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Abstract: The paper deals with the problem of designing filters
for non-linear discrete-time stochastic systems. In particular, it is
shown how to design an unknown input filter for a single (constant)
unknown input distribution matrix, which guarantees that the effect
of a fault will not be decoupled from the residual. Subsequently, the
problem of using one, fixed disturbance distribution matrix is elimi-
nated by using the interacting multiple models algorithm to select an
appropriate unknown input distribution matrix from a predefined set
of matrices. The final part of the paper shows an illustrative example,
which confirms the effectiveness of the proposed approach.
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Notation

xk, x̂k ∈ R
n state vector and its estimate

yk, ŷk ∈ R
m output vector and its estimate

ek ∈ R
n state estimation error

zk ∈ R
m output error (residual)

uk ∈ R
r input vector

dk ∈ R
q unknown input vector, q ≤ m

wk ∈ R
n, vk ∈ R

m process and measurement noise
Qk, Rk covariance matrices of wk and vk

fk ∈ R
s fault vector

g (·) , h(·) non-linear functions
E ∈ R

n×q unknown input distribution matrix
L ∈ R

n×s fault distribution matrix
In identity matrix of size n
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1. Introduction

There is no doubt that the theory (and practice, as a consequence) of fault diag-
nosis and control is well-developed and mature for linear systems only (Korbicz
et al, 2004). There is also a number of different approaches that can be employed
to settle the robustness problems regarding model uncertainty (Witczak, 2007).
Such robustness is especially important in practical implementations where vari-
ous sources of uncertainty may be present, e.g. differences between various copies
of a given component, time-varying properties, noise, external disturbances, etc.
As can be observed in the literature, observers (or filter in a stochastic framework)
are commonly used in both control and fault diagnosis schemes of non-linear sys-
tems (see, e.g., Korbicz et al., 2004; Witczak, 2007; Ding, 2008; Puig, 2010; Tong
et al., 2011; Kemir, 2011, and the references therein). Undoubtedly, the most com-
mon approach is to use robust observers, such as the Unknown Input Observer
(UIO) (Frank and Marcu, 2000; Witczak, 2007), which can tolerate a degree of
model uncertainty and hence increase the reliability of fault diagnosis. Although
the origins of UIOs can be traced back to the early 1970s (see the seminal work
of Wang et al.,1975), the problem of designing such observers is still of paramount
importance both from the theoretical and practical viewpoints. A large amount
of knowledge on using these techniques for model-based fault diagnosis has been
accumulated through the literature for the last three decades (see Witczak, 2007,
and the references therein). A number of approaches to non-linear fault diagnosis
and the fault-tolerant control (FTC) was published during the last two decades.
For an example, in Hammouri et al. (2002) the high gain observer for Lipschitz
systems was applied for the purpose of fault diagnosis. One of the standard meth-
ods for observer design consists in using the non-linear change of coordinates to
bring the original system into a linear one (or pseudo linear one). As indicated
in the literature such approaches can be applied for fault diagnosis and the FTC
(Hammouri et al., 1999; Kabore et Wang, 2001). It should be also noted that
when the feasibility condition regarding the non-linear change of coordinates are
not matched, then the celebrated Extended Kalman Filter (EKF) can be applied
in both stochastic and deterministic context (see, e.g., Witczak, 2007).

Generally, the design problems regarding UIOs for non-linear systems can be
divided into three distinct categories:

• nonlinear state-transformation-based techniques: apart from a relatively
large class of systems for which they can be applied, even if the nonlinear
transformation is possible it leads to another nonlinear system and hence
the observer design problem remains open (see Frank and Marcu, 2000) and
the references therein);

• linearization-based techniques: such approaches are based on a similar strat-
egy as that for the Extended Kalman filter (EKF) (Korbicz et al., 2004).
In Witczak (2007) the author proposed an extended unknown input ob-
server for non-linear systems. He also proved that the proposed observer is
convergent under certain conditions;

• observers for particular classes of nonlinear systems: for example Unknown
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Input Observers for polynomial and bilinear systems or UIOs for Lipschitz
systems (Chen et al., 2011; Koenig and Mammar, 2002; Pertew et al., 2005;
Witczak, 2007).

In the light of the above discussion, it is clear that an accurate state estimation
is extremely important for fault detection and control applications. However,
estimation under noise and unknown inputs is very difficult.

In order to settle the above-mentioned challenges, the design problems regard-
ing UIOs (undertaken within the framework of this paper) are divided into three
distinct categories:

1. How to determine the unknown input distribution matrix, which will not
decouple the effect of faults from the residual?

2. How to develop the possibly simple and reliable design procedure of the UIO
for non-linear stochastic systems?

3. How to extend the approach developed for the constant unknown input
distribution matrix into a set of predefined unknown input distribution ma-
trices?

Concerning the first question, a partial answer can be found in Chen and Patton
(1999). Indeed, the authors concentrate on the determination of the unknown
input distribution matrix for linear systems but they do not answer the question
when this matrix will cause the fault decoupling effect. Apart from the fact
that there are approaches that can be used for designing UIOs for non-linear
systems (listed before), the problem of determining unknown input distribution
matrix for this class of systems remains untouched. In other words, the authors
assume that this matrix is known, which apart from a relatively simple case, is
never the truth. It should be also mentioned that it is usually assumed that the
disturbance decoupling will not cause the decrease of fault diagnosis sensitivity
or fault decoupling in the worst scenario. To tackle this problem within the
framework of this paper, a numerical optimisation-based approach is proposed
that can be used to estimate the unknown input distribution matrix, which does
not cause the fault decoupling effect. As an answer to the second question, this
work presents an alternative Unknown Input Filter (UIF) for non-linear systems,
which is based on the general idea of the Unscented Kalman Filter (UKF) (Julier
and Uhlman, 2004; Kandepu et al., 2008). This approach is based on a similar idea
as that proposed by Witczak and Pretki (2007), Witczak (2007), but the structure
of the scheme is different and instead of the EKF, the UKF is employed. To
tackle the third problem, it is shown that the Interacting Multiple Model (IMM)
algorithm can be employed to tackle the problem of selecting an appropriate
unknown input distribution matrix from a predefined set. The proposed solutions
can be perceived as an alternative to the Takagi-Sugeno-based approach presented
in Uppal et al. (2006).

The paper is organised as follows. Section 2 presents a general way for decou-
pling the unknown input. In Section 3 a fault decoupling prevention condition
is developed, while Section 4 introduces the idea of the UKF and shows how
to use it in order to design an UIF. Section 5 shows a numerical procedure for
determining the unknown input distribution matrix. The subsequent Section 6
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extends the approach presented in Section 4 in a way that instead of a constant
unknown input distribution matrix a predefined set of matrices is given. Finally,
Section 7 presents a numerical example with an induction motor, which exhibits
the performance of the solutions developed within the framework of this paper.

2. Unknown input decoupling

Let us consider the non-linear stochastic system given by the following equations:

xk+1 = g (xk) + h(uk) +Edk +Lfk +wk, (1)

yk+1 = Cxk+1 + vk+1. (2)

Note that the unknown input and fault distribution matrices denoted by E and L

are constant in this section. This assumption will be relaxed in Section 6 where a
set of predefined matrices will be used instead. Moreover, it should be mentioned
that this paper focuses on the faults that can influence the state equation (1),
such as actuator faults. The case of sensor faults is beyond the scope of this
paper and will be investigated in future work.

The main problem is to design a filter insensitive to the influence of the un-
known input (external disturbances and modeling errors) being sensitive to fault.
The necessary condition for the existence of a solution to the unknown input
de-coupling problem is as follows:

rank(CE) = rank(E) = q, (3)

(see Witczak, 2007, for a comprehensive explanation). If condition (3) is satisfied,

then it is possible to calculate H = (CE)+ =
[

(CE)TCE
]−1

(CE)T . Thus, by
inserting (1) into (2) and then multiplying (2) by H it is straightforward to show
that

dk = H

[

yk+1 −C [g (xk) + h(uk) +Lfk +wk]− vk+1

]

. (4)

Substitution of (4) into (1) for dk gives

xk+1 = ḡ (xk) + h̄(uk) + Ēyk+1 + L̄fk + w̄k, (5)

where:

ḡ (·) = Gg (·) , h̄(·) = Gh(·)
Ē = EH, w̄k = Gwk −EHvk+1,

and

G = I −EHC.
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Consequently, the general observer structure is:

x̂k+1 = ḡ (x̂k) + h̄(·) + Ēyk+1 +K(·), (6)

where K(·) is the state correction term. In order to make further deliberations
more general, no particular form ofK(·) is assumed in the present and subsequent
sections.

Let us define a residual as a difference between the output of the system and
the estimated output:

zk+1 = yk+1 −Cx̂k+1 =

= C(ḡ (xk)− ḡ (x̂k)−K(·)) + f̄k + Cw̄k + vk+1, (7)

where

f̄k = CL̄fk = C
[

In −E
[

(CE)TCE
]−1

(CE)TC
]

Lfk. (8)

The objective of the subsequent section is to provide an answer to the following
questions: How to determine the conditions under which the UIF will not decouple
the fault from the residual? In other words, how to check whether f̄k defined by
(8) will be different from zero when a fault occurs?

3. Preventing fault decoupling

It is usually assumed that the disturbance decoupling will not cause the decrease
of fault diagnosis sensitivity or fault decoupling in the worst scenario. Such as-
sumption, though, is a rather impractical tool in serious applications. Thus, to
overcome such a challenging problem, the following theorem provides a simple rule
for checking if the proposed unknown input observer does not decouple the effect
of a fault from the residual. It relates the fault and unknown input distribution
matrices, denoted by E and L, respectively. Moreover, let us assume that the
following rank condition is satisfied:

rank(CL) = rank(L) = s. (9)

Theorem 3.1. The fault fk will not be decoupled from the residual (7) if and

only if the matrix

[CECL] (10)

is a full-rank one.

Proof. Let us suppose (theoretically) that rank(CL̄) = s, then it can be shown
that

fk = (CL̄)+f̄k (11)

which means that there exists a unique relationship between fk and f̄k and hence
the fault will not be decoupled from the residual. Unfortunately, the subsequent
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part of the proof shows that this cannot always be attained. Indeed, (8) can be
written in an equivalent form

f̄k =
[

Im −CE
[

(CE)TCE
]−1

(CE)T
]

CLfk. (12)

Moreover, it can be observed that

[

Im −CE
[

(CE)TCE
]−1

(CE)T
]2

= Im −CE
[

(CE)TCE
]−1

(CE)T , (13)

which means that Im−CE
[

(CE)TCE
]−1

(CE)T is an idempotent matrix. One
of the fundamental properties of an idempotent matrix is that its rank is equal
to the trace, i.e.:

rank
(

Im −CE
[

(CE)TCE
]−1

(CE)T
)

= trace
(

Im −CE
[

(CE)TCE
]−1

(CE)T
)

= trace (Im)− trace
(

CE
[

(CE)TCE
]−1

(CE)T
)

= m− trace
(

[

(CE)TCE
]−1

(CE)TCE
)

= m− q. (14)

Thus, from (9) it is clear that

rank
([

Im −CE
[

(CE)TCE
]−1

(CE)T
]

CL
)

≤
≤ min(m− q, s). (15)

On the other hand,

rank
([

Im −CE
[

(CE)TCE
]−1

(CE)T
]

CL
)

≥

≥ rank
(

Im −CE
[

(CE)TCE
]−1

(CE)T
)

+ rank (CL)−m =

s− q. (16)

Finally,

max(s− q, 0) ≤ rank
([

Im −CE
[

(CE)TCE
]−1

(CE)T
]

CL
)

≤
≤ min(m− q, s). (17)

Thus, it is necessary to find an alternative condition under which

f̄k = CLfk −CE
[

(CE)TCE
]−1

(CE)TCLfk =

= CLfk −CLfk = 0. (18)
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Indeed, any vector CLfk ∈ col(CE), where

col(CE) = {α ∈ R
m : α = CEβ for some β ∈ R

q} , (19)

can be written as

CLfk = CEf̃k, (20)

for some non-zero vector f̃k. As a consequence:

CE
[

(CE)TCE
]−1

(CE)TCLfk =

CE
[

(CE)TCE
]−1

(CE)TCEf̃k = CEf̃k = CLfk. (21)

From the above discussion, it is clear that the proposed unknown input ob-
server will not decouple the fault effect from the residual iff CLfk /∈ col(CE),
which is equivalent to:

rank ([CECLfk]) = q + 1, (22)

for all fi,k 6= 0, i = 1, . . . , s. It is clear that (22) is equivalent to the fact that the
only solution to (for all fi,k 6= 0, i = 1, . . . , s)

α1(CE)1 + α2(CE)2 + · · ·+ αq(CE)q + αq+1CLfk = 0, (23)

is for αi = 0, i = 1, . . . , q + 1. By the further expansion (23) to

α1(CE)1 + · · ·+αq(CE)q +αq+1f1,k(CL)1 + · · ·+αq+1fs,k(CL)s = 0, (24)

it can be seen that the zero-valued solution to (24) is equivalent to the existance
of a full-rank matrix (10), which completes the proof.

4. Unscented Kalman filter

As it was already mentioned, state estimation for non-linear stochastic systems
is an extremely difficult and important problem for modern fault diagnosis and
control systems (see the recent books in the domain for a complete survey and
explanations: Ding, 2008, Ducard, 2009; Isermann, 2011; Mohmoud et al., 2003;
Noura et al., 2009; Witczak, 2007). As can be observed in the literature, the most
frequently used approach to state estimation of non-linear stochastic systems is to
use the celebrated EKF. However, the linearised non-linear transformations of the
state and/or output are reliable only if there is no excessive difference as to the
local behaviour compared to the original non-linear transformation. If this is not
the case, then the EKF will suffer from the divergence. However, there are works
in which the authors use the EKF as a non-linear deterministic observer and in
this case the process and measurement noise matrices are used as instrumental
matrices that can significantly improve the convergence performance (see Witczak
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and pretki, 2007; Witczak, 2007 for a comprehensive survey). Unfortunately, in
the stochastic caseQ andR have to play their primary role as covariance matrices.

As indicated in Julier and Uhlmann (2004), it is easier to approximate a prob-

ability distribution than it is to approximate an arbitrary non-linear function or

transformation.

Bering in mind this sentence, the idea of an Unscented Transform (UT) was
developed, and applied along with the celebrated Kalman filter in order to form
the UKF. To make the paper self-contained, the subsequent points will describe
the UT and the algorithm of the UKF.

Finally, it should be underline that the reader is refereed to Julier and Uhlmann
(2004)(and the references therein) for a large number of practical examples show-
ing the superiority of the UKF over the conventional EKF. Thus, the subsequent
parts of the paper are focused on developing new UKF-based scheme rather then
showing its superiority over the EKF.

4.1. Unscented transform

The unscented transform boils down to approximating the mean and covariance
of the so-called sigma points after the non-linear transformation h(·). The mean
and covariance of sigma points are given as x̄ and P , while the UT procedure is,
Julier and Uhlmann (2004):

1. Generate k sigma points

Xi, i = 1, . . . , k (25)

with x̄ and P .
2. Obtain a non-linear transformation of each sigma point

Xt
i = h(Xi), i = 1, . . . , k. (26)

3. Calculate the weighted mean of the transformed points

x̄t =
k
∑

i=1

W iXt
i. (27)

4. Calculate the covariance of the transformed points

P t =

k
∑

i=1

W i
[

Xt
i − x̄t

]

·
[

Xt
i − x̄t

]T
. (28)

Note that the sigma-points can be generated with various scenarios, Julier and
Uhlmann (2004); Kandepu et al. (2008), and one of them will be described in
the subsequent point. It should be also mentioned that in order to provide an
unbiased estimate, Julier and Uhlmann (2004), the weights should satisfy

k
∑

i=1

W i = 1. (29)
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4.2. The principle of the UKF

Let us consider a non-linear, discrete-time fault-free system, i.e. (1)–(2) for fk =
0:

xk+1 = g (xk) + h(uk) +Edk +wk, (30)

yk+1 = Cxk+1 + vk+1. (31)

As it was mentioned, the UKF, Kandepu et al. (2008) can be perceived a
derivative-free alternative to the extended Kalman filter in the framework of state-
estimation. The UKF calculates the mean and covariance of a random variable,
which undergoes a non-linear transformation by utilizing a deterministic “sam-
pling” approach. Generally, 2n+1, sigma points are chosen based on a square-root
decomposition of the prior covariance. These sigma points are propagated through
the true nonlinearity, without any approximation, and then a weighted mean and
covariance are taken, as described in Section 4.1.

The presented form of the UKF is based on the general structure of the un-
known input observer (6), taking into account the fact that the output equa-
tion (31) is linear.

The UKF involves a recursive application of these sigma points to the state-
space equations. The standard UKF implementation for state-estimation uses the
following variable definitions:

• Wm
0 = λ/(n+ λ),

• W c
0 = λ/(n+ λ) + (1− α2 + β),

• Wm
i =W c

i = 1/{2(n+ λ)},
• λ = L(α2 − 1),
• η =

√

(n+ λ),

whereWi (i = 0, . . . , 2n) is a set of scalar weights, λ and η are scaling parameters.
The constant α determines the spread of sigma points around x̂ and is usually
set to 10−4 ≤ α ≤ 1. β is used to incorporate prior knowledge of the distribution
(for Gaussian distribution, β = 2 is an optimal choice). The UKF algorithm is as
follows:

Initialize with:

x̂0 = E [x0] P 0 = E [(x0 − x̂0)(x0 − x̂0)
T ], (32)

for k ∈ {1, . . . ,∞}
Calculate 2n+ 1 sigma points:

X̂k−1 = [x̂k−1 x̂k−1 + ηS(1), . . . , x̂k−1 + ηS(n),

x̂k−1 − ηS(1), . . . , x̂k−1 − ηS(n)], (33)

where S =
√

P k−1 and S(j) stands for the jth column of S.
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Time update equations:

X̂i,k|k−1 = ḡ
(

X̂i,k−1

)

+ h̄(uk) + Ēyk+1, i = 0, . . . , 2n, (34)

x̂k,k−1 =

2n
∑

i=0

W
(m)
i X̂ i,k|k−1, (35)

P k,k−1 =

2n
∑

i=0

W
(c)
i [X̂i,k|k−1−

− x̂k,k−1][X̂i,k|k−1 − x̂k,k−1]
T +Q. (36)

(37)

Measurement update equations:

P ykyk
= CP k,k−1C

T +R,

Kk = P k,k−1C
TP−1

ykyk
, (38)

ŷk,k−1 = Cx̂k,k−1, (39)

x̂k = x̂k,k−1 +Kk(yk − ŷk,k−1), (40)

P k = [In −KkC]P k,k−1. (41)

5. Determination of unknown input distribution matrix

As a result of the deliberations presented in the previous section, matrix E should
satisfy the following conditions:

rank(CE) = rank(E) = q, (42)

where

[CE CL] (43)

should be a full rank one, which means that

rank ([CE CL]) = min(m, s+ q). (44)

Thus, the set of matrices E satisfying (42) and (44) is given by

E =
{

E ∈ R
n×q : rank(CE) = q ∧ rank(E) = q ∧ rank ([CE CL]) = min(m,s+ q)

}

.

(45)

It should be strongly underlined that E is not convex, which significantly com-
plicates the problem and limits the spectrum of possible approaches that can be
used for settling the determination of the unknown input distribution matrix.

The subsequent part of this section presents a numerical algorithm that can
be used for estimating the unknown input distribution matrix E based on a set
of input-output measurements {(uk,yk)}nt

k=1.
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To settle the problem of numerical estimation of E, the following optimization
criterion is assumed

Ê = argmin
E∈E

J(E), (46)

with

J(E) =
1

mnt

nt
∑

k=1

zT
k zk, (47)

where zk stands for the residual defined by (7) and Ê is an estimate of E.
It is important to underline that the computation of (47) requires the run of

the proposed UIF for a given instance of the unknown input distribution matrix
E. The computation of the cost function (47) is a definitely most time consuming
part of the proposed algorithm. On the other hand, the computation time and
the resulting computational burden are not of paramount importance since the
proposed algorithm performs off-line. Indeed, only the result of the proposed al-
gorithm, being an estimate of the unknown input distribution matrix E is utilised
on-line for unknown input decoupling.

The outline of the proposed algorithm:
Step 1: Obtain the fault-free input-output data set from the system

{(uk,yk)}nt

k=1.
Step 2: Initialise the algorithm with some initial value of E satisfying (42) and

(43).
Step 3: Use an optimisation strategy to find an estimate of E for which (47)

reaches its minimum and conditions (42) and (43) are satisfied.
Similarly as in the case of (8), i.e. by following with d̃k in a similar way as with
f̄k in (8), it can be shown that the fault-free residual is:

zk+1 = yk+1 −Cx̂k+1 =

= C (ḡ (xk)− ḡ (x̂k)−K(·)) + d̃k +Cw̄k + vk+1, (48)

where

d̃k = C

[

In − Ê
[

(CÊ)TCÊ
]−1

(CÊ)TC

]

d̄k. (49)

Alternatively, assuming d̄k = Edk, it can be expressed by

d̃k = C

[

In − Ê
[

(CÊ)TCÊ
]−1

(CÊ)TC

]

Edk. (50)

Following the same line of reasoning as in the proof of Theorem 1, it can be shown
that for any vector CEdk ∈ col(CÊ) the effect of an unknown input d̃k will be
decoupled from the residual, i.e. d̃k = 0.

Based on the above deliberations, it seems that an alternative approach is:
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Step 0: Obtain the fault-free input-output data set from the system
{(uk,yk)}nt

k=1.
Step 1: Estimate d̄k for k = 1, . . . , nt with, e.g., an augmented UKF.
Step 2: Find a basis of [d̄1, . . . , d̄nt

] (e.g. an orthonormal basis), which will
constitute an estimate of E.

Apart from the unquestionable appeal of the above algorithm it does not take into
account that conditions (42) and (43) must be satisfied. On the other hand, it was
empirically proven that due to the process and measurement noise, an accurate
estimation of d̄k (for k = 1, . . . , nt) is impossible, and hence, Step 2 of the above
algorithm cannot be realised with expected results.

Thus, the only fruitful conclusion is that an estimate of E is not unique, which
will undoubtedly facilitate the performance of the optimisation-based approach
presented in the subsequent part of this section.

Taking into account all the above-mentioned difficulties, it is proposed to use
the Adaptive Random Search algorithm (ARS), Walter and Pronzato (1996);
Witczak (2007), to solve (46). The algorithm has proven to be very reliable in
various global optimisation problems, which also justifies its application for this
particular task.

The search process of the ARS can be split into two phases. The first phase
(variance-selection phase) consists in selecting an element from the sequence

{σ(i)}, i = 1, . . . , imax (51)

where σ(1) stands for an initial standard deviation selected by the designer (form-
ing the covariance matrix Σ = σIn×q, where n × q is the number of elements of
E), and

σ(i) = 10(−i+1)σ(1). (52)

In this way, the range of σ ensures both proper exploration properties over the
search space and a sufficient accuracy of optimum localization. Larger values of
σ decrease the possibility of getting stuck in a local minimum. The second phase
(variance-exploration phase) is dedicated to exploring the search space with the
use of σ obtained from the first phase and consists in repetitive random pertur-
bation of the best point obtained in the first phase. The scheme of the ARS
algorithm is as follows:

0. Input data:
• σ(1) – the initial standard deviation;
• jmax – the number of iteration in each phase;
• imax – the number of standard deviations (σi) changes;
• kmax – the global number of algorithm runs;
• E(0) – the initial value of the unknown input distribution matrix.

1. Initialize
(1.1) Generate Ebest → E0, satisfying (42) and (43), k → 1, i→ 1.
2. Variance-selection phase
(2.1) j → 1,E(j) → E(0) and σ(i) → 10(−i+1)σ(1).
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(2.2) Perturb E(j) to get a new trial point E
(j)
+ satisfying (42) and (43).

(2.3) If J(E
(j)
+ ) ≤ J(E(j)) then E(j+1) → E

(j)
+

else E(j+1) → E(j).
(2.4) If J(E

(j)
+ ) ≤ J(Ebest) then

Ebest → E
(j)
+ , ibest → i.

(2.5) If (j ≤ jmax/i) then j → j + 1 and go to (2.2).
(2.6) If (i < imax) then set i→ i+ 1 and go to (2.1).
3. Variance-exploration phase
(3.1) j → 1,E(j) → Ebest, i→ ibest

and σ(i) → 10(−i+1)σ(1).
(3.2) Perturb E(j) to get a new trial point E

(j)
+ satisfying (42) and (43).

(3.3) If J(E
(j)
+ ) ≤ J(E(j)) then E(j+1) → E

(j)
+

else E(j+1) → E(j) .
(3.4) If J(E

(j)
+ ) ≤ J(Ebest) then Ebest → E

(j)
+ .

(3.5) If (j ≤ jmax) then j → j + 1 and go to Step 3.2.
(3.6) If (k → kmax) then STOP.

(3.7) k → k + 1,E(0) → Ebest and resume from (2.1).
The perturbation phase (points 2.2 and 3.2 of the algorithm) is realised ac-

cording to

E
(j)
+ = E(j) +Z, (53)

where each element of Z is generated according to N (0, σi). When the newly

generated E(j) does not satisfy (42) and (43), then the perturbation phase (53)
is repeated.

It should be also noted that for some E(j) the proposed UIF may diverge,
e.g. due to the loss of observability or a large mismatch with the real system. A
simple remedy is to assume a bound (possibly large) ζ on J(E(j)), which means

that when this bound is exceeded, then UIF is terminated and J(E(j)) = ζ.

6. Design of UIF with a varying unknown input distribu-

tion matrix

The UIF proposed in this section is designed in such a way that it will be able
to tackle the problem of automatically changing the unknown input distribution
matrices according to the system behaviour. In other words, the user can design
a number of such matrices in order to cover different operating conditions. Thus,
having such a set of matrices, it is possible to design a bank of the UIFs and
the algorithm should use them to obtain the best unknown input decoupling and
state estimation. In order to realise this task, the Interacting Multiple-Model
(IMM) approach (Blom and Bar–Shalom, 1988) is used. The subsequent part of
this section shows a comprehensive description of the UIF and IMM.

The IMM solution consists of a filter for each disturbance matrix (correspond-
ing to a particular model of the system), an estimate mixer at the input of the
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filters, and an estimate combiner at the output of the filters. The IMM works as
a recursive estimator. In each recursion it has four steps:

1. interacting or mixing of the model-conditional estimates, in which the input
to the filter matched to a certain mode is obtained by mixing the estimates
of all filters from the previous time instant under the assumption that this
particular mode is in effect at the present time;

2. model-conditional filtering, performed in parallel for each mode;
3. model probability update, based on the model-conditional innovations and

likelihood functions;
4. estimate combination, which yields the overall state estimate as the proba-

bilistically weighted sum of the updated state estimates of all the filters.

The probability of a mode in effect plays a key role in determining the weights
in the combination of the state estimates and covariances for the overall state
estimate. Fig. 1 shows the block diagram of the classic IMM algorithm, where:

• x̂k+1|k+1 is the state estimate for time k using measurements through time
(k + 1|k + 1) based on N models;

• x̂
j

k+1|k+1 is the state estimate for time k using measurements through time

(k + 1|k + 1) based on model j;
• Λj

k is the model likelihood at time k based on model j;

• µk is the vector of model probabilities at time k when all the likelihoods Λj
k

have been considered at model probability update.

With the assumption that model switching is governed by an underlying Markov
chain, an interacting mixer at the input of the N filters uses the model probabil-
ities µk and the model switching probabilities pij to compute a mixed (initial or

a priori) estimate X̂
0j

k|k for N filters. Interacting mixer blends the previous state
estimates based on N models to obtain new state estimates for input into each

model. The mixing gains µ
i|j
k−1|k−1 are computed from the previous model prob-

abilities µi
k−1 and the model switching probabilities pij in the model probability

update. At the beginning of a filtering cycle, all filters use a priori mixed estimate

X̂
0j

k−1|k−1 and the current measurement yk to compute a new estimate X̂
j

k|k and

likelihood Λj
k for jth model filter. The likelihoods, prior model probabilities, and

model switching probabilities are then used by model probability update to com-
pute new model probabilities. The overall state estimate X̂k|k is then computed
at an estimate combiner with the new state estimates and their probabilities.

The algorithm presented below is a combination of the UIF and the IMM and
constitutes a solution to the challenging problem of designing UIF for a set of
predefined unknown input distribution matrices {Ej}Nj=1.

Step 1: Mixing State Estimates

The filtering process starts with ‘a priori’ state estimates X̂
j

k−1|k−1, state

error covariances P k−1|k−1 and the associated probabilities µj
k−1 for each

jth filter model corresponding to the jth unknown input distribution matrix.
The initial or mixed state estimate and covariance for model j at time k is
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Figure 1. IMM algorithm

computed as

c̄j =

N
∑

i=1

pijµ
i
k−1 (54)

µ
i|j
k−1|k−1 =

1

c̄j
pijµ

i
k−1 (55)

X̂
0j

k−1|k−1 =
N
∑

i=1

X̂
i

k−1|k−1µ
i|j
k−1|k−1 (56)

P
0j
k−1|k−1 =

N
∑

i=1

[P i
k−1|k−1+

(X̂
i

k−1|k−1 − X̂
0j

k−1|k−1) · (X̂
i

k−1|k−1 − X̂
0j

k−1|k−1)
T ]µ

i|j
k−1|k−1

(57)

where pij is the assumed transition probability for switching from model i to

model j, and c̄j is a normalization constant. For every state estimate X̂
i

k|k

and X̂
i

k−1|k−1, there is a corresponding covariance P i
k|k and P i

k−1|k−1.
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Step 2: Model-Conditioned Update
Calculate sigma points (for each jth model):

X̂
j

k−1 = [X̂
0j

k−1|k−1 X̂
0j

k−1|k−1 + η
√

P
0j
k−1|k−1 X̂

0j

k−1|k−1 − η
√

P
0j
k−1|k−1]

(58)

Time update (for each jth model):

X̂
j

i,k|k−1 = ḡ
(

X̂
j

i,k−1

)

+ h̄(uk) + Ēyk+1, i = 0, . . . , 2n, (59)

x̂
j
k,k−1 =

2n
∑

i=0

W
(m)
i X̂

j

i,k|k−1, (60)

P
j
k,k−1 =

2n
∑

i=0

W
(c)
i [X̂

j

i,k|k−1−

− x̂
j
k,k−1][X̂

j

i,k|k−1 − x̂
j
k,k−1]

T +Q. (61)

(62)

Measurement update equations:

P j
ykyk

= CP
j
k,k−1C

T +R

K
j
k = P

j
k,k−1C

TP−1 (j)
ykyk

, (63)

ŷ
j
k,k−1 = Cx̂

j
k,k−1, (64)

z
j
k = yk − ŷ

j
k,k−1, (65)

x̂
j

k|k = x̂
j
k,k−1 +K

j
kz

j
k (66)

P
j

k|k =
[

In − P
j

k|k−1KkC
]

P
j

k|k−1. (67)

Step 3: Model likelihood computations
The likelihood of the jth model is computed with the filter residuals z

j
k,

the covariance of the filter residuals P j
ykyk

and the assumption of Gaussian
statistics. The likelihood of the jth model and model probabilities update
are as follows

Λj
k =

1
√

|2πP j
ykyk

|
exp[−0.5(zjk)

T (P j
ykyk

)−1zjk]

c =

N
∑

i=1

Λi
k c̄i

µj
k =

1

c
Λj
kc̄j .
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Step 4: Combination of State Estimates
The state estimate x̂k|k and the covariance P k|k for IMM filter are obtained
from a probabilistic sum of the individual filter outputs

x̂k|k =

i=1
∑

N

x̂
i
k|kµ

i
k

P k|k =

i=1
∑

N

µi
k[P

i
k|k + (x̂i

k|k − x̂k|k)(x̂
i
k|k − x̂k|k)

T ].

7. Experimental results

The objective of the subsequent parts of this section is to examine the proposed
approaches with two exemplary systems, i.e. an induction motor and a two-tank
system. In particular, the way of determining unknown input distribution matrix
and ‘switching’ of these matrices will be illustrated with an induction motor.
The two tank systems will be employed to show the performance of the proposed
approach with respect to fault detection and isolation.

7.1. Estimation of E for an induction motor

The purpose of this section is to show the reliability and effectiveness of the
proposed EUIO. The numerical example considered here is a fifth-order two-phase
non-linear model of an induction motor, which has already been the subject of a
large number of various control design applications (see Boutayeb and Aubry, 1999
and the references therein). The complete discrete-time model in a stator-fixed
(a,b) reference frame is:

x1,k+1 =x1,k + h

(

−γx1k +
K

Tr
x3k +Kpx5kx4k +

1

σLs

u1k

)

, (68)

x2,k+1 =x2,k + h

(

−γx2k −Kpx5kx3k +
K

Tr
x4k +

1

σLs

u2k

)

, (69)

x3,k+1 =x3,k + h

(

M

Tr
x1k − 1

Tr
x3k − px5kx4k

)

, (70)

x4,k+1 =x4,k + h

(

M

Tr
x2k + px5kx3k − 1

Tr
x4k

)

, (71)

x5,k+1 =x5,k + h

(

pM

JLr

(x3kx2k − x4kx1k)−
TL
J

)

, (72)

y1,k+1 =x1,k+1, y2,k+1 = x2,k+1, (73)

where xk = [x1,k, . . . , xn,k]
T = [isak, isbk, ψrak, ψrbk, ωk]

T represents the currents,
the rotor fluxes, and the angular speed, respectively, while uk = [usak, usbk]

T is
the stator voltage control vector, p is the number of the pairs of poles, and TL is
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the load torque. The rotor time constant Tr and the remaining parameters are
defined as:

Tr =
Lr

Rr

, σ = 1− M2

LsLr

, K =
M

σLsLr

, γ =
Rs

σLs

+
RrM

2

σLsL2
r

, (74)

where Rs, Rr and Ls, Lr are stator and rotor per-phase resistances and induc-
tances, respectively, and J is the rotor moment inertia.
The numerical values of the above parameters are as follows: Rs = 0.18 Ω, Rr =
0.15 Ω, M = 0.068 H, Ls = 0.0699 H, Lr = 0.0699 H, J = 0.0586 kgm2, TL =
10 Nm, p = 1, and h = 0.1 ms. The input signals are:

u1,k = 350 cos(0.03k), u2,k = 300 sin(0.03k). (75)

Let us assume that the unknown input and its distribution matrix have the fol-
lowing form

E = [1.2, 0.2, 2.4, 1, 1.6]T , (76)

dk = 0.3 sin(0.5πk) cos(0.03πk), (77)

while the noise covariance matrices are Q = 10−5I and R = 10−5I, respectively.
Note that the small values of the process and measurement noise are selected in
order to clearly portray the effect of an unknown input.

Fig. 2 shows the residual zk for randomly selected E. From these results, it
is evident that the estimation quality is very low and hence the residual is signif-
icantly different from zero, which may lead to the decrease of the fault detection
abilities. In order to prevent such a situation, the algorithm presented in Section 5
was utilised with the following settings:

• σ(1) – the initial standard deviation;
• jmax = 20 – the number of iteration in each phase;
• imax = 5 – the number of standard deviations (σi) changes;
• kmax = 50;
• E(0) – randomly selected.

The performance of the algorithm was tested for a set of σ(1), i.e., {1, 2, 3, 4, 5}.
Note that kmax = 50 , i.e. each run of the algorithm was performed 50 times. As a
result, the mean and standard deviation of the resulting J(E) (see (47)) for each
setting of σ(1) was calculated. The mean of J(E) is presented in Fig. 3, while
its standard deviation is portrayed in Fig. 4. From these results, it is evident
that the smallest mean and standard deviation are obtained for σ(1) = 3. This,
of course, does not mean that this is a particular value σ(1) = 3, which should
be the best one for each example. However, it can be easily observed that for
other σ(1), i.e. {1, 2, 4, 5} the mean and standard deviation are also very small.
Numerous numerical experiments confirm this property, i.e. this means that the
proposed algorithm is not extremely sensitive to the initial value of σ(1).

As it was mentioned in the previous part of this paper, E, which is able to
decouple the unknown input, is not unique. Indeed, the estimate of E, for which
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Figure 2. Residuals for randomly selected E
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Figure 4. Standard deviation of J(E) for σ(1) = 1, . . . , 5

J(E) reaches its minimum is:

Ê = [0.3651, 0.0609, 0.7303, 0.3043, 0.4869]T. (78)

Figure 5 presents the residual for the obtained estimate. A direct comparison of
Figs. 5 and 2 clearly shows the profits that can be gained while using the proposed
algorithm.

8. The case of varying E

Let us reconsider an example presented in the previous section. The unknown
input is defined, as previously, by (77), but three different settings of the un-
known input distribution matrix (Ej) were employed during system simulation
(the simulation time was 10000 samples):

E1 = [1.2, 0.2, 2.4, 1, 1.6]T for 0 ≤ k < 2500,

E2 = [0.2, 1.2, 2.4, 1, 1.6]T for 2500 ≤ k < 5000

and 7500 ≤ k < 10000,

E3 = [2.1, 2.1, 2.1, 2.1, 2.1]T for 5000 ≤ k < 7500.
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Figure 5. Residuals for the estimated E

Contrarily to the above-described simulation scenario, it was assumed that the
set of unknown input distribution matrices for the UIF is composed of:

E1 = [0.2, 1.2, 2.4, 1, 1.6]T ,

E2 = [0, 0.2, 2.4, 1, 0]T ,

E3 = [2.1, 2.1, 2.1, 2.1, 2.1]T ,

E4 = [1, 2, 3, 1, 0]T ,

E5 = [1.2, 0.2, 2.4, 1, 1.6]T .

This means that E2 and E4 should not be used by the UIF while E1, E3 and E5

should be appropriately switched.
Fig. 6 shows the model probabilities corresponding to five unknown input

distribution matrices. From these results, it is evident that the instrumental
matrices E1, E3 and E5 were switched correctly. Moreover, the probabilities
corresponding to E2 and E4 are very low.

9. Fault detection and isolation for a two–tank system

The system being considered consists of two cylindrical tanks of the same di-
ameter. They are linked to each other through the connecting cylindrical pipe
(Fig. 7). The two-tank system can be perceived as a Single-Input Multi-Output
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Figure 6. Model probabilities

(SIMO) system, where the input u is the water flow through the pump, while the
outputs y1 and y2 are water levels in the first and second tank, respectively.

It is assumed that the system being considered can be affected by the following
set of faults:
actuator fault: f1 pump loss-of-effectiveness or leakage from the pump pipe,
process fault: f2 connecting cylindrical pipe clogged,
sensor faults: f3 water level sensor fault of the first tank, f4 water level sensor

fault of the second tank.
Once the fault description is provided, then a complete system description can be
given as follows:

xk+1 = g (xk) + h(uk) +L1fa,k (79)

yk+1 = Cxk+1 +L2fs,k+1 (80)

where:

g (xk) =

[

−hK1

A1

√
x1,k − x2,k + x1,k

hK1

A2

√
x1,k − x2,k − hK2

A2

√
x2,k + x2,k

]

, (81)

h(uk) =

[

h
1

A1
uk, 0

]T

, (82)

L1 =

[ − h
A1

h
A1

0 −h
A2

]

(83)
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Figure 7. Schematic diagram of a two-tank system

L2 =

[

1 0
0 1

]

, C = I, (84)

fa,k = [f1,k,
√

x1,k − x2,kf2,k]
T , fs,k = [f3,k, f4,k]

T ,

where x1,k and x2,k are the water levels in the first and second tank, respectively,
A1, A2 stand for the cross-sections of the tanks, K1 denotes the cross-section of
the connecting pipe, K2 is the cross-section of the outflow pipe from the second
tank, and h is the sampling time.

The objective of the subsequent part of this section is to design UIF-based
diagnostics filter, which will make it possible to detect and isolate the above
mentioned faults.
Filter 1: In order to make the residual insensitive to f1, it is proposed to use the

developed UIF with the following settings

E = L1
1, dk = f1,k, L = L2

1, fk = f2,k, Ck = [1, 0], (85)

where Li
1 stands for ith column of L1. It is straightforward to examine that

conditions (42) and (43) are satisfied, which means that the observer will
be insensitive to f1,k, while it will remain sensitive to f2,k.

Filter 2: Similarly as in the Observer 1 case, the residual generated by the Ob-

server 2 should be insensitive to f2,k,

E = L2
1, dk = f2,k, L = L1

1, fk = f1,k, Ck = [1, 0], (86)

It is straightforward to examine that conditions (42) and (43) are satisfied,
which means that the observer will be insensitive to f2,k while it will remain
sensitive to f1,k.

Filter 3: The observer should be insensitive to f3,k, while it should be sensitive
to f4,k. This can be realised using the conventional UKF with

C = [0, 1]. (87)
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Filter 4: The observer should be insensitive to f4,k, while it should be sensitive
to f3,k. This can be realised using the conventional UKF with

C = [1, 0]. (88)

The main objective of this section is to show the testing results obtained with
the proposed approach. To tackle this problem, a Matlab-based simulator of
a two tank system was implemented. The simulator is able to generate the data
for normal as well as for all faulty conditions (f1, . . . , f4) being considered. The
observer-based fault diagnosis scheme was also implemented using Matlab. As a
result, a complete scheme that is able to validate the performance of the proposed
fault diagnosis strategy was developed. It should be also pointed out that the
simulations were carried out using the following numerical parameters: uk = 2.56,
h = 0.1, A1 = 4.2929, A2 = 4.2929, K1 = 0.3646, K2 = 0.2524.

All fault scenarios where generated according to the following rule:

fi,k =

{

6= 0 k = 300 . . . 400
0 otherwise

i = 1, . . . , 4.

Moreover, y1 and y2 were corrupted by the measurement noise generated accord-
ing to the normal distribution, i.e., N (0, diag(0.01, 0.01)). Thus, the following
settings of the instrumental matrices were employed: R = 0.1I and Q = 0.1I.

Fig. 8 portrays the residual obtained with the four filters. As it can be
observed all of them are very close to zero. Figs. 9–12 present the residuals for
the faults f1 to f4 obtained with the four filters. The obtained results are
summarised in the form of a diagnostic table presented in Table 2. It should be

Table 1. Diagnostic table
Filter f1 f2 f3 f4
Filter 1 0 1 1 1
Filter 2 1 0 1 1
Filter 3 0 0 0 1
Filter 4 0 0 1 0

noticed that the residuals generated by Filter 3 and Filter 4 are insensitive to
f1 and f2. Such a situation is caused by the fact that observers use a feedback
from the system output and hence some damping effects may arise. This is the
case in the presented situation. On the other hand, it was observed that the
results of experiments can be consistent with the theoretical expectations when
there is no measurement noise but this is rather an unreal situation. Irrespective
of the presented results, the faults can still be isolated because they have unique
signatures.

10. Conclusions

The paper presents a complete design procedure of an unknown input filter for
non-linear discrete-time stochastic systems. In particular, a system description is
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Figure 8. Residuals for fault-free case

provided which covers a large class of non-linear systems and the corresponding
unknown input filter is proposed with a constant unknown input distribution
matrix. Subsequently, a condition is determined under which the fault will not
be decoupled from the residuals. Based on the achieved results, an algorithm
for determining the unknown input distribution matrix is proposed. Finally, the
interactive multiple model algorithm is used to extend the proposed approach to
be applicable for a set of predefined unknown input distribution matrices. The
final part of the paper presents comprehensive case studies regarding the practical
application of the proposed approaches. These examples are the induction motor
and the two-tank systems. In particular, based on an example with an induction
motor the strategies of determining unknown input distribution matrix and the
case with a set of predefined unknown input distribution matrices were considered.
The abilities regarding the fault detection and isolation were illustrated with the
two-tank systems. In all the cases, the proposed approaches exhibit their practical
usefulness.

The future research direction will be oriented towards application of the pro-
posed approaches to fault-tolerant control schemes.
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Figure 9. Residuals for fault f1
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Figure 11. Residuals for fault f3

tolerant control for a class of nonlinear systems. IEEE Trans. Automatic

Control, 46(11), 1805–1809.
KANDEPU, R., FOSS, B. and IMSLAND, L. (2008) Applying the unscented

kalman filter for nonlinear state estimation. Journal of Process Control, 18
(7-8), 753–768.

KEMIR, K., BEN HMIDA, F., RAGOT, J. and GOSSA, M. (2011) Novel
optimal recursive filter for state and fault estimation of linear systems with
unknown disturbances. International Journal of Applied Mathematics and

Computer Science, 21(4), 629–638.
KOENIG, D. and MAMMAR, S. (2002) Design of a class of reduced unknown

inputs non-linear observer for fault diagnosis. In: Proc. American Control

Conference, ACC, Arlington, USA.
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