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Abstract: Psoriasis vulgaris is a common, worldwide autoim-
mune skin disorder characterized by T-cells mediated hyperprolif-
eration of keratinocytes. The feature of T-cells arbitrated psoriatic
lesions is the epidermal infiltration of oligoclonal CD8+ T-cells and
also of CD4+ T-cells in the dermis. Psoriatic scratches are identified
by red and enlarged lesions along with silver whitish scales. In this
article, we propose a mathematical model for psoriasis, involving a
set of differential equations, concerning T-cells, dendritic cells and
epidermal keratinocytes. We introduce T-cell proliferation in the
system, where T-cells are generated through expansion of accessi-
ble CD4+ T-cells from precursors. We are interested in observing
how the cell biological system develops through T-cell proliferation
in presence of control with respect to T-cells and keratinocytes. We
study the model in both implicit and explicit ways and measure the
effect of drug on the system through impulsive drug therapy.

Keywords: T-cells, dendritic cells, keratinocytes, dermis, epi-
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1. Introduction

Psoriasis is considered to be a widespread continuous inflammatory skin disease,
which is characterized by T-cells mediated hyperproliferation of keratinocytes.
Psoriasis affects about 1.5% of the Caucasian population (Sabat et al., 2007).
CD8+ T-cells may act as the foremost effector in psoriatic pathogenesis. From
the point of view of clinical investigation, we know that the immune organiza-
tion plays an important role for the expansion of psoriasis (Gudjonsson et al.,
2004). Psoriasis is also described as a genetically heterogeneous disorder. The
two bases for the disease development are the attachment of multiple genes and
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the communication with the environment (Ghosh et al., 2008). The US Food
and Drug Administration’s (FDA’s) approval demonstrates the achievement of
translational research on this type of chronic disease. The biological concept
considers Alefacept to be a fusion protein that connects to CD2 on T-cells, and
Efalizumab a humanized antibody that can attach to leucocyte function associ-
ated antigen-1 (LFA-1). There are three types of HL-A specificities, with W17
and HL-A13 increased and HL-A12 reduced. The increase–related regularity
for W17 and HL-A13 suggested that people with these forms of tissues are at
increased threat of the disease, while those with HL-A12 are at a decreased risk
(White et al., 1972). Cell biology and clinical investigation point toward a com-
posite sequence of procedures that lead to the emergence of psoriatic plaques.
The disease initiates from the activation of T-cells accretion in the appropriate
dermal region through DCs. Besides, the inflammatory cytokines like Tumour
Necrosis Factor-alpha (TNF-α) play an important pathogenic role in this disease
(Krueger and Bowcock, 2005). Furthermore, TNF-α and also IFN-γ guide to
the maturation of DCs, which once more furnish the activation of native T-cells
through transitional cell mechanisms. To generate a cyclical series for activa-
tion of T-cells and DCs, the following three events that are relevant for excessive
growth of keratinocytes, contribute to the causal effect of psoriasis. Firstly, the
cytokines are produced through mutual formation. Secondly, proliferation of
keratinocytes is stimulated in the epidermal area of the skin and finally, anti-
genic molecules are formed in the dermal blood vessels. In the above mentioned
ways, psoriasis ultimately leads to the coagulation of epidermis, the lower layer
of the keratinocytes (Krogstad et al., 1995; Roy et al., 2010; Vladirmirsson et
al., 1986). The disease occurs as a result of collapse in the human immune ar-
rangement. In definite conditions, Cyclosporin and FK506 are applied as drugs
that proceed as T-cells suppressors (Baker and Fry, 1992; Griffiths et al., 1995).
By introducing bone marrow transplants with a positive reaction to anti-CD3
and anti-CD4 monoclonal antibodies and lymphocyte toxins, psoriatic scratches
may be treated (Eddy et al., 1990; Snowden and Heaton, 1997).

Over several years, extensive clinical and experimental investigations have
been carried out for the pathogenesis of psoriasis. A lot of information has
been gathered on genetic distinctions related to immune cells, pathogenesis and
drugs. These genetic distinctions are due either to blocking the integration
of RNA into the host CD4+ T-cells or to restraining the appropriate proteins
within an infected cell. Till now the basic questions are unanswered regarding
this disease. In our previous article, we described the mathematical model,
integrating the half saturation constant in presence of suppression together with
cytokines release, taking place on DCs (Roy et al., 2011). Next, we noticed
how the system changed due to impact of cytokines discharge in presence of
suppression, taking place on DCs in the cell system (Roy and Datta, 2012).
Furthermore, we described a set of differential equations for the process of stable
control regarding the growth of epidermal keratinocytes by means of negative
feedback, comparable to the introduction of a beneficial drug management. We
introduced also a time delay in that model to represent the time related to
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creation of T-cells and DCs until the expansion to the epidermal keratinocytes
(Roy and Datta, 2012). It should be noted that T-cells suppression reduces
the psoriatic pathogenesis and thus the asymptotic value of T-cell population is
obtained concurrently. Roy and Bhadra (2010) stated that the suppression of
DCs raises the concentration of T-cells, leading to a better condition than the
suppression of T-cells.

For infectious diseases, it is proposed that T-cells can be produced by pro-
liferation of some obtainable CD4+ T-cells (Roy and Chatterjee, 2010). But
in autoimmune disorder, some of T-cells are effectively enhanced. This process
is identified as spontaneous proliferation (Campion et al., 2009). When the
two signal activation is finished, T helper cells permit self-proliferation. This
is accomplished by releasing Interleukin–2 (IL-2), which acts on itself in an au-
tocrine manner. The thus stimulated T-cells must be detached by apoptosis at
the end of an immune reply in order to uphold cellular homeostasis. Apoptosis
can also be induced by cytokine deficiency (Akbara and Salmonb, 1997). The
proliferating cells can be activated by antibodies, which are specific for a vari-
ety of cell types. Proliferating dermal cells display silver granules from tritium
release. On the other hand, the proliferation and development of two consti-
tutive cell types (Factor XIIIa+ and Factor VIII+) may result in maintaining
the chance of UCHL1+ (CD45RO+) T-cells. The opening of antigen-reactive
T-cells may enhance the dynamic strength of the dendritic cells and endothelial
cell proliferation (Morganroth et al., 1991).

Significant advance on the study of state constrained optimal control prob-
lems is due to application of the technique called Alternative Optimality System.
This procedure was initiated by Bryson, Denham and Dreyfus (1963), and Ja-
cobson, Lele and Speyer (1971). The fundamental scheme shows that as soon as
a state constraint is active over a particular time interval, the time derivative of
the smallest order changes in such a way that the control changes accordingly
(Bonnans and Hermant, 2009). An application of modern geometric control
methods to quantum control arrangements is a novel approach in optimal con-
trol theory (Bonnard and Sugny, 2009). We have introduced the optimal control
therapy strategy to optimize the use of drug for a long time in the sequence of
days. The usual procedure is to control the drug for a few hours every few weeks.
Nevertheless, our precise objective in the optimal control approach is to reduce
the keratinocyte population, keeping the patient well by several measures (De
Pillis and Radunskaya, 2001). The communication between psoriasis and stress
was observed over 20 weeks by way of significant measures. Consequently, stress
reduction may be observed as an aspect of treatment, for persons suffering from
psoriasis (Gaston et al., 1987). In the optimal control mechanism, mathemati-
cal two non-cell-cycle-specific representations (in all the phases of the cell cycle,
drugs are helpful) were developed by Murray (Murray, 1990 a, b). We desire to
expand the optimal control problem, beginning with cell-cyclic-specific action
on the normal tissues, and to determine the mathematical consequences (Fister
and Panetta, 2000). For all patients, the identification of model parameters may,
however be complicated (De Souza et al., 2000). Further, we have also studied



368 A. Datta and P. K. Roy

the explicit version of the model to explore the drug effects on the system.
We consider here that the growth of CD4+ T-cells is logistic as T-cells cannot

proliferate unboundedly. In this article, we integrate T-cell proliferation in the
model system and our aim is to observe the performance of the immune system
through drug stimulation with maximum proliferation of T-cells. We have also
studied the optimal control therapeutic approach with respect to the interaction
between T-cells and keratinocytes.

In Section 1, we have discussed the T-cell proliferation and optimal control
therapeutic strategy. In Section 2, we have described the basic assumptions of
the model and mathematical formulation of the model for psoriasis. Section
3 presents the theoretical analysis of the model, containing existence, unique-
ness, permanence and boundedness of the system. This section also includes the
unique equilibrium of the system including biological interpretation. In Section
4, we investigate the optimal control (drug) therapeutic approach, integrating
existence, dynamical nature and uniqueness of the optimal control system. Sec-
tion 5 includes analysis of the explicit version of the system through impulsive
drug therapy and dynamical consequences thereof. Numerical simulation and
discussion are given in Section 6, and, conclusion is given in Section 7. Finally,
appendix to prove the uniqueness of the solution for the system is furnished in
Section 8.

2. The basic assumptions and the mathematical model

Let l(t), m(t) and k(t) denote the concentrations of T-cells, dendritic cells and
epidermal keratinocytes corresponding to a specific time t. We wish to obtain
a set of differential equations.

(A1): Locally the accumulation of T-cells in plaques occurs at a constant rate
a, and the accumulation rate of dendritic cells is considered to be the constant
b. It is also assumed that T-cells and dendritic cells are not produced by means
of any other method.

(A2): The rate of activation of T-cells by DCs is denoted by δ and also β is
the activation rate of DCs through T-cells. We assume that η is the proportion
at which commonly stimulated T-cells and DCs join the expansion of epidermal
keratinocytes. Interactions between T-cells and DCs help to form keratinocytes
through some cell biological procedures and thus the population of both T-cells
and DCs are reduced, as illustrated by the terms −δlm and −βlm, respectively.

(A3): The rate of activation of keratinocytes due to T-cells mediated cy-
tokines is indicated by γ1 and the rate of keratinocytes growth is denoted by γ2.
Also interactions between T-cells and keratinocytes facilitate the generation of
keratinocytes through some biological mechanisms and so T-cell population is
reduced, as shown by the term −γ1lk.

(A4): As the total number of T-cells cannot increase unboundedly, we as-
sume that the proliferation of T-cells is logistic, where p indicates the maximum
proliferation rate, proliferation proceeding up to a certain maximum stage, given
by lmax along with T-cell population. To formulate our mathematical model,
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we consider the logistic term in the form pl(1− l
lmax

).
(A5): The per capita removal rate of T-cells as given by µ and µ′ is the

per capita removal rate of dendritic cells in the course of normal progression.
Further, the per capita removal rate of epidermal keratinocytes is given by λ.

(A6): To restrict the interaction between T-cells and epidermal keratinocytes,
we introduce the drug efficacy parameter u to the term associated with the con-
nection between the above two populations, as interactions between them help
to develop the growth of keratinocytes, which in turn generates psoriasis. We
introduce the same efficacy parameter u to the growth equations of both T-
cells and keratinocytes as interactions between them reduce T-cell population
simultaneously and develop the growth of keratinocytes.

Bringing together the above assumptions (A1)-(A6), we can organize the
mathematical model given below:

dl

dt
= a+ pl(1−

l

lmax
)− δlm− γ1lk(1− u)− µl,

dm

dt
= b− βlm− µ′m, (1)

dk

dt
= ηlm+ γ2lk(1− u)− λk,

where l(0) > 0 , m(0) > 0 and k(0) > 0 at a specific time t.

3. Theoretical study of the system

3.1. Existence, uniqueness and boundedness of the system

The RHSs of equation (1) are smooth functions of the variables l,m, k, and
parameters, providing these quantities are non-negative. Thus, local existence,
uniqueness and boundedness of the system are ensured in the positive octant.
In the subsequent theorem, we will illustrate that the linear combination of
accumulation of T-cells, dendritic cells and keratinocytes densities is less than
a predetermined quantity. In other words, the solution of the dynamical system
is bounded.

Theorem 1. Solution y(t) of system (1), where y=(l,m,k), is uniformly bounded
for y0 ∈ R3

0,+.

Proof. We define a function W (t) : R0,+ → R0,+ by

W (t) = l +m+ k.

We notice that W is a well defined and differentiable function on some max-
imal interval (0, tf).

The time derivative of system (1) is

dW (t)

dt
= (a+b)−(δ+β−η)lm+[p(1−

l

lmax
)−µ]l+(1−u)(γ2−γ1)lk−µ

′m −λk.
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For the sake of straightforwardness of computation, we here assume that the
rate of activation of keratinocytes due to T-cells mediated cytokines, given by
γ1 and the rate of keratinocytes growth, denoted by γ2, are the same (γ1 = γ2).

Therefore, the above equation takes the form,

dW (t)
dt = (a+ b)− (δ + β − η)lm+ [p(1− l

lmax
)− µ]l − µ′m− λk.

At this moment, for all ψ > 0, the following inequality holds (Roy and
Bhadra, 2010),

dW (t)
dt + ψW (t) ≤ (a+ b)− (δ + β − η)( l

2+m2

2 )− [µ− p(1− l
lmax

)− ψ]l

−(µ
′

− ψ)m− (λ− ψ)k ≤ (a+ b) +
(µ−p(1− l

lmax
)−ψ)2+(µ

′

−ψ)2

2(δ+β−η) − (λ − ψ)k.

If we suppose that 0 < ψ < λ, then there exists ǫ > 0 such that,

dW (t)

dt
+ ψW (t) ≤ ǫ for each t ∈ (0, tf ).

Let H(t,y)=ǫ−ψy, which satisfies Lipschtiz condition everywhere. Evidently,

dW (t)

dt
≤ ǫ− ψW (t) = H(t,W (t)) for all t ∈ (0, tf).

Let dx
dt=H(t, x)=ǫ − ψx and x(0)=W (0)=W0. This ordinary differential

equation has the solution

x(t) =
ǫ

ψ
(1 − e−ψt) +W0e

−ψt.

It is evident that x(t) is bounded on (0, tf ). By the Comparison Theorem
(Birkhoff and Rota, 1982),

W (t) ≤ x(t) =
ǫ

ψ
(1− e−ψt) +W0e

−ψt ∀ t ∈ (0, tf ).

Now consider tf <∞, thenW (tf ) ≤ x(tf ) <∞. Then the solution is unique
for some interval (0, tf) by the Picard-Lindelof Theorem. This contradicts the
assumption that tf < ∞. Consequently, W (t) must be bounded for all non-
negative t and as a result y(t) is uniformly bounded on R0,+ (Roy and Bhadra,
2010).

3.2. Permanence of the system

The system (1) is permanent (Tian et al., 2008) if there exists a compact set D
in R3

+ = {(l(t), m(t), k(t)) ∈ R3
+ | l(t) > 0, m(t) > 0, k(t) > 0} such that all

solutions inside of R3
+ finally come into D and stay in D.

To examine the permanence of the system (1), we consider that R3
+ =

{(l(t), m(t), k(t)) ∈ R3
+ | l(t) > 0, m(t) > 0, k(t) > 0} is the positively

invariant set of the system (1) and (l(t), m(t), k(t)) is a random positive solu-
tion of the system (1) for a positive initial value.
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Theorem 2. For the system (1) satisfying the initial condition (l(0), m(0),
k(0)) ∈ R3

+, there exist positive l∗max, m
∗
max and k∗max, such that for any

(l(t), m(t), k(t)) ∈ R3
+, l(t) ≤ l∗max, m(t) ≤ m∗

max and k(t) ≤ k∗max for large t.

Proof. We have W (t) = l + m + k is bounded, which is established for every
non-negative t and as a result y(t) = (l(t),m(t), k(t)) is uniformly bounded on
R+. Hence proved.

Theorem 3. For the system (1) satisfying the initial condition (l(0), m(0),
k(0)) ∈ R3

+, there exist positive l
∗
min, m

∗
min and k∗min, such that for any (l(t), m(t),

k(t)) ∈ R3
+, l(t) ≥ l∗min, m(t) ≥ m∗

min and k(t) ≥ k∗min for large t.

Proof. For l(t) ≥ l∗min, m(t) ≥ m∗
min, k(t) ≥ k∗min, where k

∗
min =

ηl∗maxm
∗

max

λ−γ2l∗max(1−u)
,

m∗
min = b

βl∗max+µ
′
and l∗min is the positive root of the equation

a+ pl∗min(1−
l∗min

lmax
)− δl∗minm

∗
max − γ1l

∗
mink(1− u)− µl∗min = 0.

For large t,

dl

dt
= a+ pl(1−

l

lmax
)− δlm− γ1lk(1− u)− µl ≥ [a+ pl(1−

l

lmax
)

−δlm∗
max − γ1lk(1− u)− µl] ≥ 0,

dm

dt
= b− βlm− µ′m ≥ [b− βml∗max − µ′m] ≥ 0,

dk

dt
= ηlm+ γ2lk(1− u)− λk ≥ [ηl∗maxm

∗
max + γ2l

∗
maxk(1− u)− λk] ≥ 0.

Consequently, the system is bounded below.
Thus we come across a compact set D = {l(t), m(t), k(t) | l∗min ≤ l(t) ≤

l∗max, m
∗
min ≤ m(t) ≤ m∗

max and k∗min ≤ k(t) ≤ k∗max} corresponding to the
system (1), where each solution of the system with positive initial value will go
through the compact region D and stay in D.

Hence from definition of permanence, the whole solution of the system (1)
is permanent (Roy and Bhadra, 2010).

3.3. Equilibria of the system

The model equation (1) may have the unique equilibrium point (interior equi-
librium) on the coordinate planes at E∗(l∗,m∗, k∗), where l∗, m∗, and k∗ are
the non-trivial solutions of the model system (1). The other equilibria do not
exist due to the choice of parameters and the restriction to equilibria of the
biological system being in the positive octant. The only equilibrium point is
E∗(l∗,m∗, k∗), where k∗ = ηl∗m∗

λ−γ2l∗(1−u)
, m∗ = b

βl∗+µ′
and l∗ is the positive root

of the equation [(a+b)+(p(1− l∗

lmax
)−µ)l∗][(βl∗+µ′)(λ−γ2l

∗(1−u))]−µ′b(λ−
γ2l

∗(1− u))− ηλbl∗ = 0.
Now, k∗ is positive when λ > γ2l

∗(1 − u) and m∗ is always positive. Thus,
biologically, the system has an equilibrium if the per capita removal rate of
epidermal keratinocytes is greater than a predetermined positive quantity.
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Now, if we assume the relation µ < µ′ < λ then,

dTtot

dt
≡
d(l +m+ k)

dt
< (a+ b)− µ(l +m+ k),

if the density of T-cells is approaching its maximum level (lmax). Again we
assume that the sum of the rate of activation of T-cells by DCs (δ) and activation
rate of DCs through T-cells (β) is equal to the portion at which are commonly
stimulated T-cells and DCs (η) i.e., δ+ β = η. We also assume that the rate of
activation of keratinocytes due to T-cells mediated cytokines (γ1) and rate of
keratinocytes growth (γ2) are the same i.e., γ1 = γ2.

Lemma 1. Suppose x is a function satisfying x′(t) < d − f(φ)x(t), where d is
a constant and f(φ) is independent of x and t. Then if x(0) < d

f(φ) , it follows

that x(t) < d
f(φ) for every t.

Proof. See Smith and Wahl (2004, Lemma 4.1), Smith (2008).

Remark. If the inequalities are reversed, Lemma 1 also holds.

Using the above Lemma 1, we can state that Ttot <
a+b
µ , if Ttot(0) <

a+b
µ .

Therefore, if the above mentioned assumptions are satisfied, then the limiting
value of the total cell population should not exceed the quantity a+b

µ (Lou,

2009).

4. Optimal control (drug) therapeutic approach

The system of ordinary differential equations, which describes the interactions
of proliferated T-cells and epidermal keratinocytes in the immune system, is
exploited and optimal control for the treatment strategies for this model is
found. Existence and uniqueness for the optimal control are established. It
is proposed to reduce the interaction between T-cells and keratinocytes and
also to recover the immune system. This brings innovative expectation to the
treatment of psoriasis and we are exploring approaches for such treatments
by means of optimal control effort (Joshi, 2002). The control refers to the
considerable effect of the drug on the disease. We have chosen our control set,
defined on [ts, tf ] with the restriction 0 ≤ u(t) < 1, where ts and tf are tstart
and tfinal, respectively. Even though we do not consider the deviation or side
effects, we can implement a condition that organizes the complete effects of
this period: a controlled treatment, which is programmed for any treatment
circumstances (Kirschner et al., 1997).

We here introduce a proliferation of T-cells in the system. During interaction
between T-cells and kertinocytes, the cytokines are discharged and also stim-
ulated. Then keratinocytes are produced through some biological procedures
and excess amounts of keratinocytes help to develop psoriasis. Thus we put the
control effort to the interaction between T-cells and keratinocytes at the time of
production. In this situation, we desire to suppress the cytokines release using
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control approach to the growth equation of T-cells and keratinocytes. Thus, for
ts ≤ t ≤ tf , the system is:

dl

dt
= a+ pl(1−

l

lmax
)− δlm− γ1lk(1− u(t))− µl,

dm

dt
= b− βlm− µ′m, (2)

dk

dt
= ηlm+ γ2lk(1− u(t))− λk,

with known initial values for l, m, and k at ts.

Define the objective function

J(u) =

∫ tf

ts

[k(t) +
1

2
B(u(t))2]dt. (3)

Our aim is to minimize the objective function. The objective function is
a non-linear function of u. A quadratic objective function can also be chosen.
Enormous drug doses can be harmful. If the control u(t) = 0 corresponds to
optimal consumption of drug, then the optimal cost is (1−u(t)). The parameter
B ≥ 0 is the preferential weight on the benefit and cost. The goal is to attain the
optimal control u∗, corresponding to J(u) = J(u∗) in the interval 0 ≤ u(t) < 1.
If u∗ is an optimal control, then the “Pontryagin’s Minimal Principle” may be
functional to the reversed control approach (Kirschner et al., 1997). One of our
objectives is to simulate qualitatively the drug efficiency for the interaction of
T-cells and keratinocytes. So, we have built the model to represent the corre-
sponding activity. Our another goal is to recognize treatment procedures that
may achieve a better regularized drug therapy schedule. The optimal control
therapies furnish results in the population over time (De Pillis and Radunskaya,
2001).

4.1. Existence of the optimal control

The existence of the optimal control can be achieved by applying the result as
suggested by Fleming and Rishel (1975, Th. 4.1, pp. 68− 69).

Theorem 4. Let us consider the control problem with system equation (2).
There exists u∗ ∈ U , where U is the control set such that J(u) = J(u∗).

Proof. To utilize the existence result, Theorem III.4.1 from Fleming and Rishel
(1975), we have to ensure the following:

1. The control set and analogous state variable sets are nonempty.

2. The control set, denoted by U , is convex and closed.

3. The RHS of the system dynamics is bounded by means of a linear function
in the state and control variables.

4. The integrand of the objective function is concave on the control set U .
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5. There exists a constant c > 0 and α > 1 such that the integrand of the
objective function assures

k(t) +
1

2
B(u(t))2 ≤ c(|u|2)α/2.

For confirmation of these conditions, we use the result by Lukes (1982, Th.
9.2.1, pp. 182) to provide the existence of solutions of ODE’s with bounded
coefficient, which furnishes the condition 1. We observe that the solutions are
bounded. Our control satisfies the condition 2. Because of our linear state
system, the RHS of the equation satisfies the condition 3.

We note that the integrand of the objective function is concave. Also we
have the final condition needed

k(t) +
1

2
B(u(t))2 ≤ c(|u|2)α/2,

where c > 0 depends on the upper bound of keratinocyte population k and
B > 0. Hence, we may conclude that there exists a unique optimal control
(Joshi, 2002).

4.2. Dynamics of the optimal system

For optimal control system, we define the Hamiltonian,
H = k+ 1

2B(u(t))2 +ρ1[a+pl(1−
l

lmax
)− δlm−γ1lk(1−u(t))−µl]+ρ2[b−

βlm− µ′m] + ρ3[ηlm+ γ2lk(1− u(t))− λk] + v1u(t) + v2(1− u(t)),
where ρ1, ρ2, and ρ3 are adjoint variables and v1, and v2 are penalty multipliers,
subject to the conditions,
u = 0 when v1 6= 0 and v2 = 0 and u = 1 when v1 = 0 and v2 6= 0.

The corresponding adjoint equations are stated as:

dρ1

dt
= −

∂H

∂l
, (4)

dρ2

dt
= −

∂H

∂m
, (5)

dρ3

dt
= −

∂H

∂k
, (6)

where

∂H

∂l
= ρ1(p(1−

2l

lmax
)− δm− γ1k(1− u(t))− µ)− ρ2βm+ ρ3(ηm (7)

+γ2k(1− u(t))),

∂H

∂m
= −ρ1δl − ρ2(βl + µ′) + ρ3ηl, (8)
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∂H

∂k
= 1− ρ1γ1l(1− u(t)) + ρ3(γ2l(1− u(t))− λ). (9)

Again H can be represented as,

H =
1

2
B(u(t))2 − ρ1γ1lk(1− u(t)) + ρ3γ2lk(1− u(t)) + v1u(t) (10)

+v2(1 − u(t)) + terms without u.

Now, differentiating the above expression for H with respect to u yields,

∂H

∂u
= Bu(t) + ρ1γ1lk − ρ3γ2lk + v1 − v2. (11)

This expression should be equal to zero at u∗(t). Thus, Bu(t) + ρ1γ1lk −
ρ3γ2lk + v1 − v2 = 0 at u∗(t).

Solving for the optimal control, we have,

u∗(t) =
lk(ρ3γ2 − ρ1γ1)− v1 + v2

B
. (12)

Now, there are three cases to be observed.
Case 1: 0 < u∗(t) < 1,
Case 2: u∗(t) = 0,
Case 3: u∗(t) = 1.
Case 1: 0 < u∗(t) < 1, subject to the condition v1 = v2 = 0. Hence

u∗(t) =
lk(ρ3γ2 − ρ1γ1)

B
. (13)

Case 2: u∗(t) = 0, subject to the condition v1 6= 0 and v2 = 0. Thus

lk(ρ3γ2 − ρ1γ1) = v1. (14)

Case 3: u∗(t) = 1, subject to the condition v1 = 0 and v2 6= 0. Therefore

lk(ρ3γ2 − ρ1γ1) + v2 = B. (15)

Consequently, we can propose the optimal value of u(t), i.e., u∗(t) as stated
below:

u∗(t) = 0,
lk(ρ3γ2 − ρ1γ1)

B
≤ 0,

lk(ρ3γ2 − ρ1γ1)

B
, 0 <

lk(ρ3γ2 − ρ1γ1)

B
< 1, (16)

1,
lk(ρ3γ2 − ρ1γ1)

B
≥ 1.

4.3. Uniqueness of the optimal control

Theorem 5. The solution of the system of non–linear bounds is unique for a
small time interval.

Proof. See Appendix.
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5. Analysis of the explicit version of the system through
impulsive drug therapy

In the preceding part, we have studied the implicit version of the system, in-
corporating control (drug) therapeutic approach, taking place between the in-
teraction of proliferated T-cells and epidermal keratinocytes. We now wish to
analyze the model system explicitly through impulsive drug therapy. Our aim
is to observe, how the system behaves after integrating impulsive drug thera-
peutic strategy. So, we have formulated the model with impulsive differential
equations, given below:

dl

dt
= a+ pl(1−

l

lmax
)− δlm− γ1lk − µl − qlR̃,

dm

dt
= b− βlm− µ′m,

dk

dt
= ηlm+ γ2lk − λk, (17)

dl̂

dt
= qlR̃− µl̂,

where l(0) > 0, m(0) > 0, k(0) > 0 and l̂(0) > 0 at a specific time t. In

these equations, notations are the same as in (1). Here, l̂ is the concentration
of T-cells, which are separated through interaction with drug (R̃) and q is the
rate of interaction between proliferated T-cells and drug (R̃). Also µ is the per
capita removal rate of separated T-cells, having interacted with drug (R̃).

The dynamics of the drug (R̃) is described by,

dR̃

dt
= −hR̃, t 6= tk, (18)

along with impulsive conditions,

∆R̃ = ∆R̃k (or R̃i), t = tk, (19)

where tk = kτ, k = 0, 1, ...., h is the rate at which the drug is depleted and
∆R̃k (or R̃i) is the dosage of the drug.

We also notice that

R̃(t+k ) = R̃(t−k ) + ∆R̃k,

where t−k and t+k represent the time just before and after one dose being taken,
respectively. The impulse period tk can be presumed to be unchanged, describ-
ing normal dosing phases. We can also state t1 to be considerably large to
express the fact that drugs are not in use until the disease has been diagnosed.
We will similarly suppose that R̃(0) = 0. Thus, system (17), with (18) and
(19) determines our model of impulsive differential equations (Smith and Wahl,
2005). There is an impulsive periodic orbit that satisfies

R̃ie−hτ

1− e−hτ
≤ R̃ ≤

R̃i

1− e−hτ
(Lou and Smith, 2011) (20)
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where τ is the time between subsequent doses.
Let us suppose that the total number of T-cells be ltot ≡ l + l̂. Now,

l′tot = a− l(δm+ γ1k + µ− p+
pl

lmax
)− µl̂,

i.e., l′tot = a−Ml− µl̂, where M = δm+ γ1k + µ− p+ pl
lmax

> 0. If µ > p, this
implies

l′tot(t) < a− µltot(t),

if M > µ. Then from the above mentioned Lemma (Smith and Wahl, 2004,
Lemma 4.1; Smith, 2008), we have,

ltot(t) <
a

µ
, if ltot(0) <

a

µ
. (21)

The limiting value of the total amount of T-cells should be less than a
µ in the

immune system for the effectiveness of the impulsive drug therapy, providing
the per capita removal rate of T-cells greater than the maximum proliferation
rate constant.

5.1. Dynamical consequences of drug

Now, we talk about the dynamical nature of the drug. To begin with, we provide
the general explanation of

dR̃

dt
= −hR̃, t 6= tk,

R̃(0) = R̃0 for t = 0,

R̃(t+k+1) = R̃(t−k+1) + ∆R̃k+1 for t = tk+1,

where tk = kτ, k = 0, 1, .... Here, ∆R̃k+1 ≥ 0 and the initial dosage of drug
is denoted by R̃0. The impulse periods tk are assumed fixed, as normal dosing
episodes. Time between subsequent doses is assumed to be constant. That is,
τ = t+k − t−k+1. In the interval t ∈ [t+k , t

−
k+1], we have

R̃(t) = R̃(t+k )e
−h(t−tk), t ∈ [t+k , t

−
k+1]. (22)

Assuming t → t−k+1, we have R̃(t−k+1) = R̃(t+k )j, where j = e−hτ . Conse-
quently, the perfect drug concentration immediately before or after, the amount
for dosage being used is given by,

lim
k→∞

R̃(t+k ) =
R̃0

1− j
, lim
k→∞

R̃(t−k+1) =
R̃0j

1− j
. (23)

We obtain a stable (in fact, asymptotically stable) impulsive episodic trajec-

tory in drug application with endpoints R̃0

1−j and
R̃0j
1−j . In addition, the endpoints

of every cycle monotonically increases (Lou, 2009).



378 A. Datta and P. K. Roy

0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

0.06

0.08

0.1
0

500

1000

1500

aµ

T
t
o
t

System (1) exists

System (1) may not exist in
 the upper half of the plane

0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

0.06

0.08

0.1
0

2

4

6

8

10

aµ

l
t
o
t

System (22) may not exist in 
the upper half of the plane

System (22) exists

Figure 1. Graphical representations (mesh diagram) of existence condition of
the system (1) in a-µ-Ttot parametric space (left) and existence condition of the
system (22) in a-µ-ltot parametric space (right) with value of the parameters
a = 15 and µ = 0.04.

Table 1. Parameters used in the model equation (1)
Parameters Definition Default values

assigned
(Day−1)

a The rate of accumulation of T-cells 15 mm−3

b The rate of accumulation of DCs 12 mm−3

δ The rate of activation of T-cells by DCs 0.15 mm3

β The rate of activation of DCs by T-cells 0.12 mm3

η The fraction at which stimulated T-cells and DCs
add to keratinocytes density 0.35 mm3

γ1 The rate of activation of keratinocytes
due to T-cells mediated cytokines 0.8 mm3

γ2 The rate of keratinocytes growth 0.06 mm3

(estimated)
µ The per capita removal rate of T-cells 0.04

(estimated)
µ′ The per capita removal rate of DCs 0.05
λ The decay rate of keratinocytes 0.08
p The maximum proliferation rate constant 0.03 mm−3

lmax T-cell proliferation to a certain maximum stage 1500 mm−3
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Figure 2. Population densities of T-Cells (l)(b), Dendritic Cells (m)(c), Ker-
atinocytes (k)(a) and drug dosage u(t)(d) are plotted as a function of time after
applying control (drug) for the parameters used in Table 1.



380 A. Datta and P. K. Roy

0 10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

120

140

160

180

200

Time ( Day
−1
 )

D
C
 
P
o
p
u
l
a
t
i
o
n
 
(
 
m
m
−
3
 
)

 

 

u=0

u=0.3

u=0.5

u=0.7

u=0.9

Figure 3. Dendritic Cell population is plotted as a function of time after applying
different dosages of drug for the parameters used in Table 1. The curves are
going downward for the increasing values of u.

6. Numerical simulation and discussion

In the earlier section, we have described the analytical techniques for the qual-
itative study of the system (1). Here, we present the numerical simulation of
the model (1) on the basis of the analytical behavior and parameters estimated.
Most of the numerical values of the model parameters, used in our computa-
tions, have been taken from the literature (Roy and Bhadra, 2010, Roy and
Chatterjee, 2010), and are specified in Table 1.

In this section, we analyze the behavior of three types of cell populations after
applying control approach numerically. Graphical representation of existence
condition of the system (1) in a-µ-Ttot parametric space is given in Fig. 1
left and existence condition of the system (17) in a-µ-ltot parametric space is
displayed in Fig. 1 right. T-cell population increases to a certain level (up to 50
days) and then decreases for a while. It increases again because of its constant
production, as shown in Fig. 2a. DC population increases gradually from initial
position (Fig. 2b). We observe in Fig. 2c that at the beginning (about first 20
days), keratinocyte population behaves stably, though in the next phase (after
20 days), it increases gradually up to 80 days. In Fig. 2d, drug dosage is
portrayed. Very little drug is applied until 75 days. Subsequently, the dose
is increased very sharply to the highest point after which it is reduced to the
ground level in close proximity of 80 days. In Fig. 3, we study the behavior
of DC population, which has been constantly decreased as the quantity of the
drug dose is increased step by step.

In this article, we included the T-cell proliferation in the system of psoriasis
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and obtained a unique equilibrium point (interior equilibrium) because the axial
and planar equilibrium did not exist as the value of u(t) was always less than 1.

In the first part, we analyzed the system in implicit way, with the control
upshot in the interaction between T-cells and keratinocytes. If the per capita
removal rate of T-cells is less than the same of dendritic cells, which is also
less than the per capita removal rate of keratinocytes in the course of normal
progression, then the limiting value of the total cell population should not exceed
a+b
µ . Existence of the system (1) takes place in the lower portion of the mesh

diagram of Fig. 1 left, while in the upper portion, the system may not exist.

Further, we studied the system with control. If the adjoint variable (ρ) of
optimal system was greater than some preassigned positive value and the final
time (tf ) of optimal system was less than some predetermined positive quan-
tity, then the solution of the non-linear bounds was unique for a certain period
of time span. Due to proliferation and constant production, T-cell population
increased to a certain level and for the interaction with keratinocytes, T-cell
population was compelled to decrease. As the control approach was not di-
rectly placed on DCs, the DCs increased gradually because of their constant
production. Interaction between T-cells and DCs and contact between T-cells
and keratinocytes helped to increase keratinocytes density. Owing to control
affecting the interaction between T-cells and keratinocytes, we were able to re-
strict the cytokines release to some extent. At the initial stage (before 20 days),
keratinocyte population behaved in a stable manner and in the next phase, it
increased gradually. It was natural to study the behavior of T-cells and ker-
atinocytes after applying the drug, as the drug was directly applied to both of
these populations. But there was no straight relation between DCs and control
approach according to our model system. Therefore, we were interested in ana-
lyzing the behavioral pattern of DCs after applying the drug, as DC population
was also involved in the system. As the drug dosage was increased gradually,
DC population decreased correspondingly. Hence, we may conclude that though
drug was not directly applied to DCs, drug dosage was inversely proportional to
the growth of DCs. This result has great impact on the dynamics of psoriasis.

7. Conclusion

In the present study, the impulsive drug application was calculated explicitly by
incorporating the drug dosage R̃. Our aim was to observe the effect of the drug
on the system. Existence of the system (17) took place in the lower section
of the mesh diagram of Fig. 1 (right) and at the same time in the upper
portion, the system might not exist. Further, the per capita removal rate of
T-cells should be greater than the maximum proliferation rate constant for the
existence of the impulsive drug application effect. Hence psoriasis, with causal
effect of T-cell proliferation in the cell system may be restricted through optimal
control therapeutic approach by impulsive drug therapy.
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8. Appendix

Let us assume that (l, m, k, ρ1, ρ2, ρ3) and (l̄, m̄, k̄, ρ̄1, ρ̄2, ρ̄3) are two solutions
of the system. Further, we suppose that

l = eρtp1, m = eρtp2, k = eρtp3, ρ1 = e−ρtq1, ρ2 = e−ρtq2 and ρ3 = e−ρtq3.
Similarly, we suppose that
l̄ = eρtp̄1, m̄ = eρtp̄2, k̄ = eρtp̄3, ρ̄1 = e−ρtq̄1, ρ̄2 = e−ρtq̄2 and ρ̄3 = e−ρtq̄3.
Substituting l = eρtp1 into the first equation of the system (1), we have

ṗ1 + ρp1 = ae−ρt + pp1(1 −
eρtp1

lmax
)− δp1p2e

ρt − γ1p1p3(1− u(t))eρt − µp1. (24)

Now, 1
2 (p1 − p̄1)

2 + ρ
∫ tf
ts
(p1 − p̄1)

2dt =
∫ tf
ts
p(p1 − p̄1)

2dt− p
lmax

∫ tf
ts
eρt(p1 −

p̄1)
2(p1 + p̄1)dt− δ

∫ tf
ts
eρt(p1p2 − p̄1p̄2)(p1 − p̄1)dt− γ1

∫ tf
ts
eρt[(1− u(t))p1p3 −
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(1− ū(t))p̄1p̄3](p1 − p̄1)dt− µ
∫ tf
ts
(p1 − p̄1)

2dt.

Substituting m = eρtp2 into the second equation of the system (1), we have

ṗ2 + ρp2 = be−ρt − βeρtp1p2 − µ′p2. (25)

Now, 1
2 (p2 − p̄2)

2 + ρ
∫ tf
ts
(p2 − p̄2)

2dt =
∫ tf
ts
p(p2 − p̄2)

2dt− β
∫ tf
ts
eρt(p1p2 −

p̄1p̄2)(p2 − p̄2)dt− µ′
∫ tf
ts
(p2 − p̄2)

2dt.

Substituting k = eρtp3 into the third equation of the system (1), we have

ṗ3 + ρp3 = ηeρtp1p2 + γ2e
ρt(1 − u(t))p1p3 − λp3. (26)

Again, 1
2 (p3 − p̄3)

2 + ρ
∫ tf
ts
(p3 − p̄3)

2dt = η
∫ tf
ts
eρt(p1p2 − p̄1p̄2)(p3 − p̄3)dt+

γ2
∫ tf
ts
eρt[(1 − u(t))p1p3 − (1 − ū(t))p̄1p̄3](p3 − p̄3)dt− λ

∫ tf
ts
(p3 − p̄3)

2dt.

Putting ρ1 = e−ρtq1 into the first adjoint equation of the system (1), we
have

q̇1 − ρq1 = −pq1 + eρt
2pp1q1
lmax

+ δeρtp2q1 + γ1e
ρt(1 − u(t))p3q1 (27)

+µq1 + βeρtp2q2 − ηeρtp2q3 − γ2e
ρt(1 − u(t))p3q3.

Now, 1
2 (q1− q̄1)

2+ρ
∫ tf
ts
(q1− q̄1)

2dt = −p
∫ tf
ts
(q1− q̄1)

2dt+ 2p
lmax

∫ tf
ts
eρt(p1q1−

p̄1q̄1)(q1 − q̄1)dt+ δ
∫ tf
ts
eρt(p2q1 − p̄2q̄1)(q1 − q̄1)dt+ γ1

∫ tf
ts
eρt[(1− u(t))p3q1 −

(1− ū(t))p̄3q̄1](q1− q̄1)dt+µ
∫ tf
ts
(q1− q̄1)

2dt+β
∫ tf
ts
eρt(p2q2− p̄2q̄2)(q1− q̄1)dt−

η
∫ tf
ts
eρt(p2q3− p̄2q̄3)(q1 − q̄1)dt− γ2

∫ tf
ts
eρt[(1−u(t))p3q3− (1− ū(t))p̄3q̄3](q1 −

q̄1)dt.
Replacing ρ2 = e−ρtq2 in the second adjoint equation of the system (1), we

have

q̇2 − ρq2 = δeρtp1q1 + βeρtp1q2 + µ′q2 − ηeρtp1q3. (28)

Again, 1
2 (q2 − q̄2)

2 + ρ
∫ tf
ts
(q2 − q̄2)

2dt = δ
∫ tf
ts
eρt(p1q1 − p̄1q̄1)(q2 − q̄2)dt +

β
∫ tf
ts
eρt(p1q2− p̄1q̄2)(q2− q̄2)dt+µ

′
∫ tf
ts
(q2− q̄2)

2dt−η
∫ tf
ts
eρt(p1q3− p̄1q̄3)(q2−

q̄2)dt.
Substituting ρ3 = e−ρtq3 into the third and final adjoint equation of the

system (1), we have

q̇3 − ρq3 = −eρt + γ1e
ρt(1− u(t))p1q1 − γ2e

ρt(1− u(t))p1q3 + λq3. (29)

Now, 1
2 (q3 − q̄3)

2 + ρ
∫ tf
ts
(q3 − q̄3)

2dt = p
∫ tf
ts
(q3 − q̄3)

2dt + γ1
∫ tf
ts
eρt[(1 −

u(t))p1q1−(1−ū(t))p̄1q̄1](q3−q̄3)dt−γ2
∫ tf
ts
eρt[(1−u(t))p1q3−(1−ū(t))p̄1q̄3](q3−

q̄3)dt+ λ
∫ tf
ts
(q3 − q̄3)

2dt.

We can assume the following inequalities given below:
1
2 (p1− p̄1)

2(tf )+ρ
∫ tf
ts
(p1− p̄1)

2dt ≤ p
∫ tf
ts

|p1− p̄1|
2dt+2p

∫ tf
ts

|p1− p̄1|
2dt+

c1e
ρtf

∫ tf
ts
[|p1 − p̄1|

2 + |p2 − p̄2|
2]dt+ c2e

3ρtf [|p1 − p̄1|
2 + |p3 − p̄3|

2 + |q1 − q̄1|
2 +

|q3 − q̄3|
2]dt+ µ

∫ tf
ts

|p1 − p̄1|
2dt,



386 A. Datta and P. K. Roy

1
2 (p2 − p̄2)

2(tf ) + ρ
∫ tf
ts
(p2 − p̄2)

2dt ≤ p
∫ tf
ts

|p2 − p̄2|
2dt+ c3e

ρtf [|p1 − p̄1|
2 +

|p2 − p̄2|
2]dt+ µ′

∫ tf
ts

|p2 − p̄2|
2dt,

1
2 (p3− p̄3)

2(tf )+ ρ
∫ tf
ts
(p3− p̄3)

2dt ≤ c4e
ρtf

∫ tf
ts
[|p1− p̄1|

2+ |p2− p̄2|
2+ |p3−

p̄3|
2]dt+ c5e

3ρtf
∫ tf
ts
[|p1− p̄1|

2+ |p3− p̄3|
2+ |q1− q̄1|

2+ |q3− q̄3|
2]dt+λ

∫ tf
ts

|p3−

p̄3|
2dt,
1
2 (q1 − q̄1)

2(ts) + ρ
∫ tf
ts
(q1 − q̄1)

2dt ≤ p
∫ tf
ts

|q1 − q̄1|
2dt + c6e

3ρtf
∫ tf
ts
[|p1 −

p̄1|
2 + |q1− q̄1|

2]dt+ c7e
ρtf

∫ tf
ts
[|p2 − p̄2|

2 + |q1− q̄1|
2]dt+ c8e

3ρtf
∫ tf
ts
[|p1− p̄1|

2 +

|p3 − p̄3|
2 + |q1 − q̄1|

2 + |q3 − q̄3|
2]dt+ µ

∫ tf
ts

|q1 − q̄1|
2dt+ c9e

ρtf
∫ tf
ts
[|p2 − p̄2|

2 +

|q1 − q̄1|
2 + |q2 − q̄2|

2]dt + c10e
ρtf

∫ tf
ts
[|p2 − p̄2|

2 + |q1 − q̄1|
2 + |q3 − q̄3|

2]dt +

c11e
3ρtf

∫ tf
ts
[|p3 − p̄3|

2 + |q1 − q̄1|
2 + |q3 − q̄3|

2]dt,
1
2 (q2 − q̄2)

2(ts)+ ρ
∫ tf
ts
(q2 − q̄2)

2dt ≤ c12e
ρtf

∫ tf
ts
[|p1 − p̄1|

2+ |q1 − q̄1|
2 + |q2 −

q̄2|
2]dt+c13e

ρtf
∫ tf
ts
[|p1− p̄1|

2+ |q2− q̄2|
2]dt+µ′

∫ tf
ts

|q2− q̄2|
2dt+c14e

ρtf
∫ tf
ts
[|p1−

p̄1|
2 + |q2 − q̄2|

2 + |q3 − q̄3|
2]dt

and
1
2 (q3 − q̄3)

2(ts) + ρ
∫ tf
ts
(q3 − q̄3)

2dt ≤ p
∫ tf
ts

|q3 − q̄3|
2dt + c15e

3ρtf
∫ tf
ts
[|p1 −

p̄1|
2 + |q1 − q̄1|

2 + |q3 − q̄3|
2]dt+ c16e

3ρtf
∫ tf
ts
[|p1 − p̄1|

2 + |p3 − p̄3|
2 + |q1 − q̄1|

2 +

|q3 − q̄3|
2]dt+ λ

∫ tf
ts

|q3 − q̄3|
2dt.

Now, 1
2 [(p1− p̄1)

2(tf )+(p2− p̄2)
2(tf )+(p3− p̄3)

2(tf )+(q1− q̄1)
2(ts)+(q2−

q̄2)
2(ts)+ (q3− q̄3)

2(ts)]+ρ
∫ tf
ts
[(p1− p̄1)

2+(p2− p̄2)
2+(p3− p̄3)

2+(q1− q̄1)
2+

(q2 − q̄2)
2 + (q3 − q̄3)

2]dt ≤ (c̃1 + c̃2e
3ρtf )

∫ tf
ts
[(p1 − p̄1)

2 + (p2 − p̄2)
2 + (p3 −

p̄3)
2 + (q1 − q̄1)

2 + (q2 − q̄2)
2 + (q3 − q̄3)

2]dt,
which implies

(ρ− c̃1 + c̃2e
3ρtf )

∫ tf
ts
[(p1 − p̄1)

2 +(p2 − p̄2)
2 +(p3 − p̄3)

2 +(q1 − q̄1)
2 + (q2 −

q̄2)
2 + (q3 − q̄3)

2]dt ≤ 0,
where c̃1, c̃2 depend on the coefficients and the bounds of p1, p2, p3, q1, q2 and
q3. If we choose ρ > c̃1 + c̃2 and tf <

1
3ρ ln(

ρ−c̃1
c̃2

), then p1 = p̄1, p2 = p̄2, p3 =
p̄3, q1 = q̄1, q2 = q̄2 and q3 = q̄3.

Hence we can conclude that the solution of the system of such non–linear
bounds is unique for a small time interval (Joshi, 2002).


