979), Bartosiewicz and
Pawluszewicz (2008), where the response maps are considered in the realiza-
tion problem. One could also consider input-output maps, equations of higher
orders, power series instead of response maps. However, for the class of ratio-
nal systems, except of the approach based on response maps, we are aware of
only one other approach which is the approach based on formal power series
presented in Wang and Sontag (1992). In that paper only the existence part of
the realization problem is considered.

To point out the differences between Němcová and van Schuppen (2009,
2010) and Bartosiewicz (1988), Jakubczyk (1980), Sontag (1979), Bartosiewicz
and Pawluszewicz (2008), let us mention the following: in Bartosiewicz (1988)
and Sontag (1979) the realization problem for polynomial discrete-time sys-
tems and polynomial continuous time systems is considered, with Bartosiewicz
(1988) generalizing the results of Sontag (1979). The existence of a polynomial
realization for a response map due to Bartosiewicz (1988) is implied by the ex-
istence of a rational realization due to Němcová and van Schuppen (2009) since
polynomial systems are a subclass of rational systems. However, the opposite
implication does not hold. Further, in Němcová and van Schuppen (2009, 2010)
a slightly different notion of observability was introduced and the respective
relations with minimal realizations were derived.

Compared to Němcová and van Schuppen (2009, 2010), in Bartosiewicz and
Pawluszewicz (2008) only the existence part of the realization problem is consid-
ered. On the other hand, in Bartosiewicz and Pawluszewicz (2008) more general
classes of systems are considered (continuous of order k, smooth and analytic
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systems on time scales). The proofs of the existence of realizations in Bar-
tosiewicz and Pawluszewicz (2008) and in Němcová and van Schuppen (2009)
are similar since they are both related to Bartosiewicz (1988). Nevertheless, the
results are not equivalent since the system classes are different. If the conditions
for the existence of rational realizations stated in Němcová and van Schuppen
(2009) are fulfilled, then the conditions in Bartosiewicz and Pawluszewicz (2008)
hold and a realization within k-continuous, smooth, analytic systems exists. The
opposite implication does not hold.

5.5. Existence and minimality of realizations

We will provide an overview of the main results on the existence and minimality
of rational realizations according to Němcová and van Schuppen (2009, 2010).

To state the characterization of the existence of rational realizations, let us
recall the notion of the observation field Qobs(p) for a response map p. It is
derived in a similar way as the observation field of a system in Definition 7.
Specifically, it is the smallest field over R, which contains the components of p
and is closed with respect toDγ derivatives. ByDγ derivative of ϕ ∈ A(U → R),
where γ ∈ Xex × U , we refer to the derivative (Dγϕ)(v) =

d
dt
ϕ((v)(γ, t))|t=0+,

where (v)(γ, t) ∈ U . Note that for Dγϕ to be well-defined, the assumptions (i),
(ii) on U stated in Section 5.4 are necessary.

Theorem 2. Let p : U → R
r be a response map. There exists a rational

realization of p if and only if Qobs(p) is a finite field extension of R.

The proof of this theorem is constructive. To implement the proposed pro-
cedure one has to overcome several obstacles of computer algebra. For example,
how to determine the generators for the observation field of the response map if
one knows only the rule how to construct it by recursive differentiation, how to
find a rational combination of the generators of the observation field such that
it equals a given function, etc.

In a constructive way it is also proven that the existence of rational real-
ization of a response map is equivalent to the existence of observable rational
realization and even to the existence of realization which is both observable and
controllable.

Another important property of realizations is their dimension. By the di-
mension dim Σ of a rational system Σ we refer to the dimension of its state
space X . Because X is an irreducible real affine variety, dim Σ = dim X equals
the transcendence degree of the field Q of rational functions defined on X , i.e.
it equals the maximal number of algebraically independent elements of Q over
R.

Definition 9. A rational realization Σ of a response map p is called minimal if
its dimension is minimal within dimensions of all rational realizations of p, i.e.
if there does not exist a rational realization Σ′ of p such that dim Σ′ < dim Σ.

In Němcová and van Schuppen (2010) the following characterization of min-
imal realizations was derived:
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Theorem 3. A rational realization Σ of a response map p is minimal if and
only if dim X = trdeg Qobs(p).

For linear realizations the property of being minimal and the property of
being canonical (both controllable and observable) are equivalent. For rational
systems one obtains a weaker relation.

Theorem 4. Let Σ be a rational realization of a response map p such that
Q \ Qobs(Σ) are not algebraic over Qobs(Σ). Then, Σ is a minimal realization
of p if and only if Σ is controllable and observable.

5.6. Nash systems and positivity

The positivity was not treated in this section. It creates extra complications for
the formulation of the realization problem for rational systems and its solution.

Regular rational systems are a subclass of so-called Nash systems. These
systems are continuous-time dynamic systems defined on analytic manifolds
(which can be described by finitely many polynomial equalities and inequalities)
and with dynamics and outputs determined by analytic functions satisfying an
algebraic equation. This class of systems, unlike rational systems, includes the
systems with the state space being (0,∞)n, which is a natural domain for models
of biochemical processes. Therefore, it seems reasonable to assume that the class
of Nash systems is more suitable to deal with positivity. Preliminary results on
realization problem for such systems are derived in Němcová, Petreczky and
van Schuppen (2009).

5.7. System identification

By applying the results of realization theory for rational systems it was pos-
sible to derive results on identifiability of parametrizations of rational systems
with parameters, see Němcová (2010). Identifiability refers to the fact that the
parameter values of a model can be determined uniquely from input-output
data. There are many concepts of identifiability introduced in the literature
and many approaches to study them, for example the approach based on power
series expansions of outputs (Pohjanpalo, 1978), differential-algebraic approach
(Ljung and Glad, 1994), generating series approach (Walter, 1982), and simi-
larity transformation method (Travis and Haddock, 1981). Identifiability for a
class of nonlinear systems which includes the class of rational systems, is stud-
ied also in Xia and Moog (2003), but in a linear algebraic setting, which is
related to the differential-algebraic approach. Other papers dealing with identi-
fiability of polynomial and rational systems, but without inputs, are Denisvidal,
Jolyblanchard and Noiret (2001), Evans et al. (2002).

The characterization of identifiability of parametrizations for rational sys-
tems is provided in Němcová (2010) by specifying the properties of certain
isomorphisms of systems. In particular, it is a direct consequence of the fact
that realizations (of the same response map), which are both controllable and
observable, are isomorphic.



208 J. Němcová, J.H. van Schuppen

Identifiability of parametrizations of rational positive systems is a topic of
future research. It is expected that once the realization theory for these systems
is developed, the characterization of identifiability will be derived in the same
way as for general rational systems.

6. Control of biochemical reaction systems

Cell biologists and biomedical engineers want to know how a cell controls its
biochemical reaction network. Biologists and biochemists have a theory that
the nucleus produces RNA, RNA produces enzymes, and that enzymes catalyze
the individual chemical reactions. The control of the reaction network by the
nucleus is therefore represented in the biochemical reaction system by the input
signal of the enzyme concentration.

A biochemical reaction network uses a large number of enzymes. Many of
these enzymes are present in the cell at nontrivial concentrations. The corre-
sponding reactions can therefore take place continuously. If a particular enzyme
is present in a rather low concentration or not at all, then the corresponding
reaction will take place at a low rate or not at all, respectively. It is therefore
of interest for the understanding of control of the biochemical reaction network
to develop a mathematical model and control theory for the enzyme control of
such a network.

There is another reason for the interest in control of these networks. The
effect of a medicine on the biochemical network is often the inhibition of a
particular reaction. Inhibition is the name for the following phenomenon. For
certain enzymes, a particular chemical species injected into the cell takes the
binding place on the enzyme where otherwise a particular reaction takes place
in the form of an assembly of a new molecule. Moreover, once the binding site
is occupied by the molecule, it never goes away. The effect of this binding is
then that the regular reaction cannot take place, is inhibited. It is therefore of
interest for the use of medicine and drugs to determine which reactions, when
inhibited partly or completely, have as effect that components of the outflow
rate of the network become zero or at least small. When these reactions are
known then the biochemists can search for appropriate chemical compounds
which are suitable for binding to the enzymes at the binding places.

There are several ways to study the effect of enzyme control on a biochemical
reaction network: (1) Metabolic control coefficients; (2) Metabolic pathway
analysis with the concept of elementary flux modes; and (3) A control theoretic
way, formulated below. The first two approaches are discussed first.

In the research group of Hans Westerhoff of the Vrije Universiteit, a par-
ticular method for the sensitivity of reaction networks to inhibition has been
developed, called metabolic control analysis. Control theorists describe this
method as sensitivity analysis. The sensitivity is a local way of determining
the effect of inhibition. For a control theoretic way of formulating sensitivity
coefficients, see Sontag (2002).

The method of metabolic pathway analysis with the concept of elementary
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flux modes is treated in Klamt and Stelling (2003), Schuster et al. (2002) and
Stelling et al. (2002).

In this paper a different method is proposed, namely to evaluate the effect
on the network of enzyme concentrations which are zero or almost zero.

Problem 2. Control of a biochemical reaction system. Consider a biochemical
reaction system. Determine how control of this system by enzyme inputs can be
effectively executed. Subproblems are:
(a) Determine the effect of a zero enzyme input component on the dynamics

of the biochemical reaction network and on the continuous dynamics.
(b) Determine which input components (enzymes) most effectively control the

network at low concentrations.
(c) What are the controllability and the accessibility properties of these sys-

tems, see Sontag (1998).

Problem 3. Effect of zero enzyme input on the steady outflow rate. Consider
a positive rational system as defined in Definition 3. Consider an index set
I ⊆ Zm and a constant input function,

u : T → U = R
m
+ , such that,

ui(t) ≡ 0, ∀i ∈ I, ∀t ∈ T,

uj(t) = usj ∈ U, j ∈ Zm\I, ∀t ∈ T.

Determine the effect of this input function on the steady state xs ∈ X and the
steady outflow rate zs ∈ R

nz

+ associated with this input. Is the outflow rate
identically zero?

The problem is motivated by inhibition of a biochemical reaction network
as described above. Almost always only one component of the input is zero,
corresponding to one enzyme. It is of interest and relatively novel to consider
the problem also for constant input vectors with two or more components equal
to zero corresponding to a medical drug with two chemical species.

Consider first the case in which only one input component is set to zero.
This problem can be answered by first constructing the graph matrix of the
system obtained from the original biochemical reaction system by setting the
enzyme input component ui to zero. The result is displayed for the example.

Example 6. Consider Example 4. Assume that the enzyme input component
u4 = 0. A computation then yields that the graph matrix of the remaining
system equals,

A =

















1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 0
1 1 1 0 0 0 1 1
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0

















. (22)
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Figure 3. The diagram of the system graph in case of u4 = 0

The conclusion is that the graph has become disconnected with two components.
There is no path leading to the output node 6 from either of the external con-
centration nodes, 7, 8. Thus, the production of the network stops when reaction
4 is blocked. The diagram of the graph for this case is displayed in Fig. 3.

Proposition 2. Consider a biochemical reaction system as defined in Definition
3 with nz = 1 and assume that all external exogeneous inputs are required for the
single outflow component. If for i ∈ Zm the enzyme input components ui(t) = 0
for all t ∈ T and if for the biochemical reaction system with this enzyme input
there does not exist a path from each of the required external input nodes to the
considered outflow node, then the steady outflow rate is identically zero.

Proof Follows directly by consideration of the differential equation for this
input. �

If the graph has not become disconnected, then one has to determine the steady
state and the steady state outflow rate for the enzyme input considered to check
whether zs = 0. From the example it appears that the outflow rate may not be
zero hence in general one has to compute the outflow rate for the equilibrium
state.

Consider Problem 3 of determining a subset of systems which, when disabled,
produces a zero outflow rate after a transient period. This problem with the
above analysis can be mathematically formulated as a cut set problem of graph
theory or of combinatorial optimization.

Consider a graph with one or more inflow nodes or origins and one or more
outflow nodes or destinations. A cutset of a graph is a subset of the edges which,
when deleted from the graph, result in a graph with two or more disconnected
components with one component containing all outflow nodes and no inflow
nodes, and another component containing inflow nodes but no outflow nodes.

Problem 4. The minimal cut set problem for a graph is to determine a cut
set with the minimal number of cuts, corresponding to the minimal number of
reactions to be disabled.
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In the literature there are algorithms to compute minimal cut sets of a graph.
The second control problem for a biochemical reaction system aims at clar-

ifying how the cell controls the outflow rate of a biochemical reaction network.

Definition 10. Consider a biochemical reaction system as defined in Defini-
tion 3. Assume that for every us ∈ U there exists a unique outflow rate zs ∈ R

nz

+ ,
denoted by zs(us). Consider a required outflow rate zr ∈ R

nz

+ . Define the set of
required inputs for this outflow rate,

U(zr) = {u ∈ U |zs(u) ≥ zr}. (23)

Thus, U(zr) consists of all input vectors u ∈ U such that a constant input
function u(t) = us ∈ U for all t ∈ T , produces in steady state an outflow rate
zs(us) which is larger than or equal to zr. Define the infimal input which is
minimally necessary to obtain the outflow rate zr by, for all i ∈ Zm,

umin,i(zr) = inf
u∈U(zr)

ui, (24)

umin(zr) = (umin,1(zr), . . . , umin,m(zr)) ∈ R
m
+ . (25)

For any particular input u ∈ U(zr) define the index set of limiting input com-
ponents

I(zr, u) = {i ∈ Zm|ui = umin,i(zr)}. (26)

Problem 5. Outflow rate limiting enzymes. For a biochemical reaction system
and a required outflow rate zr ∈ R

nz

+ , determine the set of required inputs U(zr),
the infimal input, and, for a range of inputs Ur ⊆ U(zr), the index set of limiting
input components I(zr, u).

The motivation for this problem is the study of how the nucleus controls
a biochemical reaction network. Can the biochemical reaction system provide
information about the index set of limiting input components? If so, then the
enzymes corresponding to those components can be used by the nucleus for
control. Note that several enzymes are available in abundance in the cell or
in part of the cell, hence in normal circumstances those components are never
limiting the outflow rate.

Note that in general umin 6∈ U(zr). A question is whether the map u 7→ zs(u)
is monotone: if u, ū ∈ U with u ≤ ū is then zs(u) ≤ zs(ū), where the inequalities
for vectors hold only if they hold for all components? Is U(zr) a convex set?
Further research on these problems is needed.

7. Concluding remarks

The paper presents the class of biochemical reaction systems as mathematical
models of biochemical cell reaction networks. Results are presented for: the
positive invariance of the positive orthant for the differential equation; the com-
putation and interpretation of the graphs of such networks; the closure of the
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class of biochemical reaction systems with respect to an interconnection relation;
and for control of such systems by enzyme inputs.

Further research is required for:
• System theory of biochemical reaction systems. Computational proce-
dures for determination of controllability and of observability of rational
systems; and of controllable and observable subsystems.

• Decomposition of biochemical reaction systems in particular, concepts and
algorithms.

• System identification. A characterization of identifiability of biochemical
reaction systems based on the reference Němcová (2010). Algorithms for
system identification.

• System reduction of biochemical reaction systems.
• Control of a biochemical reaction system with as input external concen-
trations or as input the enzyme concentration. Characterization of con-
trollability and control laws.
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