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Abstract: The paper addresses the problem of reducibility of
nonlinear discrete-time systems, described by implicit higher order
difference equations where no a priori distinction is made between
input and output variables. The reducibility definition is based on
the concept of autonomous element. We prove necessary reducibility
condition, presented in terms of the left submodule, generated by the
row matrix, describing the behavior of the linearized system, over
the ring of left difference polynomials. Then the reducibility of the
system implies the closedness of the submodule, like in the linear
time-invariant case. In the special case, when the variables may be
specified as inputs and outputs and the system equations are given
in the explicit form, the results of this paper yield the known results.
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1. Introduction

The standard way to look at control systems is from the input-output (i/o) point
of view. Input corresponds to action (cause) and output to reaction (effect).
However, laws of physics merely impose relations on the system variables but
do not inherently involve signal flows. Therefore, the behavioral model treats
all the system variables on an equal footing. Partitioning the variables into
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inputs and outputs is important in numerous situations, like feedback control,
but in modeling, including the problem of system reduction that we study in this
paper, it is unnecessary. Behavioral modeling does not eliminate input-output
models but places them in a larger context. Note also that the partitioning
into inputs and outputs depends heavily on the purpose for which the model is
used, and is sometimes just impossible. One typical example is diode which is
neither current nor voltage driven (Willems, 2007); many more may be found in
Polderman and Willems (1998) and Willems (2007). Though the i/o approach
is still a mainstream in control theory, the behavioral approach is gaining more
and more popularity during the recent years. Van der Shaft (2011) addresses
the problem of state space realization from external system description based
on the linear behavioral model. Such models are popular also in the theory
of linear parameter–varying systems (Toth, 2010). Note that if we discretize
a nonlinear electrical (e.g. RLC) circuit, we get the difference equation with
external variables being current and voltage. Then, having the electric circuit
model described by the second order difference system one can study its behavior
by checking its reducibility. Another possibility is to study the behavior of
a discrete–time macro–economic model that relates the product output, the
growth rate of money and the inflation rate.

Reducibility is an important system property since it allows for replacing the
original system equation by another equation of lower order, being in certain
sense equivalent to the original system description. Reducibility and system
reduction have been studied earlier for discrete–time nonlinear systems in Halas
et al.(2009) and Kotta and Tõnso (2012) (for the continuous-time case, see, for
example, Conte et al., 2007 and the references therein). The main difference
between Halas et al. (2009); Kotta and Tõnso (2012) and our paper is that
we consider implicit difference equation and do not distinguish the input and
output variables. This is the reason why, for instance, in Halas et al. (2009)
the conditions are given in terms of the greatest common left devisor of two left
difference polynomial matrices but our condition is presented in terms of the left
submodule, generated by the matrix over the ring of left difference polynomials.

The goal of this paper is to extend the results on reducibility for discrete-
time nonlinear systems where the system model does not distinguish between
inputs and outputs. That is, we work with the system model used in the be-
havioral approach. Like in Halas et al.(2009) and Kotta and Tõnso (2012), our
definition of reducibility is based on the concept of autonomous element (Pom-
maret, 2001). Again, like in Halas et al.(2009), we use module theory to present
the necessary reducibility condition. However, our setup is different from that
in Halas et al.(2009) and whereas Halas et al.(2009) assume only rational sys-
tems, we address analytic systems. Note that the algebraic module theory has
been used earlier in the studies of structural properties (including controlla-
bility) of linear systems with time-varying coefficients, see for example Fliess
(1990); Bourles (2005); Marinescu and Bourles (2009) and also in the studies
of linear systems, governed by partial differential equations (Pommaret, 2001).
The module-theoretic setting of linear systems, developed by Fliess and the
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behavioral theory, developed by Willems, are shown to be strictly dual, if the
signal space W is a cogenerator (Bourles, 2005). Finally, note that already in
Blomberg and Ylinen (1983) the relationship between the system solutions (be-
havior) and the modules, defined by linear time-invariant system, was pointed
out.

As said above, the goal is to find reducibility conditions for implicit non-
linear difference equation in several system variables, not divided into inputs
and outputs. We will show that one can associate with such a system a row
polynomial matrix over the ring of left difference polynomials. This matrix de-
scribes the behavior of the linearized system. The set of row matrices has the
mathematical structure of a module, so reducibility of difference systems from
a behavioral point of view means working with modules over the ring of left
difference polynomials. Similarly as in Willems (2007) by the behavior of the
system we mean the set of its solutions, so the definition of autonomous element
given for instance in Kotta et al. (2001) is presented here in the equivalent form.
Taking the algebraic ideals we compare the set of solutions of two equations de-
scribing the system, one is the original equation and another is related to the
autonomous element.

The paper is organized as follows. The next section describes the differ-
ence rings and their ideals associated with the implicit equation defined by the
discrete-time system. In Section 3 we introduce the non-commutative ring of
left difference polynomials and then present the polynomial description of the
considered system. Section 4 is devoted to giving the necessary reducibility
condition and to showing an illustrative example that describes our result. In
Section 5 conclusions are drawn and possible future research direction is sug-
gested.

2. Difference rings

Let s > 2 and A denote the ring of analytic functions in a finite number of

variables from the set
{
w

[k]
i , k ∈ Z, i = 1, . . . , s

}
, where w

[0]
i := wi. Denote

w := (w1, . . . , ws) and w[k] :=
(
w

[k]
1 , . . . , w

[k]
s

)
. Then for the function F de-

pending on w[−k], . . . , w[−1], w, w[1], . . . , w[l] the shift operator δ : A → A is
defined as follows

δ(F )
(
w[−k+1], . . . , w[−1], w, w[1], . . . , w[l+1]

)
:=

F
(
w[−k+1], . . . , w[−1], w, w[1], . . . , w[l+1]

)
, (1)

and δ−1 : A → A is given by

δ−1(F )
(
w[−k−1], . . . , w[−1], w, w[1], . . . , w[l−1]

)
=

F
(
w[−k−1], . . . , w[−1], w, w[1], . . . , w[l−1]

)
. (2)
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Then, δw
[k]
i = w

[k+1]
i and δ−1w

[k]
i = w

[k−1]
i for i = 1, 2, . . . , s and k ∈ Z. Note

that A is a difference ring with the shift operator δ, being an automorphism
(injective and onto). We will use sometimes the alternative shorter notations
δ(F ) = F+ and δ−1(F ) = F−.

Let S be a multiplicative subset of the ring A, i.e. 1 ∈ S and if a ∈ S and
b ∈ S, then ab ∈ S. Assume that S is invariant with respect to both δ and δ−1,
i.e. δma ∈ S for all a ∈ S and m ∈ Z. Then one may define, as usually, the
localization of the ring A at S

Â := S−1A =
{a
b
| a ∈ A and b ∈ S

}
. (3)

The operator δ : A → A induces the operator δ : Â → Â by

δ
(a
b

)
:=

δ(a)

δ(b)
. (4)

Observe that Â is an inversive difference ring with the shift operator δ and S
may be interpreted as a subset of Â, because of the natural injection a 7→ a

1 .
Now let us consider the nonlinear system described by the following differ-

ence equation

f(w(k), w(k + 1), w(k + 2), . . . , w(k + n)) = 0 , k > 0 , (5)

where f ∈ Â is a function in variables w,w[1], . . . , w[n] and w[i] is replaced by
w(k + i). Then, behavior of system (5) is given by

B = {w : N0 → Rs | f(w(k), w(k + 1), . . . , w(k + n)) = 0 for all k ∈ N0} ,

where N0 = {0, 1, 2, 3, . . .}. Assume that system (5) has at least one equilibrium
point we = (we

1, . . . , w
e
s).

Let I := 〈f〉 be the smallest ideal of Â that contains all forward and back-
ward shifts of the function f , i.e. I is generated by

{
δkf, k ∈ Z

}
. (6)

Since I is closed with respect to all shifts of the function f , I is called the
difference ideal. Moreover, the difference ideal I has the following property: for
every element ϕ ∈ Â, δϕ ∈ I implies ϕ ∈ I, so it is called reflexive, see Halas et
al. (2009). Assume that
A1: I is prime, i.e. if a · b ∈ I then a ∈ I or b ∈ I,
A2: I is proper, i.e. different from the entire ring.

Note that assumptions A1 and A2 for explicit rational systems are satisfied if
and only if the system equations are submersive, that is the equation contains
at least one variable wi at time instant k.

Observe that if the assumption A1 is satisfied, then function f cannot be
decomposed into a product of simpler functions.
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Properness of the ideal I is equivalent to the condition

S ∩ I = ∅ . (7)

In particular, the numerator of f does not belong to S.
Note that I may be considered as a subset of S̃−1A for some other multi-

plicative set S̃. For that reason, when the multiplicative set is not fixed, we will
write IS = 〈f〉

S
if the function f generates the difference ideal of S−1A and

I
S̃

= 〈f〉
S̃

in the case when f generates the difference ideal of S̃−1A.
The next proposition given in Kotta et al. (2011) shows that if IS is prime

and proper then I
S̃

is also prime and proper. Later, this will be used in showing
the properties of the subset of polynomials with coefficients belonging to the
ideal I

S̃
(see Proposition 2 in Section 3 below).

Proposition 1. Assume that S1 and S2 are multiplicative subsets of A invari-
ant with respect to δ and δ−1 and S1 ⊂ S2. Let f ∈ S−1

1 A and IS1 = 〈f〉
S1

be

a prime and proper difference ideal of the ring S−1
1 A. Let S2 ∩ IS2 = ∅. Then

(i) A ⊂ S−1
1 A ⊂ S−1

2 A
(ii) IS2 is a prime and proper difference ideal of S−1

2 A.

Note that it is possible to extend S to some larger subset S̃ ⊂ Â such that
S̃ ∩ I

S̃
= ∅. Then, by Proposition 1 we get S−1A ⊂ S̃−1A. Since we allow

some variables to be in the denominator, we choose S̃ as large as we need in
our computations. In fact, all generators of S̃ are given by the denominators of
two functions: the function f and the autonomous element fr which is related
to the reducibility problem of the considered system, see Section 4. Then the
localization of the ring A at S̃ is denoted by

Ã := S̃−1A =
{a
b
| a ∈ A and b ∈ S̃

}
(8)

and by Proposition 1 we have Â ⊂ Ã.

Remark 1. Note that Ã is also an inversive difference ring with the shift oper-
ator δ : Ã → Ã defined by (4). By Proposition 1 we get that IS is a prime and

proper difference ideal of Ã. Therefore, the extension of S to a larger subset S̃
does not change the properties of the difference ideal I

S̃
which is now the ideal

of the bigger difference ring Ã.

If the multiplicative set S is fixed we will write simply I instead of IS , i.e.
the index S is omitted.

Let us now consider an example which illustrates the construction of the
difference rings described above.

Example 1. Consider the following implicit difference equation

(w1(k + 1))
2 − w1(k) · w2(k) = 0, k ∈ N0 . (9)
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Then the behavior of (9) is given by

B =
{
w = (w1, w2) : N0 → R2 | (9) holds for all k ∈ N0

}
.

The left-hand side of (9) corresponds to the function

f(w1, w2, w
[1]
1 ) =

(
w

[1]
1

)2
− w1 · w2 .

Note that S = {1} and f ∈ Â = A, where A is the ring of analytic functions in

a finite number of the variables from the set {w
[k1]
1 , w

[k2]
2 , k1, k2 ∈ Z}, w

[0]
i = wi,

i = 1, 2. Using the operators δ and δ−1 defined by (1) and (2), respectively, one
gets

δw
[ki]
i = w

[ki+1]
i and δ−1w

[ki]
i = w

[ki−1]
i

and A is the difference ring with the shift operator δ. Moreover, in A we have

the difference ideal I = 〈f〉, so I is generated by
(
w

[k+1]
1

)2
− w

[k]
1 · w

[k]
2 ∈ A,

k ∈ Z, i.e. each element ϕ ∈ I has the following form:

ϕ =
∑

k

ak

((
w

[k+1]
1

)2
− w

[k]
1 · w

[k]
2

)
,

where ak ∈ A. At this point, there is no need to extend S to a larger subset
but this extension can be necessary later in the computation when we would like
some variables to be in denominators.

Note that by Proposition 1 I
S̃
is the difference ideal of each bigger difference

ring S̃−1A of the form (8) for the multiplicative set S̃ such that S ⊂ S̃ and all
properties of IS are also fulfilled for I

S̃
.

3. Non-commutative ring of polynomials and modules over

the ring

The ring Ã and the shift operator δ induce the ring of polynomials in a formal
variable ∂ over Ã. A left difference polynomial is an element that can be uniquely
written in the form p(∂) =

∑n

i=0 pi∂
i, pi ∈ Ã, where p(∂) 6= 0 if and only if

at least one of the coefficients pi, i = 0, 1, . . . , n, is nonzero. If pn 6≡ 0, then
the positive integer n is called the degree of the left difference polynomial p
and is denoted by deg (p). Moreover, we set deg 0 = −∞. The addition of left

difference polynomials is defined in the standard way. For a ∈ Ã, define the
multiplication by ∂ ·a = δ(a)∂ and a·∂ = a∂. This rule can be uniquely extended
to multiplication of monomials by (a∂n) · (b∂m) = aδn(b)∂n+m and then, to
arbitrary polynomials. The set of all left difference polynomials with so defined
addition and multiplication is a ring with identity. Denote this ring by Ã[∂] ={∑l

i=0 ai∂
l, l ∈ N0, ai ∈ Ã

}
. In general, the ring Ã[∂] is non-commutative,
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since for arbitrary a ∈ Ã, a 6= const, we have a · ∂ 6= ∂ · a. Note that for
arbitrary nonzero elements a, b ∈ Ã the product a · b 6= 0, so the coefficient ring
Ã is an integral ring, i.e. it has no zero divisors. Then for arbitrary nonzero
polynomials p, q ∈ Ã[∂] we get p(∂) · q(∂) 6= 0 and consequently the ring Ã[∂] is
also an integral ring, and additionally, deg (p · q) = deg (p) + deg (q).

Now, we define the operator δ̃ : Ã[∂] → Ã[∂] as follows

δ̃

(
∑

i

ai∂
i

)
:=
∑

i

δ(ai)∂
i+1 . (10)

Remark 2. The definition of the operator δ̃ : Ã[∂] → Ã[∂] given by formula (10)

can be rewritten in terms of left difference polynomials as follows δ̃ (p(∂)) =

∂ ·p(∂), i.e. the image of the polynomial p with respect to the operator δ̃ is equal
to a product of the monomial ∂ and the polynomial p.

Over the ring Ã[∂] one can define the free module, i.e. a module with a basis,
generated by dwi, i = 1, 2, . . . , s, i.e.

E := Ã[∂]sdw , (11)

where dw =
[
dw1, . . . , dws

]T
. The differential operator d : Ã → E for

arbitrary nonconstant function g ∈ Ã, which depends on wi, w
[1]
i , . . . , w

[mi]
i ,

i = 1, 2, . . . , s, is defined by

dg :=

s∑

i=1

mi∑

k=0

gki∂
kdwi ∈ E , (12)

where gki := ∂g

∂w
[k]
i

∈ Ã and
∑mi

k=0 gki∂
k ∈ Ã[∂]. Let m = maximi, then (12)

can be rewritten in the matrix form as

dg =

m∑

k=0

gk∂
kdw ∈ E ,

where gk :=
[
gk1 . . . gks

]
∈ Ãs and

∑m
k=0 gk∂

k ∈ Ã[∂]s is a row polynomial
matrix.

Proposition 2. If I is a prime and proper difference ideal of Ã, then

I[∂] :=

{
n∑

i=0

ϕi∂
i : ϕi ∈ I, i = 1, 2, . . . , n

}

is a prime and proper difference ideal of Ã[∂].

Proof. Note that for arbitrary monomials α∂k ∈ Ã[∂] and β∂l ∈ I[∂] we get
α∂k ·β∂l = αβ̃∂k+l ∈ I[∂] and β∂l ·α∂k = βα̃∂k+l ∈ I[∂]. Then one can extend

this multiplication to arbitrary polynomials and I[∂] is an ideal in Ã[∂].
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Moreover, if α∂k · β∂l = αδkβ∂l+k ∈ I[∂], then αδkβ ∈ I. If I is prime,
then α ∈ I or δkβ ∈ I. Since I is a difference ideal, we get α ∈ I or β ∈ I
and consequently, α∂k ∈ I[∂] or β∂l ∈ I[∂]. If (p0 + p1∂) · (q0 + q1∂) = p0q0 +(
p0q1 + p1q

+
0

)
∂ + p1q

+
1 ∂

2 ∈ I[∂], then using the assumption that I is a prime
difference ideal we get





p0 ∈ I or q0 ∈ I

(p0 ∈ I or q1 ∈ I) and (p1 ∈ I or q0 ∈ I)

p1 ∈ I or q1 ∈ I

. (13)

Note that (13) is equivalent to

(p0 ∈ I and p1 ∈ I) or (q0 ∈ I and q1 ∈ I) ,

so p0 + p1∂ ∈ I[∂] or q0 + q1∂ ∈ I[∂]. The above computations can be extended
for arbitrary polynomials p, q ∈ I[∂] and one gets that if p(∂) · q(∂) ∈ I[∂], then
p(∂) ∈ I[∂] or q(∂) ∈ I[∂], so the ideal I[∂] is prime. Assuming that I is proper,

we get that I 6= Ã, so I[∂] 6= Ã[∂]. Therefore I[∂] is a proper ideal of Ã[∂].

Let Ã[∂]/I[∂] be the quotient ring of Ã[∂] modulo I[∂]. Note that Ã[∂]/I[∂]

consists of cosets [p]I[∂] = p+ I[∂] for p ∈ Ã[∂]. In Ã[∂]/I[∂] we define “+” and
“·” by the rules [p1]I[∂]+[p2]I[∂] := [p1+p2]I[∂] and [p1]I[∂] · [p2]I[∂] := [p1 ·p2]I[∂].
These definitions do not depend on the choice of representative in a coset. Note
that in particular, [f ]I[∂] = 0. By assumptions A1 and A2 I is a prime and
proper difference ideal, so from Proposition 2 ideal I[∂] is also prime and proper.

Consequently, Ã[∂]/I[∂] is an integral ring, i.e. has no zero divisors.

3.1. Polynomial matrix description of the system

By applying the differential operator d to (5) we get

∂f

∂(w,w[1], . . . , w[n])




dw
dw[1]

...

dw[n]


 = 0 . (14)

From (12) we get dw[k] = ∂kdw, k > 0. Since w[k] = δkw, we have dδkw =
∂kdw, k > 0, so the operators d and δk commute. Then (14) can be rewritten
as

n∑

k=0

pk∂
kdw = 0 ,

where pk := ∂f

∂w[k] ∈ Ãs and consequently,
∑n

k=0 pk∂
k ∈ Ã[∂]s. Therefore, the

system (5) can be expressed in terms of left difference polynomials as follows

P (∂)dw = 0 , (15)
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where P (∂) = [p1(∂), . . . , ps(∂)] ∈ Ã[∂]s is a row polynomial matrix and pi(∂) =∑n
k=0 pki∂

k ∈ Ã[∂], pki = ∂f

∂w
[k]
i

and i = 1, 2, . . . , s.

From now on consider the quotient ring Ã[∂]/I[∂], and take [P (∂)]I[∂] ∈(
Ã[∂]/I[∂]

)s
. Note that the set of s–dimensional polynomial row vectors

(
Ã[∂]/I[∂]

)s
has the mathematical structure of a module. Let M ⊂

(
Ã[∂]/I[∂]

)s

be the Ã[∂]/I[∂]–submodule generated by the elements of row polynomial ma-

trix [P (∂)]I[∂], i.e. M = gen [P (∂)]I[∂]. All Ã[∂]/I[∂]–submodules of
(
Ã[∂]/I[∂]

)s

are finitely generated and free and thus we can speak of the dimension of such
a submodule.

Definition 1. (Willems, 2007) The closure of an Ã[∂]/I[∂]–submodule M of(
Ã[∂]/I[∂]

)s
is defined as

M :=

{[
P̂
]
I[∂]

∈
(
Ã[∂]/I[∂]

)s
| ∃ [π]I[∂] ∈ Ã[∂]/I[∂], [π]I[∂] 6= 0, [P ]I[∂] ∈ M :

[P ]I[∂] = [π]I[∂] ·
[
P̂
]
I[∂]

}
.

M is an Ã[∂]/I[∂]-submodule of
(
Ã[∂]/I[∂]

)s
.

A submodule M of
(
Ã[∂]/I[∂]

)s
is closed if and only if M = M , i.e. M is

not properly contained in any Ã[∂]/I[∂]-submodule of
(
Ã[∂]/I[∂]

)s
of the same

dimension.
Now let us show how the submodule M looks like in the following examples.

Example 2. The polynomial matrix description of (9) is as follows:

[
2w

[1]
1 ∂ − w2, −w1

]
·

[
dw1

dw2

]
= 0 .

Then I[∂] =

{∑n

i=0 ϕi∂
i : ϕi ∈

〈(
w

[1]
1

)2
− w1w2

〉
, i = 1, 2, . . . , n

}
⊂ A[∂].

Let M be the A[∂]/I[∂]-submodule of (A[∂]/I[∂])
2
generated by the row poly-

nomial matrix [P (∂)]I[∂] =

[[
2w

[1]
1 ∂ − w2

]
I[∂]

, [−w1]I[∂]

]
. Since deg (−w1) =

0, M = M and M is closed. Note that in the considered example there is no
need to extend the difference ring Â = A.

The next example shows that the extension of S to a larger subset S̃ is
necessary.
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Example 3. Consider the following implicit difference equation

w1(k + 1) (w1(k + 2))2 − w1(k) · w2(k) · w2(k + 1) = 0, k ∈ N0 . (16)

The left-hand side of (16) corresponds to the function

f(w1, w2, w
[1]
1 , w

[1]
2 , w

[2]
1 ) = w

[1]
1

(
w

[2]
1

)2
− w1 · w2 · w

[1]
2 .

Of course, at the beginning S = {1} and f ∈ Â = A where A is the ring of ana-

lytic functions in a finite number of variables from the set {w
[k1]
1 , w

[k2]
2 , k1, k2 ∈

Z}. In the computations that will follow, we have to extend S to some larger

subset S̃ that is generated by
{
w

[k]
1 , k ∈ Z

}
and the difference ideal

I
S̃

=

〈
w

[1]
1

(
w

[2]
1

)2
− w1 · w2 · w

[1]
2

〉

S̃

is the ideal of Ã = S̃−1A, i.e. each element ϕ ∈ I
S̃
has the following form:

ϕ =
∑

k

ak

(
w

[1]
1

(
w

[2]
1

)2
− w1 · w2 · w

[1]
2

)
,

where ak ∈ Ã while IS is the ideal of A and for each β ∈ IS

β =
∑

k

bk

(
w

[1]
1

(
w

[2]
1

)2
− w1 · w2 · w

[1]
2

)
,

where bk ∈ A. Therefore, I
S̃
6= IS while the generators are the same for both

ideals.

Let us take S̃ and define I := I
S̃
. We have the following polynomial matrix

description of (16)

[
2w

[2]
1 w

[1]
1 ∂2 +

(
w

[2]
1

)2
∂ − w2w

[1]
2 , −w1w2∂ − w1w

[1]
2

]
·

[
dw1

dw2

]
= 0 .

Then I[∂] =
{∑n

i=0 ϕi∂
i : ϕi ∈ I, i = 1, 2, . . . , n

}
⊂ Ã[∂].

Let M be the Ã[∂]/I[∂]-submodule of
(
Ã[∂]/I[∂]

)2
generated by the row poly-

nomial matrix [P (∂)]I[∂] =
[
[p1(∂)]I[∂] , [p2(∂)]I[∂]

]
, where p1(∂) = 2w

[1]
1 w

[2]
1 ∂2+
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(
w

[2]
1

)2
∂ − w2w

[1]
2 and p2(∂) = −w1w2∂ − w1w

[1]
2 . Since

(
−w1w2∂ − w1w

[1]
2

)
·

(
−

2w2

w
[1]
1

∂ +
w2

w1

)
=

2w1w2w
[1]
2

w
[2]
1

∂2+
w1w2w

[1]
2

w
[1]
1

∂−w2w
[1]
2

= w1w2w
[1]
2

(
2

w
[2]
1

∂2 +
1

w
[1]
1

∂

)
− w2w

[1]
2 =

=

(
w

[1]
1

(
w

[2]
1

)2
+

(
w1w2w

[1]
2 − w

[1]
1

(
w

[2]
1

)2))
(

2

w
[2]
1

∂2 +
1

w
[1]
1

∂

)
−w2w

[1]
2

≡ w
[1]
1

(
w

[2]
1

)2
(

2

w
[2]
1

∂2 +
1

w
[1]
1

∂

)
− w2w

[1]
2 mod I[∂] ,

we get

[p2(∂)]I[∂] ·

[
−

2w2

w
[1]
1

∂ +
w2

w1

]

I[∂]

= [p1(∂)]I[∂] .

Consequently, the Ã[∂]/I[∂]-submodule M is generated by the row polynomial

matrix
[
P̂ (∂)

]
I[∂]

=

[[
− 2w2

w
[1]
1

∂ + w2

w1

]

I[∂]

, [1]I[∂]

]
∈
(
Ã[∂]/I[∂]

)2
and M  

M , so M is not closed. Note that variables w1 and w
[1]
1 are in the denomina-

tor, so in this case the set S must be extended to a larger subset generated by{
w

[k]
1 , k ∈ Z

}
.

4. Reducibility of the discrete-time systems

We are interested in behavior of implicit nonlinear difference equations, so the
reducibility definition introduced in Kotta et al. (2001) and later on considered
in Kotta et al. (2004) is modified here to our purpose.

Definition 2. A nonconstant function fr in Ã is said to be an autonomous
element for system (5) if there exist an integer ν > 1, a constant c, and a
non-zero meromorphic function F with F (c, . . . , c) = 0 such that

(((f ))) = (((F (fr, δfr, . . . , δ
νfr) ))) (17)

and F (fr, δfr, . . . , δ
νfr) ∈ Ã, where (((ϕ))) denotes the algebraic ideal of Ã gener-

ated by the function ϕ ∈ Ã.

In analogy with Conte et al. (2007) and Kotta et al. (2001) the notion of
autonomous variable can be used to define reducibility of nonlinear difference
system (5).
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Definition 3. The discrete-time system (5) is said to be reducible if there

exists a non-zero autonomous element in Ã. Otherwise system (5) is called
irreducible.

If system (5) is reducible, then there exists an autonomous element fr =
fr (w, w[1], . . . , w[m]

)
with m < n, and a non-zero analytic function F such

that

f = kF (fr, δfr, . . . , δ
νfr) , (18)

where ν > 1 and k 6= 0 is an invertible element of Ã (in most cases k = 1).
Since fr 6≡ const and ν > 1, m > 1 and ν + m > n. The equation fr(·) = c
is called a reduced difference equation of (5), where c is some constant which
gives the nontrivial behavior of fr(·) = c, and additionally, c may depend on an
equilibrium point (we

1, . . . , w
e
s) of (5) and F (c, . . . , c) = 0. Then behavior of the

reduced system fr(·) = c is given by

Br = {w : N0 → Rs | fr(w(k), w(k + 1), . . . , w(k + m)) = c for all k ∈ N0} .

Form Definitions 2 and 3 one gets the relation between the sets Br and B.
Note that if fr(·) = c is a reduced equation of (5), then the behavior of the
reduced system is contained in the behavior of the original system, i.e. Br ⊂ B.

The following theorem gives a necessary condition for reducibility of system
(5) in terms of the submodule generated by the left difference polynomials of
the row matrix corresponding to system (5).

Theorem 1. If discrete–time system (5) is reducible, then the Ã[∂]/I[∂]–sub-

module M = gen [P (∂)]I[∂] of the module
(
Ã[∂]/I[∂]

)s
is not closed, i.e. M 6=

M .

Proof. Suppose that the nonlinear system (5) is reducible. Then there exist

functions fr ∈ Ã and F such that (17) holds. Note that

dfr =

m∑

i=0

∂fr
∂w[i]

∂idw .

Let f̃ := F (fr, δfr, . . . , δ
νfr). Then f̃ ∈ Ã and

df̃ =

ν∑

k=0

∂F

∂δkfr
(fr, . . . , δ

νfr) ∂
kdfr

=

ν∑

k=0

∂F

∂δkfr
(fr, . . . , δ

νfr) ∂
k ·

m∑

i=0

∂fr
∂w[i]

∂idw .

Denote P̃ (∂) =
∑m

i=0
∂fr
∂w[i] ∂

i ∈ Ã[∂]s and π(∂) =
∑ν

k=0
∂F

∂δkfr
(fr, . . . , δ

νfr) ∂
k ∈

Ã[∂], where ν > 1 and m < n. Since (18) holds, we get

f = k · f̃ ,
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where k is the invertible element of Ã. Then df = k·df̃+f̃ ·dk and, consequently,

P (∂) = k · π(∂) · P̃ (∂) + f̃ ·Q(∂) , (19)

where Q(∂) =
∑

j
∂k

∂w[j] ∂
j ∈ Ã[∂]. Since

[
f̃
]
I[∂]

= 0 ∈ Ã[∂]/I[∂], we have

[P (∂)]I[∂] = [k · π(∂)]I[∂] ·
[
P̃ (∂)

]
I[∂]

.

Then M = gen [P (∂)]I[∂]  gen
[
P̃ (∂)

]
I[∂]

⊆ M ⊆
(
Ã[∂]/I[∂]

)s
. Hence, M is

not closed.

Remark 3. We think that the necessary condition of reducibility of system (5)
given in Theorem 1 is also a sufficient one. We suppose that in order to get the
autonomous element for the considered system we need to integrate the one-form
associated with the representatives of the coset which generates the submodule
M . Then having an autonomous element one can try to find an analytic function
F such that (17) holds, see Example 4 below. We think that the function F
could be related to the difference polynomial that is representative of coset [π]I[∂]
which describes the relation between M and M . Unfortunately, in general we
have found some problems in proving the existence of the autonomous element
fr and the analytic function F , so we leave it for our future work.

Now let us consider an example where our result is presented.

Example 4. Consider the following equation

w
[2]
1 − w1w2w

[1]
2 = 0 ⇔ w++

1 − w1w2w
+
2 = 0 . (20)

At the beginning, since f(w1, w2, w
+
2 , w

++
1 ) = w++

1 −w1w2w
+
2 , we get S = {1},

but in the computations that will follow, and taking into account the formula
of the autonomous element, we have to extend S to some larger subset S̃ that

is generated by
{
w

[k]
i , k ∈ Z, i = 1, 2

}
. Then Â = A is the ring of analytic

functions in a finite number of variables w
[m1]
1 , w

[m2]
2 , m1,m2 ∈ Z and the

difference ideal I =
〈
w++

1 − w1w2w
+
2

〉
is the ideal of Ã = S̃−1A. Compute the

polynomial matrix description of (20) as follows

[
∂2 − w2w

+
2 , −w1w2∂ − w1w

+
2

]
·

[
dw1

dw2

]
= 0 . (21)

Then I[∂] =
{∑n

i=0 ϕi∂
i : ϕi ∈

〈
w++

1 − w1w2w
+
2

〉
, i = 1, 2, . . . , n

}
⊂ Ã[∂].

Let M be the Ã[∂]/I[∂]–submodule of
(
Ã[∂]/I[∂]

)2
generated by the row

polynomial matrix [P (∂)]I[∂] =
[
[p1(∂)]I[∂] , [p2(∂)]I[∂]

]
, where p1(∂) = ∂2 −

w2w
+
2 and p2(∂) = −w1w2∂ − w1w

+
2 . Since

[p1(∂)]I[∂] = [p2(∂)]I[∂] ·

[
−

w2

w+
1

∂ +
w2

w1

]

I[∂]

, (22)
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the Ã[∂]/I[∂]–submodule M is generated by the row polynomial matrix[
P̂ (∂)

]
I[∂]

=

[[
− w2

w
+
1

∂ + w2

w1

]
I[∂]

, [1]I[∂]

]
∈
(
Ã[∂]/I[∂]

)2
and M  M , so M

is not closed. Since the necessary condition of reducibility is satisfied, by The-
orem 1 the system (20) might be reducible. We conjecture that the condition
M  M implies the reducibility of the considered system. Let us see how the
autonomous element fr and the function F can be found from the relations be-
tween submodules M and M .

In order to find the autonomous element let us take the representative of the
generator of M and multiply it by the vector dw. Then we have

P̂ (∂)dw =

(
−

w2

w+
1

∂ +
w2

w1

)
dw1 + dw2 ∈ E . (23)

One can check that P̂ (∂)dw = − w2

w
+
1

dw+
1 + w2

w1
dw1 + dw2 is a closed one-form

and multiplying it by the integrating factor −
w

+
1

w1w
2
2
we get

1

w1w2
dw+

1 −
w+

1

w2
1w2

dw1 −
w+

1

w1w2
2

dw2 = d

(
w+

1

w1w2

)
= dfr .

Then

[P (∂)]I[∂] =

[(
−w1w2∂ − w1w

+
2

)(
−
w1w

2
2

w+
1

)
·

(
−

w+
1

w1w2
2

)
P̂ (∂)

]

I[∂]

=

[
w+

1 w
+
2

(
w1w2w

+
2

w++
1

∂ +

(
w1w2

w+
1

)2
)]

I[∂]

·
[
P̃ (∂)

]
I[∂]

=

[
w+

1 w
+
2

(
∂ +

(
1

fr

)2
)]

I[∂]

·
[
P̃ (∂)

]
I[∂]

,

where P̃ (∂) = −
w+

1

w1w
2
2
· P̂ (∂). Since

(
∂ +

(
1
fr

)2)
dfr = d

(
f+
r − 1

fr

)
, we get

k = w+
1 w

+
2 and F (fr, f

+
r ) = f+

r − 1
fr
. Note that F is not well defined at 0, but

F (1, 1) = F (−1,−1) = 0.

Hence, there exists an autonomous element fr =
w

+
1

w1w2
and the function

F (fr, f
+
r ) = f+

r − 1
fr

such that

w++
1 − w1w2w

+
2 = w+

1 w
+
2

(
f+
r −

1

fr

)
.

Since S̃ ∋ w+
1 w

+
2 6= 0, we get

(((f ))) = (((F (fr, f
+
r )))) .
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Then system (20) can be reduced around (we
1, w

e
2) = (1, 1) to w+

1 −w1w2 = 0
(i.e. fr(w1, w2, w

+
1 ) = 1), but around (we

1, w
e
2) = (1,−1) the reduced equation of

(20) has the form w+
1 + w1w2 = 0 (i.e. fr(w1, w2, w

+
1 ) = −1).

Note that the behavior of the reduced system w+
1 − w1w2 = 0 is given by

Br1 =

{
w : N0 → R2 | w(n) =

(
n−1∏

k=0

w2(k)w1(0), w2(n)

)
, n ∈ N0

}
,

where wi(n) 6= 0, i = 1, 2, and each element of Br1 satisfies equation (20) because

w1(n + 2) =
n+1∏

k=0

w2(k)w1(0) = w2(n + 1)w2(n)w1(n) .

Therefore, Br1 ⊂ B. Moreover, for w+
1 + w1w2 = 0 we get

Br2 =

{
w : N0 → R2 | w(n) =

(
(−1)n

n−1∏

k=0

w2(k)w1(0), w2(n)

)
, n ∈ N0

}
,

where wi(n) 6= 0, i = 1, 2, and for all elements of Br1 equation (20) is satisfied,
since

w1(n + 2) = (−1)n+2
n+1∏

k=0

w2(k)w1(0) = w2(n + 1)w2(n)w1(n) .

Hence, Br2 ⊂ B. Note that
(

(−1)n
∏n−1

k=0 w2(k)w1(0), w2(n)
)
∈ B and

(
(−1)n

∏n−1
k=0 w2(k)w1(0), w2(n)

)
6∈ Br1 , so B 6⊂ Br1, and similarly, B 6⊂ Br2

because
(∏n−1

k=0 w2(k)w1(0), w2(n)
)
∈ B and

(∏n−1
k=0 w2(k)w1(0), w2(n)

)
6∈ Br2.

Let us now describe the situation when input and output variables are speci-
fied. For simplicity we restrict our explanation to single input and single output
variables.

Remark 4. Consider the nonlinear discrete-time system described by the fol-
lowing higher order input-output (i-o) difference equation

φ (y(k), y(k), . . . , y(k + n), u(k), u(k + 1), . . . , u(k + l)) = 0, k > 0

⇔ φ
(
y, y[1], . . . , y[n], u, u[1], . . . , u[l]

)
= 0 , (24)

where u is the input, y is the output of the system, n, l ∈ N, l < n and the
function φ that relates the input, the output and a finite number of their forward
time shifts, is a real analytic function belonging to the ring Â. Then the system
(24) can be expressed in terms of left difference polynomials as follows

[
Py(∂) Pu(∂)

]
·

[
dy
du

]
= 0 , (25)
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where
Py(∂) ∈ Ã[∂], Pu(∂) ∈ Ã[∂] and Py(∂) =

∑n

k=0
∂φ

∂δky
∂k, Pu(∂) =

∑s

ℓ=0
∂φ

∂δℓu
∂ℓ.

Hence s = 2, w = [y, u]
T
and P = [Py, Pu]. Moreover, I = 〈φ〉 and the Ã[∂]/I[∂]

-submodule M = gen
[
[Py(∂)]

I[∂] , [Pu(∂)]I[∂]

]
of the module

(
Ã[∂]/I[∂]

)2
. Since

the closedness of M is equivalent to the fact that polynomials Py and Pu are left
coprime, from Theorem 1 we get that the reducibility of (24) implies polynomials
Py and Pu have a common left devisor which is a polynomial of degree greater
than 0. Note that in Kotta and Tõnso (2012) it was proved that the system
(24) is reducible if and only if the polynomial matrices Py and Pu are not left
coprime. It is the reason we suppose the closedness of M is equivalent to the
irreducibility of the considered system.

Note that in the case of the linear difference equations one gets the polynomi-
als with coefficients being real numbers, i.e. pki = ∂f

∂w
[k]
i

∈ R and i = 1, 2, . . . , s.

Let us now describe this situation.

Remark 5. Consider the linear discrete-time system described by the following
higher order difference equation

r0 · w(k) + r1 · w(k + 1) + . . . + rn · w(k + n) = 0

⇔ r0 · w + r1 · w
[1] + . . . + rn · w[n] = 0 , (26)

where ri ∈ R1×s and w[i] = w(k+ i) ∈ Rs×1 for i = 0, 1, . . . , n. Then the system
(26) can be expressed in terms of left difference polynomials as follows

(r0 + r1∂ + . . . + rn∂
n) dw = 0 . (27)

Then Ã = R and one gets the following row polynomial matrix describing the
system (26):

P (∂) = r0 + r1∂ + . . . + rn∂
n ∈ R[∂]s .

Note that the ring R[∂] is commutative while in general Ã[∂] is noncommutative.
Now we have I =

〈
r0 · w + r1 · w

[1] + . . . + rn · w[n]
〉
and M = gen [P (∂)]I[∂] is

a submodule of the module (R[∂]/I[∂])
s
. The closedness of M in this case can

be checked using various criteria given in Willems (2007).

The symbolic software, implementing the results of this paper, is under de-
velopment. Mathematica functions, allowing for checking the reducibility condi-
tion, and when possible, for finding the reduced system equation, are developed
as a part of nonlinear control package NLControl. The respective functions will
be made available on NLControl website (2013) using webMathematica software,
developed by Wolfram Research. The webMathematica technology offers access
to specific Mathematica applications through a web browser, so that the user
does not need to install Mathematica into a local computer. To use the functions
related to behavioral models on NLControl website, one has to choose Behav-
ioral approach from the left-hand menu and then select either Irreducibility or
Reduction from the submenu.



Reducibility condition for nonlinear discrete-time systems: behavioral approach 345

5. Conclusions

The paper presents the necessary condition for reducibility of the nonlinear
discrete-time system, described by an implicit higher order difference equations
where no distinction is made between input and output variables. This condi-
tion is an extension for nonlinear case of the result from Willems (2007). The
condition is given in terms of the submodule, generated by the row matrix of left
difference polynomials, describing the behavior of the linearized system. Our
future work will be devoted to finding the sufficient condition of reducibility
and to extending the results for discrete-time systems described by the set of
implicit difference equations. We conjecture that the presented condition is also
sufficient.
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transfer equivalence for discrete-time non-linear systems: comparison of
two definitions. International Journal of Control 77(3), 741–747.
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