
Control and Cybernetics

vol. 42 (2013) No. 1

Using Assembler Encoding to build neuro-controllers for a

team of autonomous underwater vehicles∗

by

Tomasz Praczyk1, Piotr Szymak2

Polish Naval Academy,
1Institute of Naval Weapon,

2Institute of Electrical Engineering and Automatics
Gdynia, Poland

t.praczyk,p.szymak@amw.gdynia.pl

Abstract: The paper compares a neuro-evolutionary method
called Assembler Encoding with two other methods from the area
of neuro–evolution. As a testbed for the methods a variant of the
predator–prey problem with Autonomous Underwater Vehicles (AUV)
operating in an environment with the sea current was used. In the
experiments, the task of vehicles–predators controlled with evolu-
tionary neural networks was to capture a vehicle–prey behaving ac-
cording to a simple deterministic strategy. All the experiments were
carried out in simulation, and in order to simplify calculations in
the two–dimensional environment – AUVs moved on a horizontal
surface under the water.

Keywords: evolutionary neural networks, autonomous under-
water vehicles

1. Introduction

Artificial Neural Networks (ANNs) are a subdomain of artificial intelligence
broadly used to solve various problems in different fields (e.g. pattern classi-
fication, function approximation, optimization, image compression, associative
memories, robot control problems etc.). To build an ANN it is necessary to
determine its topology and parameters (typically weights). There are many
different ANN learning algorithms (e.g. BackPropagation) that change the val-
ues of parameters, leaving the topology completely intact. In such a case, the
process of searching for a proper network topology is the task of a network de-
signer, who arbitrarily chooses the network structure, starts network learning
and finally puts the network to a test. If the result of the test is satisfactory,
the learning process is stopped. If not, it is continued further. The designer
manually determines the next potential network topology and runs the learning

∗Submitted: October 2010; Accepted: January 2013.



268 T.Praczyk, P. Szymak

algorithm again. Such a loop - topology determination and learning - is repeated
until a network capable of carrying out a dedicated task at an appropriate level
is found. At a first glance, it is apparent that such a procedure could be very
time-consuming and, even worse, in the case of more complex problems, can
lead to a situation when all chosen and trained networks would be incapable of
solving the task.

In addition to the learning concept presented above, there exist other ap-
proaches that can be called constructive and destructive. The constructive ones
use a learning philosophy that consists in incremental development of ANN
starting from a small architecture. At the beginning, ANN has a small number
of components to which new components are gradually added until a resultant
network fully meets the requirements imposed. On the other hand, the destruc-
tive ones prepare a large fully connected ANN and then try to remove individual
elements of a network, such as synaptic connections and neurons.

Genetic Algorithms (GAs) are another technique that has been successfully
applied to search for optimal ANNs in the recent years. GA processes a pop-
ulation of genotypes that typically encode one phenotype although encoding
several phenotypes is also possible. In the neuro-evolution (NE), genotypes
are encodings of corresponding networks (phenotypes). The evolutionary pro-
cedure involves selecting genotypes (encoded networks) for reproduction based
on their fitness, and then by introducing genetically changed offspring (muta-
tion, crossover and other genetic operators) into a next population. Repeating
the whole procedure over many generations causes the population of encoded
networks to gradually evolve into individuals that correspond to high fitness
phenotypes (ANNs).

There are a lot of NE methods (e.g. Cangelosi, Parisi and Nolfi, 1994;
Gruau, 1994; Kitano, 1990; Luke and Spector, 1996; Miller, Todd and Hedge,
1989; Moriarty, 1997; Nolfi and Parisi, 1992; Stanley, 2004). In principle, all the
existing methods can be divided into two main classes, i.e. direct and indirect
methods. As for the direct ones, all the information necessary to create an
ANN (e.g. weights, number of neurons, number of layers) is directly stored
in chromosomes. Hence, to encode larger networks larger chromosomes are
necessary, which is the main drawback of the direct methods. As regards the
indirect methods, we deal with chromosomes which are recipes how to create a
network. Such encodings can be used to create larger neural architectures by
means of relatively short chromosomes.

The paper presents a new indirect NE method called Assembler Encoding
(AE). AE originates from the cellular (Gruau, 1994) and edge encoding (Luke
and Spector, 1996), although, it also has features common with Linear Ge-
netic Programming presented, in particular, in Krawiec and Bhanu (2005) and
Nordin, Banzhaf and Francone (1999). In AE, ANN is represented in the form
of a program (Assembler Encoding Program - AEP) whose structure is similar
to that of the structure of a simple assembler program. AEPs are formed by
means of GA. The task of each AEP is to create a Network Definition Matrix
(NDM) which includes all the information necessary to create a network. In



Building neuro-controllers for autonomous underwater vehicles with Assembler Encoding 269

AE, the process of ANN construction consists of three stages. First, GA is used
to produce AEPs, next, each AEP creates and fills up NDM, and finally, the
matrix is transformed into ANN.

To date, AE was tested in three different problems, i.e. in the optimization
problem (Praczyk, 2007), in the predator-prey problem (Praczyk, 2007, 2008,
2010), and in the pole balancing problem (Praczyk, 2009). In all the tests,
the method demonstrated fairly good effectiveness. It is worth noting that it
successfully competed with different NE and reinforcement learning methods in
problems which rather prefer the latter of them (Praczyk, 2009). All the prior
tests did not, however, show the true abilities of the method to form complex
neuro-controllers. To obtain a deeper knowledge of the capabilities of AE in this
respect, the decision was taken to apply AE to produce neuro-controllers for a
team of cooperating autonomous underwater vehicles (AUVs). Since the AUV
controllers have to take into account not only the common goal of the vehicles
but also such factors as their inertia, maneuverability, and the current in the
see, their construction is a complex problem which can constitute an attractive
testbed for such methods as AE.

The first attempts to combine AE with AUVs are reported in Praczyk and
Szymak (2011). The paper mentioned presents experiments in which AUVs
dealt with an ideal sea environment without the sea current. In such conditions,
it appeared that AE have no serious problems with evolving effective AUV
controllers. To test AE in a more realistic and more difficult conditions, that is,
in presence of a variable sea current in the environment, subsequent experiments
were carried out, whose results are shown in the current paper. Except for the
influence of the sea current on AUVs, other settings of the experiments were
almost the same as those in Praczyk and Szymak (2011). That is, the task of AE
was to produce a Decision System (DS∗) for a team of AUV-predators whose
common goal was to capture an escaping AUV-prey behaving according to a
simple deterministic strategy. Since the speed of each predator was lower than
or equal to the speed of the prey, the predators had to cooperate to accomplish
the goal. As in Praczyk and Szymak (2011), to compare AE with other NE
methods, two variants of the classical Connectivity Matrix (CM), Miller, Todd
and Hedge (1989), were also used in the experiments.

The paper is organized as follows: Section 2 is a presentation of the compared
methods, Section 3 is a description of conditions of the experiments, Section 4
is a report on experimental results, and Section 5 is a summary.

2. Methods

2.1. Assembler Encoding

Because the detailed description of AE is given in Praczyk (2010), here, only a
short outline of the method is presented. In AE, ANN is represented in the form

∗the task of DS is to provide high-level decisions concerning direction and velocity of move
for each vehicle



270 T.Praczyk, P. Szymak

of a program called Assembler Encoding Program (AEP). AEP is composed of
two parts, i.e. a part including operations and a part including data. The task
of AEP is to create and fill in Network Definition Matrix (NDM) with values.
To this end, AEP uses the operations whose implementations are defined by the
designer. The operations are run in turn. They can use data located at the end
of AEP (Fig. 1). Once the last operation terminates, the process of creating
NDM is completed. NDM is then transformed into an ANN.

0.3
 0.2
 0.3
 0.4


0.8
 1
 -0.5
-0.1


-0.6
 0.3
 -0.1
 0.6


IN


IN


IN


Oper. 0


Oper. 1


Oper. 2


Oper. 3


Memory


cell 0


Memory


cell 1


Memory


cell 2


Memory


cell 3


chromosomes
 AEP
 NDM


ANN


Figure 1. Using AE to create ANN (Praczyk, 2011)

AEPs can use various operations with predefined implementations. The task
of most of them is to modify NDM by introducing new values from the data part
of the program into the matrix. The modification can involve a single element
of NDM or group of elements, e.g. a fragment of a column or row. In addition
to the operations whose task is to modify the content of NDM, AEPs can also
be equipped with a jump operation which makes it possible to repeatedly use
the same code of AEP in different places of NDM. An additional possibility for
AEPs is to use operations whose task is to change the size of NDM, and, in
consequence, the size of the resultant ANN.

Once AEP finishes its work, the process of transforming NDM into an ANN
is started. To make it possible to construct ANN based on NDM the latter has
to include all the information necessary to create ANN. When we wish to create
only the skeleton of ANN, i.e. ANN without determined weights of interneuron
connections, NDM can take the form of the classical connectivity matrix (CM),
Miller, Todd and Hedge (1989), i.e. a square, binary matrix with the number of
rows and columns equal to the number of neurons. The value ”1” in ith column
and jth row of such a matrix means a connection between ith neuron and jth

neuron. In turn, ”0” means lack of connection between these neurons. When
the purpose is to create a complete ANN with determined values of weights,



Building neuro-controllers for autonomous underwater vehicles with Assembler Encoding 271

types of neurons, parameters of neurons, then NDM should take the form of a
real valued variety of CM with extra columns or rows containing definitions of
individual neurons. The example of such a matrix is presented in Fig. 2.

0
 0.2
 0.3
 0
 -0.7
 0.1


-0.9
 0
 1
 -0.5
 -1
 0.9


0.5
 0
 0
 -0.5
 0.3
 0.2


0
 0.3
 0
 0.6
 0.1
 0.5


input neuron


input neuron


output neuron


in
p

u
t 

n
e

u
ro

n



in
p

u
t 

n
e

u
ro

n



o
u

tp
u

t 
n

e
u

ro
n




b
ia

s



ty
p

e
 o

f 
n

e
u

ro
n




IN


IN


IN

0.2


0.3


-0.9


in


in


out


1


-0.5


0.5


-0.5


0.3


0.6


-1


-0.7


0.3
 0.1


if(abs(type_of_neuron)<=0.5)


then


sigmoid


else


linear


Figure 2. NDM as Connectivity Matrix (Praczyk, 2009)

The evolution of AEPs proceeds according to Cooperative Co-Evolutionary
Genetic Algorithm (Potter, 1997; Potter, De Jong, 2000). It assumes a division
of evolutionarily created solution into parts. Each part evolves in a separate
population. A complete solution is formed out of selected representatives of
each population. In AE, an AEP consisting of n operations and a sequence of
data evolves in n populations with operations and one population with data
(Fig. 3). During the evolution, AEPs expand gradually. Initially, all AEPs
include one operation and a sequence of data. The operations and the data
come from two different populations. When the evolution stagnates, the set of
the populations containing the operations is enlarged by one population. This
procedure extends all AEPs by one operation.

2.2. Conventional neuro-evolution

CNE is a classic direct NE method in which a single chromosome includes all the
information necessary to create an ANN (the location of a gene in the chromo-
some strictly determines a parameter of the ANN encoded by the gene). ANNs



272 T.Praczyk, P. Szymak

Population no. 2


Population including

data


Population no. 1


Code of

operation


Param

1


Param

2


Param

3


Param

4


Data


1


Data


2


Data


3


Data


4


Population no. 3


Code of


operation


Param


1


Param


2


Param


3


Param


4


Code of

operation


Param

1


Param

2


Param

3


Param

4


AEP


Oper. 1
 Oper. 2
 Oper. 3
 Data


individual


evaluated


the best

individual


the best


individual


the best


individual


Figure 3. Evolution in AE for n = 3 (Praczyk, 2011)

evolve in a single population. The evolution in the population proceeds accord-
ing to Canonical GA (Goldberg, 1989). Chromosomes with encoded ANNs are
in the form of binary strings. Each chromosome encodes weights of interneuron
connections and parameters of neurons. Evolution of ANNs in CNE is presented
in Fig. 4 (Praczyk, Szymak, 2011).

 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 
 


 
 


 
 


 
 
 
 


 
 
 


1
.
0
3
.
0
5
.
0
1
.
0
2
.
0
8
.
0
5
.
0
4
.
0


2
.
0
4
.
0
7
.
0
6
.
0
9
.
0
4
.
0
2
.
0
5
.
0


1
.
0
9
.
0
5
.
0
3
.
0
2
.
0
6
.
0
6
.
0
6
.
0


5
.
0
5
.
0
1
.
0
7
.
0
7
.
0
2
.
0
2
.
0
9
.
0


4
.
0
2
.
0
4
.
0
9
.
0
8
.
0
4
.
0
2
.
0
3
.
0


 


Population including


encoded CMs


Connectivity


Matrix


-0.2
 0.4
 0.8
 ...
 ...
 ...
 ...
 ...


IN


IN


IN


ANN


Figure 4. Evolution of ANNs in CNE (evolving elements of CM are enclosed)
(Praczyk, Szymak, 2011)

2.3. Neuro-CoEvolution

NCoE is a variant of CNE. In CNE, ANNs evolve in a single population. Each
chromosome from the population represents a single ANN. In NCoE, we deal



Building neuro-controllers for autonomous underwater vehicles with Assembler Encoding 273

with a different situation. Each ANN created by means of NCoE evolves in a
few different populations. The populations include chromosomes which define
different elements of ANNs (weights of interneuron connections and parameters
of neurons). As before, Canonical GA is used to evolve ANNs. Each ANN
created during the evolution is evaluated once per generation. Evolution of
ANNs in NCoE is presented in Fig. 5 (Praczyk, Szymak, 2011).

Figure 5. Evolution of ANNs in NCoE (ANNs evolve in three popula-
tions)(Praczyk, Szymak, 2011)

3. Experiments

The experiments were carried out in almost the same conditions as those de-
scribed in Praczyk, Szymak (2011). The only differences were the presence
of the current in the environment and application of a prey with a more ad-
vanced escaping strategy. The additional elements increased the complexity of
the problem solved by ANNs compared to previous research.

All the experiments were conducted in simulation with application of mathe-
matical model of a Remotely Operated Vehicle (ROV) of the type ”Ukwial” (see
Fig. 6), Kubaty, Rowiski (no date) and they were divided into two phases. In
the first phase called a construction phase, all the compared methods were used
to prepare ANNs. Each NE method was run many times for different param-
eter settings. For each method many different ANNs were produced. Selected
ANNs (thirty most effective ANNs for each NE method) were then tested in the
following phase of the experiments, i.e. in a generalization phase. The purpose
of this phase was to test the effectiveness of all selected ANNs on tasks which
were not presented to them before.



274 T.Praczyk, P. Szymak

Figure 6. Vehicle ”Ukwial” (Praczyk, Szymak, 2011)

3.1. The predator-prey problem

All the tests were carried out in a configuration with one prey and three chasing
predators. Both the predators and the prey were implemented as ROV ”Ukwial”
(the vehicle controlled by ANN became AUV). The behavior of all the vehicles
was simulated by means of a discrete time model defined in Section 3.3.

In the experiments, the predators and the prey functioned in a common
artificial environment. To represent the environment, the square of 100x100
meters was used (see Fig. 7, to simplify calculations, simulations took place
in the two–dimensional environment – AUVs moved on a horizontal surface
under the water). The environment did not contain any obstacles. In order to
ensure infinite space for the predators and the prey and for their manoeuvres,
the environment was open at each side. Thus, every attempt to move beyond
upper, lower, right or left border of the square caused the object making such
an attempt to move to the opposite side of the environment (Praczyk, Szymak,
2011).

In the experiments, the predators were controlled by a single ANN whose
task was to determine movement direction for each of them. At each time step
ANN decided about the change of a current course of each vehicle. The course
could be changed by 0,5,10, ... ,355 degrees (it is necessary to note that decisions
of ANN determined only the final state of the vehicles which they ultimately
should reach, the real course after the maneuvre and duration of the complete
maneuvre depended on current parameters of each vehicle). The speed of the
predators was constant during the tests and amounted to 0.5 m/s (Praczyk,
Szymak, 2011).

Unlike in Praczyk, Szymak (2011) the prey behaved according to two strate-
gies: simple and advanced. The strategy of the simple prey, the same as the one



Building neuro-controllers for autonomous underwater vehicles with Assembler Encoding 275

Figure 7. Artificial world for predators and prey (Praczyk, Szymak, 2011)

applied in the previous experiments, forced it to stand still when no predator
was closer to it than its range of vision (the range of vision of the prey amounted
to 50 meters) and to move directly away from the nearest predator otherwise.
In contrast to the simple prey, the advanced one always took into account all
the visible predators. As before, it started to move only when some predators
were noticed. To determine the direction of the next move, the first activity
of the advanced prey was to calculate a single position representing all preda-
tors being in its close proximity. The closer the predator was to the prey the
greater its influence was on the calculated position. In the following step, the
”common” position of the predators was treated as the position of the closest
(virtual) predator and the strategy of the simple prey was used thereafter.

When moving, the prey could select the same actions as the predators. The
speed of the preys amounted to 0.5, 0.75 or 1 m/s. Since speed of the predators
was either lower or at most the same as speed of the escaping prey, they could
not simply chase the prey to grasp it. We assumed that the prey was captured
if the distance between it and the nearest predator was lower than 5 meters.

In the experiments, the vehicles-predators had to counteract a variable sea
current. With regard to the vehicle-prey, the assumption was made that the cur-
rent does not affect its behavior. In effect, the predators were pushed outside the
path determined by ANN whereas the prey always moved accurately according
to its strategy. Since the direction of the current was variable, in some testing
scenarios described in Section 3.4, the predators were pushed left whereas in
other ones they were pushed right (during a single scenario the current did not
change the direction). The goal of such a move was to make conditions of the
experiments maximally similar to the ones in which real vehicles are used. Of
course, the ideal situation for the vehicles is when they always work over the
sea areas with the same characteristic. However, they should also be prepared
to work in basins in which parameters of the current are variable and depend



276 T.Praczyk, P. Szymak

on location of the vehicles, season, and time of the day.

To help ANNs to deal with variable current, each of them was supported
by the Sea Current Compensation System (SCCS) described in the following
section. The task of SCCS was to correct decisions of ANNs taking into account
the current occurring in the environment.

Generally, the current always had a main direction which, as mentioned
above, was invariable within a single scenario. However, to model random fluc-
tuations of the sea current, its momentary direction slightly differed from the
main direction. The consequence of the current randomness was difference in be-
havior of the predators for the same decisions of ANNs. This led to situations, in
which effectiveness of the same decisions taken in the same circumstances could
differ. Random effectiveness of individual decisions could also result in random
effectiveness of the entire ANNs. In the same scenario, one time, ANN could
be effective but some other time it could also completely fail. Such situation
made evaluation of ANNs constructed during the evolutionary process, and in
consequence the evolution itself very difficult.

3.2. Decision systems

In all the experiments, ANNs had six inputs and three outputs. The number
of outputs corresponded to the number of predators. In turn, the number of
inputs was twice the number of predators. Each output gave commands to one
predator. In turn, each input informed about vertical or horizontal distance
between the prey and one of the predators.

When controlling AUVs, ANNs had to take into account not only a common
goal of the vehicles but also their inertia, maneuverability and the sea current.
They had to adopt the strategy of AUVs to how fast they are able to perform a
given maneuvre and how much place they need for that purpose. When giving
commands they should know that AUVs cannot turn at once and they need
time to reach a prescribed state.

To cope with the sea current, ANNs were supported by SCCS (see Fig.
8). The task of SCCS was to transform decisions of ANNs made for an ideal
environment without the sea current into decisions considering the current. To
this end, the system first estimates the parameters of the current, and then
corrects decisions of an ANN based on these estimates. The estimates are
weighted averages of momentary values of current parameters. Since the current
has a variable nature and it can change depending on time of the day, season,
or location of vehicle, the system should have the ability to adopt to variable
underwater conditions. To accomplish this, the most recent values of the current
parameters exert greater influence on the resultant estimates than older values.
The momentary values of the current parameters are approximations of true
values. They are based on true values of vehicle parameters measured at a given
point in time and desirable values which the vehicle should reach at the same
point assuming the underwater environment without the current. To calculate
the desirable values of the vehicle parameters, the model of the vehicle described



Building neuro-controllers for autonomous underwater vehicles with Assembler Encoding 277

in the following section is used.

double SCCS::run(∆ψt+1

d , xt+1, yt+1)

begin

//Model of vehicle without current is used to calculate

//expected change in position after maneuver made in t

(∆xd, ∆yd) = VehicleModel.getChangeInPosition(ψtV );

(xt+1

d , yt+1

d ) = (xt, yt) + (∆xd, ∆yd);

ψtc = getCourseFromPointToPoint(xt+1

d ,yt+1

d ,xt+1,yt+1);

ψ̃c =
∑

t

i=t−n
W t

i
ψi

c∑
t

i=t−n
W t

i

, W t
i = exp(− ‖t−i‖2

2σ2 );

//⊕ - adds two vectors

//getCourse(a) - returns course for vector a

//getVector(a,b) - returns vector of length a and direction b

ψt+1

V = getCourse(getVector(Vv , ψ
t +∆ψt+1

d ) ⊕ getVector(Vc,−ψ̃c));

//if ∆ψV > 0 vehicle turns right, otherwise it turns left

∆ψt+1

V = getChangeInCourse(ψt+1

V ,ψtV );

return ∆ψt+1

V ;

end

Figure 8. Pseudocode of SCCS supporting a single vehicle moving with constant
speed; xt, yt - position of vehicle at time t, xtd, y

t
d - expected position of vehicle

at time t, ψt
d - desirable course of vehicle at time t, this value is produced by DS

and passed on to SCCS, ψt
V - course for vehicle after compensation of current at

time t, this value is produced by SCCS and passed on to low–level controllers of

the vehicle, ψt
c - momentary course of current at time t, ψ̃c - estimated course of

current (−ψ̃c - opposite course to ψ̃c), n - number of successive measurements of
current course used to estimate it direction, Vv - velocity of vehicle, Vc - velocity
of current

3.3. Vehicles

Since all the experiments were carried out in simulation, behavior of the vehicle
”Ukwial” had to be modeled appropriately. Usually, to simulate movement of
the vehicle, a nonlinear model described in six degrees of freedom is used (Fossen,
1994). Moreover, to control the vehicle (along a fixed path), several nonlinear
controllers of motion parameters are needed see Szymak (2006) (the task of the



278 T.Praczyk, P. Szymak

controllers is to convert high-level decisions provided by the ANN into low-level
ones for propellers of the vehicle). In consequence, the simulation of the vehicle
with use of the models and controllers mentioned above inevitably involves time
consuming calculations. In the case of experiments with a single vehicle, such
an approach seems to be justified. However, when simulating many vehicles, a
different solution has to be applied. Since in our experiments NE methods were
used, which test many different neural solutions per evolutionary generation, to
speed up calculations it was necessary to employ another method for simulating
the vehicle. Especially for the purposes of the experiments, a simplified model
representing both the vehicle and its controllers was devised, as described in
Praczyk, Szymak (2011) and Szymak (2010).

Since the model mentioned above does not take into account the sea current,
in the experiments, successive positions of the vehicle fixed with the model were
shifted according to a momentary direction (ψc) and velocity (Vc) of the current:
x = x + Vc∆tm cos(ψc), y = y + Vc∆tm sin(ψc), where (∆tm) is duration of a
single maneuvre of the vehicle.

3.4. Evaluation of ANNs

In order to evaluate ANNs generated during the experiments, 90 different test-
ing scenarios were produced. The first 30 scenarios were used in the ANN con-
struction phase. The remaining ones were applied in the generalization phase to
evaluate the prepared ANNs in terms of their capability to generalize knowledge
acquired during the construction phase. The evaluation of both prepared and
unprepared ANNs proceeded in the following way. At first, each of them was
tested in the simplest scenario, say, no. 1. If the predators could not capture
the prey during some assumed period (800 s), the test was stopped and ANN re-
ceived appropriate evaluation that depended on the distance between the prey
and the nearest predator. However, if the predators grasped the prey, ANN
obtained appropriate reward and a next scenario was run (Praczyk, Szymak,
2011).

The scenarios used in the experiments differed in initial position, speed (0.5,
0.75 or 1 m/s) and type of the prey (simple or advanced), and additionally
in the direction of the sea current affecting only the predators. The range of
vision of each prey amounted to 50 m. With regard to the sea current, its speed
was constant in all the scenarios and amounted to 0.25 m/s whereas direction
of the current was variable and had a random nature. Generally, the current
always had a main direction different for individual scenarios and invariable
within a single scenario. To model random fluctuations of the sea current, the
momentary direction of the current slightly differed from the main direction.
The magnitude of the difference was random and it amounted maximally to
±3◦.

Consecutive scenarios were more and more difficult. Initially, the predators
had to capture the slowest simple prey. The predators, which passed the first
exam, had to pit against the prey one and a half times faster than the predators.



Building neuro-controllers for autonomous underwater vehicles with Assembler Encoding 279

In the next step, the speed of the prey was increased to the maximum value.
The predators which captured the prey in all the previous scenarios had to
face the advanced prey. In the beginning, the prey moved with the minimum
speed. The speed of the prey was increased in the following scenarios. In all the
scenarios starting positions of all three predators were the same, namely (0,0).
All the scenarios are described in Table 1.

Table 1. Description of scenarios used in the experiments

no. of scenario prey sea current
speed [m/s] type initial positions speed [m/s] direction [deg]

1-5 0.5 simple 0.25 0
6-10 0.75 simple 0.25 180
11-15 1 simple Fig. 9(a) 0.25 90
16-20 0.5 advanced (learning 0.25 270
21-25 0.75 advanced scenarios) 0.25 45
26-30 1 advanced 0.25 315
31-40 0.5 simple 0.25 135
41-50 0.75 simple 0.25 225
51-60 1 simple Fig. 9(b) 0.25 20
61-70 0.5 advanced (generalizing 0.25 160
71-80 0.75 advanced scenarios) 0.25 200
81-90 1 advanced 0.25 250

(a) (b)

Figure 9. Starting positions of prey used in learning (a) and generalizing (b)
scenarios

In all the experiments, the following evaluation function (or fitness function)
was used (Praczyk, Szymak, 2011):

f(ANN) =

n∑

i=0

fi (1)



280 T.Praczyk, P. Szymak

fi =





dmax −min
p
di(p), prey not captured in i

th scenario

fcaptured + (80−mi)/a, prey captured in i
th scenario

0, prey not captured in previous scenario

(2)

where
fi - reward received in ith scenario
di(p) - distance between the prey and predator p in the end state of ith scenario
dmax - maximum distance between two points in the environment
fcaptured - reward for grasping the prey in a single scenario (fcaptured = 100)
mi - number of steps to capture the prey (mi < 80)
a - this value prevents the situation in which partial success is better than
success in all scenarios
n - the number of scenarios (the construction phase: n = 30, the generalization
phase: n = 60).

3.5. Variants and parameters of NE methods

In the experiments, different variants of the NE methods were tested. The
variants mentioned mainly differed in parameters of the evolutionary process
(Table 2). Moreover, individual variants of AE also varied in operations used in
AEPs. In this case, two different solutions were applied. The first of them as-
sumed AEPs exclusively with operations CHGFF. In the second one, AEPs could
use seven different operations, i.e. CHGFF, CHGC0, CHGC1, CHGR0, CHGR1,

CHGM0, CHGM1. A short description of all the operations is included in Ap-
pendix A at the end of the paper.

Table 2. Parameters of AE, CNE and NCoE

Parameter AE CNE NCoE

no. of subpopulations variable (2..6) 1 2, 4 or 6
size of subpopulations 80 (data), 40 (operations) 120 60, 30 or 20
evaluations per generation different 120 120
max no. of generations 60 000
no. of data maximally 20 X X
hidden neurons in ANNs maximally 8
type of neurons in ANNs sigmoid
size of tournament 1 (data), 2 (operations) 2 or 4 2 or 4
crossover probability 0.7
mutation probability 0.01-0.03 (data), 0.01-0.06 (operations) 0.005-0.1 0.005-0.1

4. Experimental results

The first activity during the tests was to tune each NE method to the problem
solved. To this end, each of them was run for different parameter settings (see



Building neuro-controllers for autonomous underwater vehicles with Assembler Encoding 281

Table 2). Individual settings differed in mutation, size of tournament (tourna-
ment selection) and number of sub-populations. For each setting fifty evolution-
ary runs were carried out, each of which produced a single ANN. To find the
most effective parameter setting, average fitnesses of ANNs generated for indi-
vidual settings were compared. A setting with the highest average was regarded
as the optimal setting for a given method. During the tuning tests, ANNs dealt
exclusively with the learning scenarios.

To compare all the methods, effectiveness of their ANNs in the learning
and generalizing scenarios were taken into account. In the first case, learning
abilities, i.e. abilities to build solutions effective in learning tasks were compared.
In the second case, ANNs being the final product of the ”learning” process were
tested on tasks which were not presented to them before. It this way, abilities
to generalize knowledge acquired during the learning process were measured.
To compare the learning abilities of NE methods, fitnesses of ANNs produced
for the optimal parameter settings were compared. In the generalization tests,
fitnesses of 30 best ANNs generated by each method were compared. The best
ANNs were selected out of all ANNs produced by each method. Parameter
settings were unimportant in this case.

Table 3. Comparison of learning abilities

AE CNE NCoE

% of fully effective ANNs 22% 8% 16%
average fitness of ANNs 2523.6 2043.1 2543.8
max fitness 3021.5 3024.2 3022.1
min fitness 924.7 1022.2 1233.5

Table 4. Comparison of generalization abilities

AE CNE NCoE

% of fully effective ANNs 13.3% 0% 0%
average fitness of ANNs 3921.2 1132.5 2566.3
max fitness 6038.1 3937.9 4535.2
min fitness 504.0 403.2 306.5

The results of the experiments summarized in Tables 3 and 4 show superior-
ity of AE over the remaining methods. AE turned out to be the most effective in
both the learning and generalization testes. This is particularly noticeable when
comparing percentages of fully effective ANNs produced by each method. The
fully effective ANN is an ANN whose strategy enables the predators to capture
the prey in all 30 learning scenarios. In the case of AE and the learning tests,



282 T.Praczyk, P. Szymak

22% out of all the 50 ANNs appeared to be fully effective. For CNE and NCoE
this rate amounts to 8% and 16%, respectively. In the generalization phase,
a disproportion between CNE, NCoE and AE is even higher. This time, the
percentages of fully effective ANNs are the following: 13.3% - AE, 0% - CNE
and NCoE.

In the learning phase, the direct nature of CNE and NCoE seems to be
the main cause of their worse performance compared to AE. Since each ANN
produced in the experiments could have maximally 8 hidden neurons (see Ta-
ble 2), CMs representing such networks were of size 17x19 (17=9 inputs and
outputs + 8 hidden neurons, 19=17+2 additional columns for parameters of
neurons). Given that all ANNs had a feed-forward architecture, to define them,
only fragments of CMs above the diagonal were used. Each such fragment in-
cluded 170 parameters of an ANN, in total. In the case of the direct methods,
all the parameters had to be encoded in chromosomes. In CNE, a single chro-
mosome encoded all the 170 parameters. Since during all the experiments, each
parameter of an ANN was represented in the form of 8-bit binary string, the
length of chromosomes in CNE was 1360 bits. The shortest chromosomes in
NCoE (for the evolution proceeded in 6 populations) encoded 28 parameters
(to define a single CM, 5 chromosomes of length 28 and 1 chromosome of length
30 were necessary). In other settings, chromosomes in NCoE encoded 42 or 85
parameters. Changing all the figures above into bits we obtain chromosomes
of the lengths: 224, 336, and 680 bits. Meanwhile, in AE, all operations were
of length 5 (40 bits) whereas data could maximally include 20 elements (160
bits). Generally, in all the experiments, chromosomes in CNE and NCoE were,
usually, much longer than those in AE. In effect, the evolution in both direct
methods would face a more difficult task than in the case of AE.

As for the generalization abilities of ANNs, it appeared that they mainly
depend on the complexity of the networks. ANNs produced by means of CNE
and NCoE were usually fully-connected and in addition they included the max-
imum number of neurons. Meanwhile, ANNs evolved by AE were in most cases
simpler in terms of construction, that is, they contained fewer connections and
neurons than their rival ANNs. As it turned out, simpler ANNs were, usu-
ally, efficient in both phases of the experiments whereas more complex ones, in
the second phase, had problems with overfitting, and in consequence with poor
generalization.

Again, the direct nature of CNE and NCoE seems to be the main cause
of the complexity of their ANNs. Chromosomes in the direct methods include
encodings of each parameter of an ANN. In consequence, to eliminate some
elements (connections or neurons) from a network, the corresponding genes in
the chromosomes have to be equal to zero. Since zero is only one out of many
values which can be memorized in the chromosomes, the direct methods often
have great problems with evolving simpler architectures than the maximum
ones.

In turn, in AE, each operation, usually, modifies only a little fragment of
NDM which causes these matrices to often include many elements equal to zero.



Building neuro-controllers for autonomous underwater vehicles with Assembler Encoding 283

Such elements indicate lack of some connections and neurons in the resultant
ANNs. Fewer connections and neurons in ANNs makes them, in turn, unaffected
by the overfitting problem, and in consequence better adjusted to a task than
the fully-connected networks evolving directly as CMs.

With regard to the influence of the sea current on the difficulty of the ANN
task, and in consequence, on the results of the compared methods, it seems
that it was significantly reduced by application of SCCS. As it turned out,
estimates calculated by SCCS were very close to the real values of the current.
Since the main direction of the current was invariable within a single scenario,
it was quickly and accurately estimated by SCCS. Decisions of ANNs were,
in principle, from the very start of each scenario faultlessly corrected by the
system. It seems that slight random fluctuations of the momentary current had
no greater influence on the effectiveness of ANNs and their AUVs.

5. Summary

The paper compares AE with CNE and NCoE on the predator-prey problem.
The experiments reported in the paper revealed superiority of AE over the re-
maining methods used in the tests. As for CNE, two elements could affect
the achieved results, i.e. evolutionary scheme (the evolution of CMs in a sin-
gle population, very long chromosomes), and the direct nature of the method.
NCoE appeared to be more effective than CNE. In the learning tests, NCoE
generated almost as effective ANNs as AE. However, in the generalization ones,
ANNs produced with NCoE appeared to be considerably less effective than
ANNs generated by means of AE. It seems that the main cause of such a situ-
ation was the complexity of ANNs produced in both cases. ANNs constructed
with NCoE were fully-connected and included the maximum number of neurons
which made them overfitted to the learning tasks. Such construction of ANNs
resulted from the direct nature of NCoE. Each direct method strives to adjust
all the parameters of an ANN included in chromosomes to a problem. It seems
that this feature of the direct methods makes them appropriate tool exclusively
for constructing ANNs with an architecture known in advance. Using these
methods with no knowledge about a desirable architecture of ANNs may cause
neural solutions of maximum acceptable complexity to be built usually.

In AE, the architecture of ANNs is dependent on the construction of AEPs.
In the beginning, AEPs include a single operation to which next operations are
gradually added if AE cannot generate an effective ANN within some assumed
period. Thus, AEPs and ANNs increase their complexity with the passage of
time and the architecture of ANNs is adjusted to a task in a better way than in
the case of the direct methods such as NCoE or CNE.

When comparing AE with the methods presented in the paper it is also
necessary to mention the capabilities of AE that the remaining methods do
not have. The additional capabilities of AE are a consequence of applying a
program to represent an ANN. AEPs can encode not only parameters but also
other aspects of ANN functioning. The example is the learning process in an



284 T.Praczyk, P. Szymak

ANN. AEPs can include not only operations updating NDMs but also operations
which can organize training of an ANN (Praczyk, 2008). Another example is the
process of growth of an ANN. ANNs like humans can grow from the childhood
to the maturity (Elman, 1993; Lang, 2000). In the meantime, they can learn.
All the processes mentioned can be organized by AEPs (when to learn, how
long, etc.).

6. Reference

Cangelosi, A., Parisi, D. and Nolfi, S. (1994)Cell division and migration
in a genotype for neural networks. Network: computation in neural sys-

tems 5(4), 497-515.
Elman, J. L. (1993) Learning and development in neural networks: The im-

portance of starting small. Cognition, 48, 71-99.
Fossen, T.J. (1994)Guidance and Control of Ocean Vehicles. John Wiley and

Sons Ltd.
Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison Wesley, Reading, Massachusetts.
Gruau, F. (1994)Neural Network Synthesis Using Cellular Encoding And The

Genetic Algorithm. PhD Thesis, Ecole Normale Superieure de Lyon.
Kitano, H. (1990) Designing neural networks using genetic algorithms with

graph generation system. Complex Systems 4, 461-476.
Krawiec, K. and Bhanu, B. (2005) Visual Learning by Coevolutionary Fea-

ture Synthesis. IEEE Trans. on Systems, Man, and Cybernetics, Part B:

Cybernetics. 35:409-425.
Kubaty, T. and Rowiski, L. (no date)Mine counter vehicles for Baltic Navy.

Internet, http://www.underwater.pg.gda.pl.
Lang, R.I.W. (2000)A Future for Dynamic Neural Networks. University of

Reading, CYB/1/PG/RIWL/V1.0.
Luke, S. and Spector, L. (1996) Evolving Graphs and Networks with Edge

Encoding: Preliminary Repor. In: John R. Koza, ed., Late Breaking Pa-

pers at the Genetic Programming 1996 Conference., Stanford University,
CA, USA. Stanford Bookstore, 117-124.

Miller, G.F., Todd, P.M. and Hegde S.U. (1989) Designing Neural Net-
works Using Genetic Algorithms. In: J.D. Schaffer, ed., Proc. of the Third
International Conference on Genetic Algorithms. Morgan Kaufmann, San
Mateo, 379-384.

Moriarty, D. E. (1997)Symbiotic Evolution of Neural Networks in Sequen-

tial Decision Tasks. PhD thesis, The University of Texas at Austin, TR
UT-AI97-257.

Nolfi, S. and Parisi, D. (1992)Growing neural networks. In: C.G. Langton,
ed., Artificial Life III. Addison-Wesley.

Nordin, P., Banzhaf, W. and Francone, F. (1999) Efficient Evolution of
Machine Code for CISC Architectures using Blocks and Homologous Cros-
sover. In: L. Spector et al., eds., Advances in Genetic Programming III.



Building neuro-controllers for autonomous underwater vehicles with Assembler Encoding 285

MIT Press, 275-299.
Potter, M. (1997) The Design and Analysis of a Computational Model of

Cooperative Coevolution. PhD thesis, George Mason University, Fairfax,
Virginia.

Potter, M. A. and De Jong, K. A. (2000)Cooperative coevolution: An ar-
chitecture for evolving coadapted subcomponents. Evolutionary Compu-

tation 8(1), 1-29.
Praczyk, T. (2007) Evolving co-adapted subcomponents in Assembler En-

coding. International Journal of Applied Mathematics and Computer Sci-

ence 17(4)
Praczyk, T. (2008) Modular networks in Assembler Encoding. Computa-

tional Methods in Science and Technology, CMST 14(1), 27-38.
Praczyk, T. (2009)Concepts of learning in Assembler Encoding. Archives of

Control Science, 18(3), 323-337 (2008)
Praczyk, T. (2009) Using assembler encoding to solve inverted pendulum

problem. Computing and Informatics 28, 895-912.
Praczyk, T. (2010) Searching for optimal size neural networks in assembler

encoding. Control and Cybernetics 39(4), 1193-1215.
Praczyk, T. (2011) Forming Neural Networks by Means of Assembler En-

coding. Intelligent Automation and Soft Computing 17(3), 319-331.
Praczyk, T. and Szymak, P. (2011) Decision System for a Team of Au-

tonomous Underwater Vehicles - Preliminary Report. Neurocomputing

74(17), 3323-3334.
Stanley, O. (2004)Efficient Evolution of Neural Networks Through Complex-

ification. PhD thesis, Department of Computer Science, The University
of Texas at Austin, Technical Report AI-TR-04-314.

Szymak, P. (2006) Using of fuzzy logic method to control of underwater ve-
hicle in inspection of oceanotechnical objects. Polish Neural Network So-

ciety, Artificial Intelligence and Soft Computing. Academic Publishing
House EXIT, 163-168.

Szymak, P. (2010) Simplified mathematical model of underwater vehicle and
its control system (in Polish). Pomiary, Automatyka i Robotyka, 2/2010,
Industrial Research Institute for Automation and Measurements, 372-379.

A. Appendix 1 - List of operations used in the experi-

ments

CHGFF - Update of a fragment of NDM above the diagonal. New values for the
elements of the matrix are located in the data part of AEP

CHGC0 - Update of a fragment of a column of NDM. As before, new values for
the elements of the matrix are located in the data part of AEP

CHGC1 - like CHGC0, the difference is that all the updated elements have the same
value
CHGR0 - like CHGC0, the difference is that the update refers to the row of NDM

CHGR1 - like CHGC1



286 T.Praczyk, P. Szymak

CHGM0 - Update of a block of elements in NDM. Elements are updated in
columns, in turn, one after another. New values for the elements are located in
data part of AEP
CHGM1 - like CHGM0, the difference is that all the updated elements have the same
value


