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1. Introduction

Given a nonempty set X , a function p : X → [0, 1] is said to be a simple

probability distribution (or a lottery) on X provided the set supp (p) := {x ∈
X | p(x) > 0} is finite and

∑

x∈supp (p) p(x) = 1. Elements of X are called
outcomes. A family of all lotteries on X we will denote by ∆(X). Assume
that � is a preference relation on ∆(X). The relation � represents the relative
merits of any two lotteries for a decision maker. According to the classical
result of von Neumann and Morgenstern, every preference relation � on ∆(X)
satisfying some additional assumptions (completeness, transitivity, continuity,
independence) can be represented by a utility function, that is, there exists a
function U : ∆(X) → R such that, for every p, q ∈ ∆(X), we have

p � q ⇐⇒ U(p) ≥ U(q).

Moreover, every such function posseses the Bernoulli utility function, that is, a
function u : X → R such that

U(p) =
∑

x∈supp (p)

p(x)u(x) for p ∈ ∆(X).

It is known that two utility functions U1 and U2 having the Bernoulli utility
functions u1 and u2, respectively, represent the same preference relation over
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lotteries if and only if there exist K ∈ (0,∞) and L ∈ R such that u2(x) =
Ku1(x) + L for x ∈ X . In the sequel we will deal with the case of X = R.

One of the fundamental problems in decision analysis under uncertainty is
to determine the form of a utility function representing a decision maker’s pref-
erence relation over the lotteries. There are several approaches to this problem.
One of them is based on the notion of invariance. Given a non-degenerate in-
terval I, a utility function U : ∆(R) → R having the Bernoulli utility function
u : R → R is said to be invariant with respect to a family of transformations

Γ = {γt : R → R|t ∈ I} (1)

provided, for every t ∈ I, a utility function Ut : ∆(R) → R given by

Ut(p) =
∑

x∈supp (p)

p(x)u(γt(x)) for p ∈ ∆(R)

represents the same preference relation over ∆(R) as U . Since, for every t ∈ I,
u◦γt is the Bernoulli utility function of Ut, a utility function U is invariant with
respect to the family of transformations Γ of the form (1) if and only if there
exist functions K : I → (0,∞) and L : I → R such that

u(γt(x)) = K(t)u(x) + L(t) for x ∈ R, t ∈ I. (2)

It is known (see Pfanzagl, 1959) that a utility function having a continuous
Bernoulli utility function u is invariant with respect to the shift transformation
by an arbitrary real number if and only if u is either a linear or an exponential
function. Recently Abbas (2007), Abbas, Aczél and Chudziak (2009), Abbas
(2010) and Chudziak (2010) have determined the forms of the utility functions
invariant with respect to more general classes of transformations. In particular,
in Abbas (2010), the utility functions invariant with respect to a family of
transformations Γ = {γt : R → R|t ∈ I}, where

γt(x) = v−1(k(t)v(x) + l(t)) for x ∈ R, t ∈ I (3)

with some continuous and strictly monotone function v : R → R and functions
k : I → (0,∞) and l : I → R such that

k(t)v(x) + l(t) ∈ v(R) for x ∈ R, t ∈ I, (4)

have been considered. This family contains, as particular cases, several classes
playing an important role in the utility theory. For more details we refer to
Abbas (2010).

2. The main result

The aim of this paper is to give a complete description of the forms of utility
functions invariant with respect to the family of transformations of the form (3).
In order to avoid a trivial case, we will assume that the family is non-degenerate,
that is - it does not consist just of the identity transformation. The following
theorem is the main result of the paper.
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Theorem 1. Assume that I is a non-degenerate interval and Γ is a non-

degenerate family of transformations of the form (3) with some continuous and

strictly monotone function v : R → R and functions k : I → (0,∞) and

l : I → R satisfying (4). A utility function U : ∆(R) → R having a contin-

uous Bernoulli utility function u : R → R is invariant with respect to the family

Γ if and only if one of the following cases holds:

(i) Γ is arbitrary and

u(x) = av(x) + b for x ∈ R (5)

with some a, b ∈ R;

(ii) Γ consists of a single transformation of the form

γ(x) = v−1(v(x) + l) for x ∈ R (6)

with some l ∈ R \ {0} and either

u(x) = bv(x) + P

(

v(x)

l

)

for x ∈ R (7)

or

u(x) = av(x)P

(

v(x)

l

)

+ b for x ∈ R, (8)

where P : R → R is a continuous 1-periodic function, a ∈ (0,∞) \ {1} and

b ∈ R;

(iii) Γ consists of a single transformation of the form

γ(x) = v−1(kv(x) + l) for x ∈ R (9)

with some k ∈ (0,∞) \ {1}, l ∈ R and either

u(x) =















(

l
1−k

− v(x)
)s

P1

(

logk

(

l
1−k

− v(x)
))

+ c whenever v(x) < l
1−k

,

c whenever v(x) = l
1−k

,
(

v(x) − l
1−k

)s

P2

(

logk

(

v(x) − l
1−k

))

+ c whenever v(x) > l
1−k

,

(10)

where P1, P2 : R → R are continuous 1-periodic functions, s ∈ R \ {0} whenever
l

1−k
6∈ v(R) and s ∈ (0,∞), otherwise; or l

1−k
6∈ v(R) and

u(x) = a logk

∣

∣

∣

∣

v(x) −
l

1− k

∣

∣

∣

∣

+ P

(

logk

∣

∣

∣

∣

v(x) −
l

1− k

∣

∣

∣

∣

)

for x ∈ R, (11)

where P : R → R is a continuous 1-periodic function and a ∈ R;
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(iv)

γt(x) = v−1(v(x) + l(t)) for x ∈ R, t ∈ I (12)

with some nonconstant continuous function l : R → R and

u(x) = bav(x) + c for x ∈ R, (13)

where a ∈ (0,∞) \ {1}, b ∈ R \ {0} and c ∈ R;

(v)

γt(x) = v−1(k(t)(v(x) − d) + d) for x ∈ R, t ∈ I (14)

with some d ∈ R and nonconstant continuous function k : R → (0,∞) and

either

u(x) =







a(d− v(x))s + c whenever v(x) < d,

c whenever v(x) = d,

b(v(x) − d)s + c whenever v(x) > d,

(15)

where a, b, c ∈ R, a 6= 0 whenever v(R) ⊂ (−∞, d), b 6= 0 whenever v(R) ⊂
(d,∞) and |a|+|b| > 0, otherwise, s ∈ R\{0} whenever d 6∈ v(R) and s ∈ (0,∞),
otherwise; or d 6∈ v(R) and

u(x) = a ln |v(x)− d|+ b for x ∈ R, (16)

where a ∈ R \ {0} and b ∈ R.

3. Proof of Theorem 1

Assume that U : ∆(R) → R is a utility function having a continuous Bernoulli
utility function u : R → R. As we have already noted U is invariant with
respect to a family of transformations Γ if and only if there exist functions
K : I → (0,∞) and L : I → R such that (2) holds. Since the family Γ consists
of the transformations of the form (3), condition (2) becomes

u(v−1(k(t)v(x) + l(t))) = K(t)u(x) + L(t) for x ∈ R, t ∈ I. (17)

Straightforward calculations show that if one of the possibilities (i)-(v) holds,
then (17) is satisfied with some functions K : I → (0,∞) and L : I → R, whence
U is invariant with respect to a family of transformations of the form (3).

Now, assume that (17) holds. Then, taking f := u ◦ v−1, we obtain

f(k(t)x+ l(t)) = K(t)f(x) + L(t) for x ∈ v(R), t ∈ I. (18)

If f is constant then (5) holds with a = 0. So, assume that f is nonconstant.
In the sequel, we will use several times the following fact: if J is an interval
unbounded above and a continuous function p : J → R satisfies the condition

p(x+ 1) = p(x) for x ∈ J (19)



Utility functions invariant with respect to some classes of transformations 351

then there exists a unique continuous 1-periodic extension of p, that is a con-
tinuous function P : R → R such that P (x+ 1) = P (x) for x ∈ R and

p(x) = P (x) for x ∈ J. (20)

In fact, it is enough to define P : R → R as follows: P (x) = p(x + n(x)) for
x ∈ R, where n(x) := min{n ∈ N ∪ {0}|x+ n(x) ∈ J}.

Consider the following two cases:
1. k and l are constant;
2. k or l is nonconstant.

Case 1. In this case the family Γ consists of a single transformation of the
form (9). Furthermore, as Γ is non-degenerate, we have k 6= 1 or l 6= 0. Note
also that in this case (18) takes the form

f(kx+ l) = K(t)f(x) + L(t) for x ∈ v(R), t ∈ I. (21)

Since f is non–constant, taking x1, x2 ∈ v(R) with f(x1) 6= f(x2), in view of
(21), we get

K(t) =
f(kx1 + l)− f(kx2 + l)

f(x1)− f(x2)
for t ∈ I.

Thus K is constant and, by (21), so is L. Therefore, (21) becomes

f(kx+ l) = Kf(x) + L for x ∈ v(R). (22)

Consider the following four subcases:
1.1. k = K = 1,
1.2. k = 1 and K 6= 1,
1.3. k 6= 1 and K = 1,
1.4. k 6= 1 and K 6= 1.

Subcase 1.1. First note that (6) is valid. Moreover, making use of (4), we
obtain that x + l ∈ v(R) for x ∈ v(R), whence x + 1 ∈ 1

l
v(R) for x ∈ 1

l
v(R).

Therefore, 1
l
v(R) is an interval unbounded above. Furthermore, in view of (22),

a function p̃ : 1
l
v(R) → R given by

p̃(x) = ef(lx)−Lx for x ∈
1

l
v(R)

is continuous and satisfies p̃(x + 1) = p̃(x) for x ∈ 1
l
v(R). Thus, there exists a

continuous 1-periodic function P̃ : R → R such that p̃(x) = P̃ (x) for x ∈ 1
l
v(R).

Moreover

(u ◦ v−1)(x) = f(x) =
L

l
x+ ln P̃

(x

l

)

for x ∈ v(R).

Thus, (7) holds with b := L
l

and P := ln P̃ .
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Subcase 1.2. Again we have (6). Furthermore, as previously, 1
l
v(R) is an

unbounded above interval and, in view of (22), a function p : 1
l
v(R) → R of the

form

p(x) = K−x

(

f(lx)−
L

1−K

)

for x ∈
1

l
v(R)

is continuous and satisfies (19) with J := 1
l
v(R). Therefore, there exists a

continuous 1-periodic function P : R → R such that (20) holds with J = 1
l
v(R).

Hence

(u ◦ v−1)(x) = f(x) = K
x

l P
(x

l

)

+
L

1−K
for x ∈ v(R),

which means that (8) holds with a := K
1
l and b := L

1−K
.

Subcase 1.3. Suppose that l
1−k

∈ v(R). Let τ : v(R) → R be given by
τ(x) = kx+ l for x ∈ v(R). Then, by (4), τ(x) ∈ v(R) for x ∈ v(R) and so, by
induction, τn(x) ∈ v(R) for x ∈ v(R) and n ∈ N. Furthermore, if k < 1, then

lim
n→∞

τn(x) = lim
n→∞

(

knx+ l

n−1
∑

i=0

ki

)

=
l

1− k
for x ∈ v(R). (23)

If k > 1 then

τ−1(x) =
x− l

k
∈

(

x,
l

1− k

)

whenever x ∈ v(R) ∩

(

−∞,
l

1− k

)

and

τ−1(x) =
x− l

k
∈

(

l

1− k
, x

)

whenever x ∈ v(R) ∩

(

l

1− k
,∞

)

.

Thus, τ−n(x) ∈ v(R) for x ∈ v(R) and n ∈ N. Moreover

lim
n→∞

τ−n(x) = lim
n→∞

(

k−nx− l

n
∑

i=1

k−i

)

=
l

1− k
for x ∈ v(R). (24)

Note also that, taking in (22) x = l
1−k

, we get L = 0 and so

f(τ(x)) = f(x) for x ∈ v(R). (25)

Therefore, as f is continuous, applying (23) if k < 1, and (24) if k > 1, we

conclude that f(x) = f
(

l
1−k

)

for x ∈ v(R). Hence, f is constant, which yields

a contradiction.
In this way we have proved that l

1−k
6∈ v(R). Furthermore, since v is con-

tinuous, we have either v(R) − l
1−k

⊂ (−∞, 0) or v(R) − l
1−k

⊂ (0,∞). Let

f̃ :
(

v(R) − l
1−k

)

→ R be given by

f̃(x) = ef(x+
l

1−k
) for x ∈ v(R)−

l

1− k
. (26)
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Note that, according to (22), for every x ∈ v(R)− l
1−k

, we have

f

(

kx+
l

1− k

)

= f

(

k

(

x+
l

1− k

)

+ l

)

= f

(

x+
l

1− k

)

+ L.

Thus, f̃ satisfies the following functional equation

f̃(kx) = eLf̃(x) for x ∈ v(R)−
l

1− k
. (27)

If v(R) − l
1−k

⊂ (−∞, 0) then the set Λ1 := {logk(−x)|x ∈ v(R) − l
1−k

} is an
interval. Moreover, Λ1 is unbounded above. In fact, in view of (4), for every
x ∈ v(R)− l

1−k
, we have

kx = k

(

x+
l

1− k

)

+ l −
l

1− k
∈ v(R)−

l

1− k
,

which means that
1 + logk(−x) = logk(−kx) ∈ Λ1.

Note also that, according to (27), a function p̃ : Λ1 → R given by p̃(x) =
f̃(−kx)e−Lx for x ∈ Λ1, is continuous and satisfies p̃(x + 1) = p̃(x) for
x ∈ Λ1. Thus, there exists a continuous 1-periodic function P̃ : R → R such
that p̃(x) = P̃ (x) for x ∈ Λ1. Furthermore, we have

f̃(x) = eL log
k
(−x)P̃ (logk(−x)) for x ∈ v(R)−

l

1− k
,

which, in view of (26), gives

(u ◦ v−1)(x) = f(x) = ln f̃

(

x−
l

1− k

)

= L logk

(

l

1− k
− x

)

+ ln P̃

(

logk

(

l

1− k
− x

))

for x ∈ v(R).

If v(R)− l
1−k

⊂ (0,∞) then, taking Λ2 := {logk x|x ∈ v(R)− l
1−k

} and p̃ : Λ2 →

R of the form p̃(x) = f̃(kx)e−Lx for x ∈ Λ2, in a similar way we obtain that
there exists a continuous 1-periodic function P̃ : R → R such that p̃(x) = P̃ (x)
for x ∈ Λ2. Hence

(u◦v−1)(x) = f(x) = L logk

(

x−
l

1− k

)

+ln P̃

(

logk

(

x−
l

1− k

))

for x ∈ v(R).

Therefore, (11) holds with a := L and P := ln P̃ .

Subcase 1.4. Let f̃ :
(

v(R)− l
1−k

)

→ R be given by

f̃(x) = f

(

x+
l

1− k

)

−
L

1−K
for x ∈ v(R)−

l

1− k
. (28)
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Then, making use of (22), we get

f̃(kx) = Kf̃(x) for x ∈ v(R) −
l

1− k
. (29)

So, arguing as in the case of (27), we conclude that

f̃(x) =







K log
k
(−x)P1(logk(−x)) for x ∈

(

v(R)− l
1−k

)

∩ (−∞, 0),

K log
k
xP2(logk x) for x ∈

(

v(R)− l
1−k

)

∩ (0,∞),

where P1, P2 : R → R are continuous 1-periodic functions. Therefore, since
K log

k
x = xlog

k
K for x ∈ (0,∞), in view of (28), we obtain

f(x) =











(

l
1−k

− x
)log

k
K

P1

(

logk

(

l
1−k

− x
))

+ L
1−K

forx ∈ v(R) ∩
(

−∞, l
1−k

)

,
(

x− l
1−k

)log
k
K

P2

(

logk

(

x− l
1−k

))

+ L
1−K

forx ∈ v(R) ∩
(

l
1−k

,∞,
)

.

Furthermore, if l
1−k

∈ v(R), then 0 ∈ v(R) − l
1−k

and so, in view of (29), we

get f̃(0) = Kf̃(0). Since K 6= 1, this implies that f̃(0) = 0, whence, by (28), we
obtain f( l

1−k
) = L

1−K
. Note also that from the continuity of f it follows that

logk K > 0 whenever l
1−k

∈ v(R). Consequently, as f = u ◦ v−1, we get (10)

with s := logk K and c := L
1−K

.
Case 2. Similarly as in the previous case, we distinguish four subcases:

2.1. k and K are identically 1,
2.2. k is identically 1 and K is not identically 1,
2.3. k is not identically 1 and K(t) = 1 for every t ∈ I with k(t) 6= 1,
2.4. there is a t0 ∈ I such that k(t0) 6= 1 and K(t0) 6= 1.

Subcase 2.1. In this case l is nonconstant and (18) becomes

f(x+ l(t)) = f(x) + L(t) for x ∈ v(R), t ∈ I. (30)

Thus, taking a t0 ∈ I such that l(t0) 6= 0, in view of (4), we obtain that
x + 1 ∈ 1

l(t0)
v(R) for x ∈ 1

l(t0)
v(R). Hence, 1

l(t0)
v(R) is an unbounded above

interval. Furthermore, by applying (30) with t = t0, we get that a function
p : 1

l(t0)
v(R) → R given by

p(x) = f(l(t0)x)− L(t0)x for x ∈
1

l(t0)
v(R), (31)

is continuous and satisfies (19) with J := 1
l(t0)

v(R). Thus, there exists a contin-

uous 1-periodic function P : R → R such that (20) holds with J := 1
l(t0)

v(R).
Moreover

f(x) =
L(t0)

l(t0)
x+ P

(

x

l(t0)

)

for x ∈ v(R). (32)



Utility functions invariant with respect to some classes of transformations 355

Inserting into (30) f of the form (32), we get

P

(

x+ l(t)

l(t0)

)

= P

(

x

l(t0)

)

+ L(t)−
L(t0)

l(t0)
l(t) for x ∈ v(R), t ∈ I. (33)

Let h : l(I) → R be given by

h(z) = P

(

x0 + z

l(t0)

)

+
L(t0)

l(t0)
z − P

(

x0

l(t0)

)

for z ∈ l(I), (34)

where x0 ∈ v(R) is fixed. Then, taking in (33) x = x0, we get L(t) = h(l(t)) for
t ∈ I. Hence, in view of (33), for every x ∈ 1

l(t0)
v(R) and y ∈ 1

l(t0)
l(I), we have

P (x+ y) = P (x) + g(y), (35)

where g(y) := h(l(t0)y) − L(t0)y for y ∈ 1
l(t0)

l(I). In particular, (35) holds

for every (x, y) ∈ 1
l(t0)

v(R) × int 1
l(t0)

l(I) and this set is a nonempty, open

and connected subset of R2 because v is continuous and strictly monotone and
l is continuous and nonconstant. Therefore, as P is continuous, from Kuczma
(1985) (p. 311) and Sobek (2010) (Corollary 1) we derive that there are A, b ∈ R

such that P (x) = Ax + b for x ∈ 1
l(t0)

v(R). Hence, as P is 1-periodic, we get
A = 0 and so, taking into account (32), we obtain

(u ◦ v−1)(x) = f(x) =
L(t0)

l(t0)
x+ b for x ∈ v(R).

Thus (5) holds with a := L(t0)
l(t0)

.
Subcase 2.2. In this case (12) holds and (18) takes the form

f(x+ l(t)) = K(t)f(x) + L(t) for x ∈ v(R), t ∈ I. (36)

Fix a t0 ∈ I with K(t0) 6= 1. Since f is nonconstant, taking in (36) t = t0, we
get l(t0) 6= 0. Moreover, a straightforward calculation shows that 1

l(t0)
v(R) is

an interval unbounded above and a function p : 1
l(t0)

v(R) → R given by

p(x) = K(t0)
−x

(

f(l(t0)x)−
L(t0)

1−K(t0)

)

for x ∈
1

l(t0)
v(R)

is continuous and satisfies (19) with J := 1
l(t0)

v(R). Thus there exists a contin-

uous 1-periodic function P : R → R such that (20) holds with J := 1
l(t0)

v(R).
Consequently

f(x) = A
x

l(t0)P

(

x

l(t0)

)

+ c for x ∈ v(R), (37)

where A := K(t0) and c := L(t0)
1−K(t0)

. Putting into (36) f of the form (37), we
obtain

A
x+l(t)
l(t0) P

(

x+ l(t)

l(t0)

)

+c = K(t)A
x

l(t0)P

(

x

l(t0)

)

+cK(t)+L(t) for x ∈ v(R), t ∈ I.
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Since, by (4), x+l(t0) ∈ v(R) for x ∈ v(R), we have by iteration x+nl(t0) ∈ v(R)
for x ∈ v(R), n ∈ N. Thus, setting in the last equality x + nl(t0) in a place of
x, for every x ∈ v(R), t ∈ I and n ∈ N, we get

A
x+nl(t0)+l(t)

l(t0) P

(

x+ nl(t0) + l(t)

l(t0)

)

+c = K(t)A
x+nl(t0)

l(t0) P

(

x+ nl(t0)

l(t0)

)

+cK(t)+L(t),

whence, as P is 1-periodic, we obtain

AnA
x+l(t)
l(t0) P

(

x+ l(t)

l(t0)

)

+ c = K(t)AnA
x

l(t0)P

(

x

l(t0)

)

+ cK(t) + L(t).

Therefore, taking into account (37), for every x ∈ v(R), t ∈ I and n ∈ N, we get

An(f(x + l(t))− c−K(t)(f(x)− c)) = c(K(t)− 1) + L(t).

Since A 6= 1, this means that

f(x+ l(t))− c = K(t)(f(x)− c) for x ∈ v(R), t ∈ I. (38)

Fix an x0 ∈ v(R) with f(x0) 6= c and define a function h : l(I) → R in the
following way h(z) = f(x0+z)−c

f(x0)−c
for z ∈ l(I). Then, taking in (38) x = x0, we

get K(t) = h(l(t)) for t ∈ I. Hence, from (38) we derive that

f(x+ y)− c = (f(x)− c)h(y) for x ∈ v(R), y ∈ l(I).

The last equality holds, in particular, for every (x, y) ∈ v(R)× int l(I) and this
set is a nonempty, open and connected subset of R2. Thus, as f is continuous,
from Kuczma (1985) (p. 311) and Sobek (2010) (Corollary 2) it follows that
either f(x+ y)− c = 0 for (x, y) ∈ v(R)× int l(I), or there exist α, b ∈ R \ {0}
such that

f(x+ y)− c = beαx for x ∈ v(R). (39)

Note, however, that since f is nonconstant and K(t) > 0 for t ∈ I, the first
possibility is excluded by (38). Therefore (39) holds and so, as f = u ◦ v−1, we
get (13) with a := eα.

Subcase 2.3. Fix a t0 ∈ I with k(t0) 6= 1. Suppose that k(t0) < 1. Since k

is continuous, there is a maximal open interval I0 ⊂ I containing t0 such that
k(t) < 1 for t ∈ I0. Note that

K(t) = 1 for t ∈ I0. (40)

Let D : I0 → R be given by

D(t) =
l(t)

1− k(t)
for t ∈ I0. (41)
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For every t ∈ I0, let τt : v(R) → R be of the form τt(x) = k(t)x + l(t) for
x ∈ v(R). According to (4), for every x ∈ v(R) and t ∈ I0, we have τt(x) ∈ v(R),
so τnt (x) ∈ v(R) for n ∈ N. Moreover, limn→∞ τnt (x) = D(t) for x ∈ v(R).
Therefore, for every t ∈ I0, D(t) is an accumulation point of the interval v(R).
Furthermore, arguing as in the subcase 1.3, we obtain that D(t) 6∈ v(R) for
t ∈ I0. Since D is a continuous function defined on the interval I0, this means
that D is constant, say D = d with some d ∈ R. Hence d 6∈ v(R) and, in view
of (41), we get

l(t) = d(1 − k(t)) for t ∈ I0. (42)

Note also that k is nonconstant. Otherwise we would have I0 = I and so, in view
of (42), we would obtain that l is also constant, which is excluded in this case.
Since I0 is maximal and k is nonconstant, the set k(I0) has a nonempty interior.
Moreover, as d 6∈ v(R), we have either v(R) ⊂ (−∞, d) or v(R) ⊂ (d,∞).
Since the proof in both cases is similar, assume, for instance, that the second
possibility holds. Then, from (18) and (42) we derive that

f(k(t)(x− d) + d) = f(x) + L(t) for x ∈ v(R), t ∈ I0. (43)

Thus, taking f̃ : (v(R) − d) → R of the form

f̃(x) = f(x+ d) for x ∈ v(R)− d, (44)

we obtain
f̃(k(t)x) = f̃(x) + L(t) for x ∈ v(R)− d, t ∈ I0.

Hence
f̃(k(t)x) = f̃(x) +H(k(t)) for x ∈ v(R) − d, t ∈ I0,

where H : k(I0) → R is given by H(z) = f̃(zx0) − f̃(x0) for z ∈ k(I0), with a
fixed x0 ∈ v(R) − d. Consequently, for every x ∈ v(R) − d and y ∈ k(I0), we
have

f̃(xy) = f̃(x) +H(y).

In particular, the last equality holds for every (x, y) ∈ (v(R) − d) × int k(I0)
and this set is a nonempty, open and connected subset of (0,∞)2. Moreover, as
f is continuous and nonconstant, so is f̃ . Thus from Kuczma (1985) (p. 311)
and Sobek (2010) (Corollary 1) we derive that there exist a ∈ R\ {0} and b ∈ R

such that
f̃(x) = a lnx+ b for x ∈ v(R) − d.

Therefore, in view of (44), we get

f(x) = a ln(x− d) + b for x ∈ v(R), (45)

which implies (16). Furthermore, by inserting into (18) f of the form (45), we
obtain

a ln(k(t)x+ l(t)− d) + b = aK(t) ln(x− d) + bK(t) + L(t) for x ∈ v(R), t ∈ I.
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Differentiating the last equality with respect to x, after the standard computa-
tions, we obtain

l(t)− d(1 − k(t)) =
k(t)

K(t)
(1 −K(t))(x− d) for x ∈ v(R), t ∈ I.

Hence

l(t) = d(1 − k(t)) for t ∈ I, (46)

which implies (14).
Next suppose that k(t0) > 1. Then

τ−1
t0

(x) =
x− l(t0)

k(t0)
∈

(

x,
l(t0)

1− k(t0)

)

whenever x ∈ v(R) ∩

(

−∞,
l(t0)

1− k(t0)

)

and

τ−1
t0

(x) =
x− l(t0)

k(t0)
∈

(

l(t0)

1− k(t0)
, x

)

whenever x ∈ v(R) ∩

(

l(t0)

1− k(t0)
,∞

)

.

Hence, arguing as in the subcase 1.3, we obtain that d := l(t0)
1−k(t0)

6∈ v(R) and a

function f̃ : (v(R)− d) → R given by

f̃(x) = ef(x+d) for x ∈ v(R)− d, (47)

satisfies equation

f̃(k(t0)x) = eL(t0)f̃(x) for x ∈ v(R) − d. (48)

Since d 6∈ v(R) we have either v(R)−d ⊂ (−∞, 0) or v(R)−d ⊂ (0,∞). Assume,
for instance, that the second possibility holds. Then the set Λ := {logk(t0) x|x ∈
v(R) − d} is an interval unbounded above and, in view of (48), a function
p̃ : Λ → R of the form p̃(x) = f̃(k(t0)

x)e−L(t0)x for x ∈ Λ, is continuous and
satisfies p̃(x + 1) = p̃(x) for x ∈ Λ. Thus there exists a continuous 1-periodic
function P̃ : R → R such that p̃(x) = P̃ (x) for x ∈ Λ. Moreover

f̃(x) = eL(t0) logk(t0) xP̃ (logk(t0) x) for x ∈ v(R) − d.

Hence, in view of (47), we get

f(x) = L(t0) logk(t0)(x − d) + P (logk(t0)(x− d)) for x ∈ v(R), (49)

where P := ln P̃ . Putting into (18) f of the form (49), we obtain

L(t0) logk(t0)(k(t)x + l(t)− d) + P (logk(t0)(k(t)x+ l(t)− d))

= K(t)[L(t0) logk(t0)(x− d) + P (logk(t0)(x− d))] + L(t) for x ∈ v(R), t ∈ I.
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Note also that, according to (4), k(t0)(x − d) + d = k(t0)x + l(t0) ∈ v(R) for
x ∈ v(R), so by iteration, we get k(t0)

n(x − d) + d ∈ v(R) for x ∈ v(R), n ∈ N.
Therefore, setting in the last equality k(t0)

n(x−d)+d in a place of x, for every
x ∈ v(R), t ∈ I and n ∈ N, we obtain

L(t0) logk(t0)(k(t)k(t0)
n(x− d) + l(t)− d(1 − k(t)))

+P (logk(t0)(k(t)k(t0)
n(x − d) + l(t)− d(1− k(t))))

= K(t)[L(t0) logk(t0)(k(t0)
n(x− d)) + P (logk(t0)(k(t0)

n(x− d)))] + L(t)

whence, as P is 1-periodic, we get

L(t0)n+ L(t0) logk(t0)

(

k(t)(x− d) +
l(t)− d(1− k(t))

k(t0)n

)

+P

(

logk(t0)

(

k(t)(x − d) +
l(t)− d(1 − k(t))

k(t0)n

))

= K(t)[L(t0)n+ L(t0) logk(t0)(x − d) + P (logk(t0)(x− d))] + L(t).

Thus, letting n → ∞ and using the continuity of P , for every x ∈ v(R) and
t ∈ I, we obtain

L(t0) logk(t0)(k(t)(x − d)) + P (logk(t0)(k(t)(x − d)))

−K(t)[L(t0) logk(t0)(x−d)+P (logk(t0)(x−d))]−L(t) = lim
n→∞

L(t0)(K(t)− 1)n.

Hence either K is identically 1 and

L(t0) logk(t0)(k(t)(x − d)) + P (logk(t0)(k(t)(x − d)))

= L(t0) logk(t0)(x− d) + P (logk(t0)(x− d)) + L(t) for x ∈ v(R), t ∈ I

or K is not identically 1, L(t0) = 0 and

P (logk(t0)(k(t)(x−d))) = K(t)P (logk(t0)(x−d))+L(t) for x ∈ v(R), t ∈ I. (50)

In the first case, making use of (49), we get

f(k(t)(x− d) + d) = f(x) + L(t) for x ∈ v(R), t ∈ I.

Therefore, arguing as in the case of (43), we obtain (45) and (46). Thus (14)
and (16) hold.

Next, assume that K is not identically 1, L(t0) = 0 and (50) holds. Then,
in view of (49), we get

f(x) = P (logk(t0)(x − d)) for x ∈ v(R), (51)

so according to (50), we have

f(k(t)(x− d) + d) = K(t)f(x) + L(t) for x ∈ v(R), t ∈ I. (52)
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Hence

f̃(k(t)x) = K(t)f̃(x) + L(t) for x ∈ v(R)− d, t ∈ I, (53)

where f̃ : (v(R)−d) → R is given by (44). Since f is nonconstant, so if f̃ . Thus,
taking x1, x2 ∈ v(R)− d with f̃(x1) 6= f̃(x2), from (53) we deduce that

K(t) = G(k(t)) for t ∈ I, (54)

where G : k(I) → R is of the form

G(z) =
f̃(zx1)− f̃(zx2)

f̃(x1)− f̃(x2)
for z ∈ k(I). (55)

Consequently, making use of (53) and (54), we obtain that L(t) = H(k(t)) for
t ∈ I, where H : k(I) → R is given by

H(z) = f̃(zx1)−G(z)f̃(x1) for z ∈ k(I). (56)

Hence, in view of (53) and (54), for every x ∈ v(R)− d and y ∈ k(I), we get

f̃(xy) = f̃(x)G(y) +H(y). (57)

Thus, (57) holds for every (x, y) ∈ (v(R) − d) × int k(I) and this set is a
nonempty, open and connected subset of (0,∞)2. Furthermore, as K is not
identically 1, taking into account (40), we obtain that K is nonconstant. Hence,
in view of (54), G is nonconstant as well. Therefore, since f̃ is continuous and
nonconstant, from Kuczma (1985) (p. 311) and Sobek (2010) (Corollary 3) we
derive that there exist a, s ∈ R \ {0} and c ∈ R such that

f̃(x) = axs + c for x ∈ v(R)− d.

Thus, making use of (44), we get

f(x) = a(x− d)s + c for x ∈ v(R). (58)

So, in view of (51), we obtain

ak(t0)
s(x− d)s + c = f(k(t0)(x − d) + d) = P (logk(t0)(k(t0)(x − d)))

= P (logk(t0)(x− d)) = f(x) = a(x− d)s + c for x ∈ v(R).

Hence k(t0) = 1, which yields a contradiction.
Subcase 2.4. Suppose that k(t0) < 1. Then, arguing as in the previous

subcase, we obtain that k is nonconstant and (42) holds with some d ∈ R\v(R),
where I0 ⊂ I is a maximal open interval containing t0 such that k(t) < 1 for
t ∈ I0. Therefore, assuming that v(R) ⊂ (d,∞) and making use of (18) and
(42), we get

f̃(xy) = f̃(x)G(y) +H(y) for x ∈ v(R) − d, y ∈ k(I0),
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where f̃ , G and H are given by (44), (55) and (56), respectively (with I0 instead
of I). So, similarly as in the case of (57), we get (58) with some a, s ∈ R \ {0}
and c ∈ R. If s = 1 then from (58) follows (5) with b := c− ad. If s 6= 1, then
by inserting into (18) f of the form (58), we get

a(k(t)x + l(t)− d)s + c = K(t)[a(x− d)s + c] + L(t) for x ∈ v(R), t ∈ I.

Hence, differentiating the last equality with respect to x, after straightforward
computation, we obtain

l(t)− d(1− k(t)) =

(

(

K(t)

k(t)

)
1

s−1

− k(t)

)

(x− d) for x ∈ v(R), t ∈ I.

Thus, (46) holds, which implies (14). Furthermore, from (58) we derive (15)
(with b := a).

Now, suppose that k(t0) > 1. Setting in (18) t = t0 and arguing as in the
subcase 1.4, we obtain

f(x) =







(d− x)sP1(logk(t0)(d− x)) + c for x ∈ v(R) ∩ (−∞, d),

c for x ∈ v(R) ∩ {d},
(x− d)sP2(logk(t0)(x− d)) + c for x ∈ v(R) ∩ (d,∞),

(59)

where d := l(t0)
1−k(t0)

, c := L(t0)
1−K(t0)

, P1, P2 : R → R are continuous 1-periodic
functions, s ∈ R \ {0} whenever d 6∈ v(R) and s ∈ (0,∞), otherwise.

Suppose that v(R) ∩ (d,∞) 6= ∅. Let x ∈ v(R) ∩ (d,∞) and t ∈ I. Then,
similarly as in the previous subcase, we get that k(t0)n(x−d)+d ∈ v(R)∩(d,∞)
for n ∈ N. Furthermore, as k(t0) > 1, for sufficiently large n ∈ N, we have

k(t)(k(t0)
n(x− d) + d) + l(t) ∈ v(R) ∩ (d,∞).

Thus, taking into account (18) and (59), for sufficiently large n ∈ N, we obtain

[k(t)k(t0)
n(x−d)+l(t)−d(1−k(t))]sP2(logk(t0)(k(t)k(t0)

n(x−d)+l(t)−d(1−k(t))))

= K(t)(k(t0)
n(x− d))sP2(logk(t0)(k(t0)

n(x− d))) + c(K(t)− 1) + L(t).

Hence, as P2 is 1-periodic, we get

[k(t)k(t0)
n(x−d)+l(t)−d(1−k(t))]sP2

(

logk(t0)

(

k(t)(x − d) +
l(t)− d(1− k(t))

k(t0)n

))

= K(t)(k(t0)
n(x − d))sP2(logk(t0)(x− d)) + c(K(t)− 1) + L(t).

Dividing both sides of the last equality by k(t0)
ns, letting n → ∞ and using the

continuity of P2, we obtain

(k(t)(x − d))sP2(logk(t0)(k(t)(x − d))) = K(t)(x − d)sP2(logk(t0)(x− d)).
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Hence, in view of (59), we get f(k(t)(x− d)) + d)− c = K(t)(f(x)− c). In this
way we have proved that

f(k(t)(x− d)) + d)− c = K(t)(f(x)− c) for x ∈ v(R)∩ (d,∞), t ∈ I. (60)

Thus

f̃(k(t)x) = K(t)f̃(x) for x ∈ (v(R) − d) ∩ (0,∞), t ∈ I, (61)

where f̃ : (v(R)− d) ∩ (0,∞) → R is given by

f̃(x) = f(x+ d)− c for x ∈ (v(R) − d) ∩ (0,∞). (62)

If f̃(x0) 6= 0 for some x0 ∈ (v(R) − d) ∩ (0,∞) then, taking a function G :

k(I) → R of the form G(z) = f̃(zx0)

f̃(x0)
for z ∈ k(I), from (61) we deduce that

K(t) = G(k(t)) for t ∈ I. Thus, G(y) > 0 for y ∈ k(I) and, in view of (61), for
every x ∈ (v(R) − d) and y ∈ k(I), we get

f̃(xy) = f̃(x)G(y).

The last equality holds, in particular, for every (x, y) ∈ (v(R) − d) × int k(I)
and, as k is nonconstant and continuous, this set is a nonempty, open and
connected subset of (0,∞)2. Moreover f̃(x0y) = f̃(x0)G(y) 6= 0 for y ∈ k(I)
and f̃ is continuous. Thus, taking into account Kuczma (1985) (p. 311) and
Sobek (2010) (Corollary 2), we conclude that there exist β ∈ R and s ∈ R \ {0}
such that

f̃(x) = βxs for x ∈ (v(R)− d) ∩ (0,∞).

Hence, in view of (62), we have

f(x) = β(x− d)s + c for x ∈ v(R) ∩ (d,∞). (63)

Note also that if f̃(x) = 0 for x ∈ (v(R)−d)∩(0,∞) then (63) holds with β = 0.
In a similar way we obtain that if v(R) ∩ (−∞, d) 6= ∅ then

f(x) = α(d− x)s1 + c for x ∈ v(R) ∩ (−∞, d), (64)

with some s1 ∈ R \ {0} and α ∈ R.
Assume that d 6∈ v(R). If v(R) ⊂ (−∞, d) then α 6= 0, so arguing as in the

case k(t0) < 1, in view of (64), we obtain (5) (with a := −α and b := c + αd)
if s1 = 1; and (14)-(15) (with a := α and s := s1) if s1 6= 1. Similarly, if
v(R) ⊂ (d,∞), then, taking into account (63), we get β 6= 0 and so we obtain
(5) (with a := β and b := c− βd) if s = 1; and (14)-(15) (with b := β) if s 6= 1.

Assume that d ∈ v(R). Since f is nonconstant and continuous this implies
that |α|+ |β| > 0; s1 > 0 whenever α 6= 0, s > 0 whenever β 6= 0 and

f(d) = c. (65)
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If s = s1 = 1 and β = −α then (5) holds with a := β and b := c− βd. Assume
that {s, s1} 6= {1} or β 6= −α. Then, in view of (63) and (64), we have

f ′(x) 6= 0 for x ∈ v(R) \ {d}.

Moreover, f ′(d) either does not exist or it is equal to 0. On the other hand,
from (18) it follows that, for every x ∈ v(R) and t ∈ I, f is differentiable at
x if and only if f is differentiable at k(t)x + l(t); and f ′(x) = 0 if and only if
f ′(k(t)x + l(t)) = 0. Therefore k(t)d + l(t) = d for t ∈ I. Hence (46) holds,
which implies (14).

Now, if α = 0 or β = 0, then we have (15) (with b := β in the first case and
a := α, s := s1 in the second case). If α 6= 0 and β 6= 0, then, making use of
(18), (46), (63) and (64), we obtain

β(k(t)s −K(t))(x − d)s = L(t)− c(1−K(t)) for x ∈ v(R) ∩ (d,∞), t ∈ I

and

α(k(t)s1 −K(t))(x − d)s1 = L(t)− c(1−K(t)) for x ∈ v(R) ∩ (−∞, d), t ∈ I.

Hence, K(t) = k(t)s = k(t)s1 for t ∈ I. Since k is nonconstant, this implies that
s = s1. Therefore, (63)-(65) imply (15) with a := α and b := β.
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