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Abstract: Both inflation and unemployment inflict social losses.
When a tradeoff exists between the two, what would be the best
combination of inflation and unemployment? A well known approach
in economics to address this question is writing the social loss as a
function of the rate of inflation p and the rate of unemployment u,
with different weights, and then, using known relations between p, u,
and the expected rate of inflation π, to rewrite the social loss function
as a function of π. The answer is achieved by applying the calculus
of variations in order to find an optimal path π that minimizes total
social loss over a given time interval. Economists dealing with this
question use a continuous or a discrete variational problem. Here
we propose to use a time-scale model, unifying the results available
in the literature. Moreover, the new formalism allows for obtaining
new insights into the classical models when applied to real data of
inflation and unemployment.
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1. Introduction

Time-scale calculus is a recent and exciting mathematical theory that unifies
two existing approaches to dynamic modelling — difference and differential
equations — into a general framework called dynamic models on time scales
(Bohner and Peterson, 2001; Hilger, 1997; Mozyrska and Torres, 2009). As a
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more general approach to dynamic modelling, it allows for considering more
complex time domains, such as hZ, qN0 or complex hybrid domains (Almeida
and Torres, 2009).

Both inflation and unemployment inflict social losses. When a Phillips trade-
off exists between the two, what would be the best combination of inflation and
unemployment? A well-known approach consists in writing the social loss func-
tion as a function of the rate of inflation p and the rate of unemployment u,
with different weights; then, using relations between p, u and the expected rate
of inflation π, to rewrite the social loss function as a function of π; finally, to
apply the theory of the calculus of variations in order to find an optimal path
π that minimizes the total social loss over a certain time interval [0, T ] under
study. Economists dealing with this question implement the above approach
using both continuous and discrete models (Chiang, 1992; Taylor, 1989). Here
we propose a new, more general, time-scale model. We claim that such model
describes better the reality.

We compare solutions to three models — the continuous, the discrete, and
the time-scale model with T = hZ — using real data from the USA over a
period of 11 years, from 2000 to 2010. Our results show that the solutions to
the classical continuous and discrete models do not approximate well the reality.
Therefore, when predicting the future, one cannot base predictions on the two
classical models only. The time-scale approach proposed here shows, however,
that the classical models are adequate if one uses an appropriate data sampling
process. Moreover, the proper time for data collection can be computed from
the theory of time scales.

The paper is organized as follows. Section 2 provides all the necessary def-
initions and results of the delta-calculus on time scales, which will be used
throughout the text. This section makes the paper accessible to economists
with no previous contact with the time-scale calculus. In Section 3 we present
the economic model under our consideration, in continuous, discrete, and time-
scale settings. Section 4 contains our results. Firstly, we derive in Section 4.1 the
necessary (Theorem 13 and Corollary 1) and sufficient (Theorem 14) optimal-
ity conditions for the variational problem that models the economical situation.
For the time scale T = hZ with appropriate values of h, we obtain an explicit
solution for the global minimizer of the total social loss problem (Theorem 15).
Secondly, we apply in Section 4.2 those conditions to the model with real data of
inflation (InflationData.Com, 2000-2010), and unemployment (Unemployment-
Data.com, 2000-2010). We end with Section 5 of conclusions.

2. Preliminaries

In this section we introduce basic definitions and theorems that will be useful
in the sequel. For more on the theory of time scales we refer to Bohner and
Peterson (2001, 2003). For general results on the calculus of variations on time
scales we refer the reader to Girejko et al. (2012), Malinowska and Torres (2011),
Martins and Torres (2011) and references therein.
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A time scale T is an arbitrary nonempty closed subset of R. Let a, b ∈
T with a < b. We define the interval [a, b] in T by [a, b]T := [a, b] ∩ T =
{t ∈ T : a ≤ t ≤ b}.

Definition 1 (Bohner and Peterson, 2001). The backward jump operator ρ :
T → T is defined by ρ(t) := sup{s ∈ T : s < t} for t 6= inf T and ρ(inf T) := inf T
if inf T > −∞. The forward jump operator σ : T → T is defined by σ(t) :=
inf{s ∈ T : s > t} for t 6= supT and σ(supT) := supT if supT < +∞. The
backward graininess function ν : T → [0,∞) is defined by ν(t) := t− ρ(t), while
the forward graininess function µ : T → [0,∞) is defined by µ(t) := σ(t)− t.

Example 1. The two classical time scales are R and Z, representing the con-
tinuous and the purely discrete time, respectively. The other example of interest
to the present study is the periodic time scale hZ. It follows from Definition 1
that if T = R, then σ(t) = t, ρ(t) = t, and µ(t) = 0 for all t ∈ T; if T = hZ,
then σ(t) = t+ h, ρ(t) = t− h, and µ(t) = h for all t ∈ T.

A point t ∈ T is called right-dense, right-scattered, left-dense or left-scattered
if σ(t) = t, σ(t) > t, ρ(t) = t, and ρ(t) < t, respectively. We say that t is isolated
if ρ(t) < t < σ(t), and that t is dense if ρ(t) = t = σ(t).

2.1. The delta derivative and the delta integral

We collect here the necessary theorems and properties concerning differentiation
and integration on a time scale. To simplify the notation, we define fσ(t) :=
f(σ(t)). The delta derivative is defined for points in the set

T
κ :=

{

T \ {supT} if ρ(supT) < supT < ∞,

T otherwise.

Definition 2 (Section 1.1 of Bohner and Peterson, 2001). We say that a func-
tion f : T → R is ∆-differentiable at t ∈ Tκ if there is a number f∆(t) such
that for all ε > 0 there exists a neighborhood O of t such that

|fσ(t)− f(s)− f∆(t)(σ(t) − s)| ≤ ε|σ(t)− s| for all s ∈ O.

We call to f∆(t) the ∆-derivative of f at t.

Theorem 1 (Theorem 1.16 of Bohner and Peterson, 2001). Let f : T → R and
t ∈ Tκ. The following holds:

1. If f is ∆-differentiable at t, then f is continuous at t.
2. If f is continuous at t and t is right-scattered, then f is ∆–differentiable

at t with

f∆(t) =
fσ(t)− f(t)

µ(t)
.
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3. If t is right-dense, then f is ∆–differentiable at t if, and only if, the limit

lim
s→t

f(t)− f(s)

t− s

exists as a finite number. In this case,

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

4. If f is ∆–differentiable at t, then fσ(t) = f(t) + µ(t)f∆(t).

Example 2. If T = R, then item 3 of Theorem 1 yields that f : R → R is
∆–differentiable at t ∈ R if, and only if,

f∆(t) = lim
s→t

f(t)− f(s)

t− s

exists, i.e., if, and only if, f is differentiable (in the ordinary sense) at t:
f∆(t) = f ′(t). If T = hZ, then point 2 of Theorem 1 yields that f : Z → R is
∆–differentiable at t ∈ hZ if, and only if,

f∆(t) =
f(σ(t)) − f(t)

µ(t)
=

f(t+ h)− f(t)

h
. (1)

In the particular case h = 1, f∆(t) = ∆f(t), where ∆ is the usual forward
difference operator.

Theorem 2 (Theorem 1.20 of Bohner and Peterson, 2001). Assume f, g : T →
R are ∆-differentiable at t ∈ Tκ. Then,

1. The sum f + g : T → R is ∆-differentiable at t with (f + g)∆(t) =
f∆(t) + g∆(t).

2. For any constant α, αf : T → R is ∆-differentiable at t with (αf)∆(t) =
αf∆(t).

3. The product fg : T → R is ∆-differentiable at t with

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = f(t)g∆(t) + f∆(t)gσ(t).

4. If g(t)gσ(t) 6= 0, then f/g is ∆-differentiable at t with

(

f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)gσ(t)
.

Definition 3 (Definition 1.71 of Bohner and Peterson, 2001). A function F :
T → R is called an antiderivative of f : T → R provided F∆(t) = f(t) for all
t ∈ Tκ.

Definition 4 (Bohner and Peterson, 2001). A function f : T → R is called rd-
continuous provided it is continuous at right-dense points in T and its left-sided
limits exists (finite) at all left-dense points in T.
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The set of all rd-continuous functions f : T → R is denoted by Crd =
Crd(T) = Crd(T,R). The set of functions f : T → R that are ∆-differentiable
and whose derivative is rd-continuous is denoted by C1

rd = C1
rd(T) = C1

rd(T,R).

Theorem 3 (Theorem 1.74 of Bohner and Peterson, 2001). Every rd-continuous
function f has an antiderivative F . In particular, if t0 ∈ T, then F defined by

F (t) :=

t
∫

t0

f(τ)∆τ, t ∈ T,

is an antiderivative of f .

Definition 5. Let T be a time scale and a, b ∈ T. If f : Tκ → R is an rd-
continuous function and F : T → R is an antiderivative of f , then the ∆-integral
is defined by

b
∫

a

f(t)∆t := F (b)− F (a).

Example 3. Let a, b ∈ T and f : T → R be rd-continuous. If T = R, then

b
∫

a

f(t)∆t =

b
∫

a

f(t)dt,

where the integral on the right hand side is the usual Riemann integral. If
T = hZ, h > 0, then

b
∫

a

f(t)∆t =































b
h
−1
∑

k= a
h

f(kh)h, if a < b,

0, if a = b,

−
a
h
−1
∑

k= b
h

f(kh)h, if a > b.

Theorem 4 (Theorem 1.75 of Bohner and Peterson, 2001). If f ∈ Crd and
t ∈ Tκ, then

σ(t)
∫

t

f(τ)∆τ = µ(t)f(t).

Theorem 5 (Theorem 1.77 of Bohner and Peterson, 2001). If a, b ∈ T, a 6

c 6 b, α ∈ R, and f, g ∈ Crd(T,R), then:

1.
b
∫

a

(f(t) + g(t))∆t =
b
∫

a

f(t)∆t+
b
∫

a

g(t)∆t,
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2.
b
∫

a

αf(t)∆t = α
b
∫

a

f(t)∆t,

3.
b
∫

a

f(t)∆t = −
a
∫

b

f(t)∆t,

4.
b
∫

a

f(t)∆t =
c
∫

a

f(t)∆t+
b
∫

c

f(t)∆t,

5.
a
∫

a

f(t)∆t = 0,

6.
b
∫

a

f(t)g∆(t)∆t = f(t)g(t)|t=b
t=a −

b
∫

a

f∆(t)gσ(t)∆t,

7.
b
∫

a

fσ(t)g∆(t)∆t = f(t)g(t)|t=b
t=a −

b
∫

a

f∆(t)g(t)∆t,

8. if f(t) > 0 for all a 6 t < b, then
b
∫

a

f(t)∆t > 0.

2.2. Delta dynamic equations

We now recall the definition and main properties of the delta exponential func-
tion. The general solution to a linear and homogenous second-order delta dif-
ferential equation with constant coefficients is given.

Definition 6 (Definition 2.25 of Bohner and Peterson, 2001). We say that a
function p : T → R is regressive if

1 + µ(t)p(t) 6= 0

for all t ∈ Tκ. The set of all regressive and rd-continuous functions f : T → R

is denoted by R = R(T) = R(T,R).

Definition 7 (Definition 2.30 of Bohner and Peterson, 2001). If p ∈ R, then
we define the exponential function by

ep(t, s) := exp





t
∫

s

ξµ(τ)(p(τ))∆τ



 , s, t ∈ T,

where ξµ is the cylinder transformation (see Definition 2.21 of Bohner and Pe-
terson, 2001).

Example 4. Let T be a time scale, t0 ∈ T, and α ∈ R(T,R). If T = R, then
eα(t, t0) = eα(t−t0) for all t ∈ T. If T = hZ, h > 0, and α ∈ C\

{

− 1
h

}

is a
constant, then

eα(t, t0) = (1 + αh)
t−t0

h for all t ∈ T. (2)

Theorem 6 (Theorem 2.36 of Bohner and Peterson, 2001). Let p, q ∈ R and

⊖p(t) := −p(t)
1+µ(t)p(t) . The following holds:
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1. e0(t, s) ≡ 1 and ep(t, t) ≡ 1,
2. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),
3. 1

ep(t,s)
= e⊖p(t, s),

4. ep(t, s) =
1

ep(s,t)
= e⊖p(s, t),

5.
(

1
ep(t,s)

)∆

= −p(t)
eσp (t,s)

.

Theorem 7 (Theorem 2.62 of Bohner and Peterson, 2001). Suppose y∆ = p(t)y
is regressive, that is, p ∈ R. Let t0 ∈ T and y0 ∈ R. The unique solution to the
initial value problem

y∆(t) = p(t)y(t), y(t0) = y0,

is given by y(t) = ep(t, t0)y0.

Let us consider the following linear second-order dynamic homogeneous
equation with constant coefficients:

y∆∆ + αy∆ + βy = 0, α, β ∈ R. (3)

We say that the dynamic equation (3) is regressive if 1−αµ(t) + βµ2(t) 6= 0 for
t ∈ Tκ, i.e., βµ− α ∈ R.

Definition 8 (Definition 3.5 of Bohner and Peterson, 2001). Given two delta
differentiable functions y1 and y2, we define the Wronskian W (y1, y2)(t) by

W (y1, y2)(t) := det

[

y1(t) y2(t)
y∆1 (t) y∆2 (t)

]

.

We say that two solutions y1 and y2 of (3) form a fundamental set of solutions
(or a fundamental system) for (3), provided W (y1, y2)(t) 6= 0 for all t ∈ Tκ.

Theorem 8 (Theorem 3.16 of Bohner and Peterson, 2001). If (3) is regressive
and α2 − 4β 6= 0, then a fundamental system for (3) is given by eλ1(·, t0) and
eλ2(·, t0), where t0 ∈ Tκ and λ1 and λ2 are given by

λ1 :=
−α−

√

α2 − 4β

2
, λ2 :=

−α+
√

α2 − 4β

2
.

Theorem 9 (Theorem 3.32 of Bohner and Peterson, 2001). Suppose that α2 −
4β < 0. Define p = −α

2 and q =

√
4β−α2

2 . If p and µβ − α are regres-
sive, then a fundamental system of (3) is given by cos q

(1+µp)
(·, t0)ep(·, t0) and

sin q

(1+µp)
(·, t0)ep(·, t0), where t0 ∈ T

κ.

Theorem 10 (Theorem 3.34 of Bohner and Peterson, 2001). Suppose α2−4β =
0. Define p = −α

2 . If p ∈ R, then a fundamental system of (3) is given by

ep(t, t0) and ep(t, t0)

t
∫

t0

1

1 + pµ(τ)
∆τ,

where t0 ∈ T
κ.
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Theorem 11 (Theorem 3.7 of Bohner and Peterson, 2001). If functions y1 and
y2 form a fundamental system of solutions for (3), then y(t) = αy1(t) + βy2(t),
where α, β are constants, is a general solution to (3), i.e., every function of this
form is a solution to (3) and every solution of (3) is of this form.

2.3. Calculus of variations on time scales

Consider the following problem of the calculus of variations on time scales:

L(y) =
b
∫

a

L(t, y(t), y∆(t))∆t −→ min (4)

subject to the boundary conditions

y(a) = ya, y(b) = yb, (5)

where L : [a, b]κ
T
× R2 → R, (t, y, v) 7→ L(t, y, v), is a given function, and ya,

yb ∈ R.

Definition 9. A function y ∈ C1
rd([a, b]T,R) is said to be an admissible path to

problem (4) - (5) if it satisfies the given boundary conditions (5).

We assume that L(t, ·, ·) is differentiable in (y, v); L(t, ·, ·), Ly(t, ·, ·) and
Lv(t, ·, ·) are continuous at (y, y∆) uniformly at t and rd-continuously at t for
any admissible path y.

Definition 10. We say that an admissible function ŷ is a local minimizer to
problem (4)–(5) if there exists δ > 0 such that L(ŷ) ≤ L(y) for all admissible
functions y ∈ C1

rd satisfying the inequality ||y − ŷ|| < δ. The following norm in
C1

rd is considered:

||y|| := sup
t∈[a,b]κ

T

|y(t)|+ sup
t∈[a,b]κ

T

∣

∣y∆(t)
∣

∣ .

Theorem 12 (Corollary 1 of Ferreira et al., 2011). If y is a local minimizer to
problem (4)–(5), then y satisfies the Euler–Lagrange equation

Lv(t, y(t), y
∆(t)) =

σ(t)
∫

a

Ly(τ, y(τ), y
∆(τ))∆τ + c (6)

for some constant c ∈ R and all t ∈ [a, b]
κ
T
.

3. The economical model

The inflation rate, p, affects decisions of the society regarding consumption and
saving, and therefore aggregated demand for domestic production, which, in
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turn, affects the rate of unemployment, u. A relationship between the infla-
tion rate and the rate of unemployment is described by the Phillips curve, the
most commonly used term in the analysis of inflation (Samuelson and Nord-
haus, 2004). Having a Phillips tradeoff between u and p, what is then the best
combination of inflation and unemployment over time? To answer this question,
we follow here the formulations presented in Chiang (1992) and Taylor (1989).
The Phillips tradeoff between u and p is defined as

p := −βu+ π, β > 0, (7)

where π is the expected rate of inflation that is captured by the equation

π′ = j(p− π), 0 < j ≤ 1. (8)

The government loss function, λ, is specified in the following quadratic form:

λ = u2 + αp2, (9)

where α > 0 is the weight attached to government’s distaste for inflation relative
to the loss from income deviating from its equilibrium level. Combining (7) and
(8), and substituting the result into (9), we obtain that

λ (π(t), π′(t)) =

(

π′(t)

βj

)2

+ α

(

π′(t)

j
+ π(t)

)2

,

where α, β, and j are real positive parameters that describe the relations be-
tween all variables that occur in the model (Taylor, 1989). The problem is to
find the optimal path π that minimizes the total social loss over the time in-
terval [0, T ]. The initial and the terminal values of π, π0 and πT , respectively,
are given, with π0, πT > 0. To express the importance of the present relative
to the future, all social losses are discounted to their present values via a posi-
tive discount rate δ. Two models are available in the literature: the continuous
model

ΛC(π) =

T
∫

0

λ(π(t), π′(t))e−δtdt −→ min, (10)

subject to given boundary conditions

π(0) = π0, π(T ) = πT , (11)

and the discrete model

ΛD(π) =

T−1
∑

t=0

λ(π(t),∆π(t))(1 + δ)−t −→ min, (12)
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also subject to the boundary conditions (11). In both cases, (10) and (12),

λ(t, π, υ) :=

(

υ

βj

)2

+ α

(

υ

j
+ π

)2

. (13)

Here we propose the more general time-scale model

ΛT(π) =

T
∫

0

λ(t, π(t), π∆(t))e⊖δ(t, 0)∆t −→ min (14)

subject to boundary conditions (11) and with λ defined by (13). Clearly, the
time-scale model includes both the discrete and continuous models as special
cases: our time-scale functional (14) reduces to (10) when T = R and to (12)
when T = Z.

4. Main results

Standard dynamic economic models are set up in either continuous or discrete
time. Since time scale calculus can be used to model dynamic processes whose
time domains are more complex than the set of integers or real numbers, the
use of time scales in economy is a flexible and capable modelling technique. In
this section we show the advantage of using (14) with the periodic time scale.
We begin by obtaining in Section 4.1 a necessary and also a sufficient optimality
condition for our economic model (14): Theorems 13 and 14, respectively. For
T = hZ, h > 0, the explicit solution π̂ to the problem (14) subject to (11)
is given (Theorem 15). Afterwards, we use such results with empirical data
(Section 4.2).

4.1. Theoretical results

Let us consider the problem

L(π) =
T
∫

0

L(t, π(t), π∆(t))∆t −→ min (15)

subject to boundary conditions

π(0) = π0, π(T ) = πT . (16)

As explained in Section 3, we are particularly interested in the situation where

L(t, π(t), π∆(t)) =

[

(

π∆(t)

βj

)2

+ α

(

π∆(t)

j
+ π(t)

)2
]

e⊖δ(t, 0). (17)

For simplicity, in the sequel we use the notation [π](t) := (t, π(t), π∆(t)).
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Theorem 13. If π̂ is a local minimizer to problem (15)–(16) and the graininess
function µ is a ∆-differentiable function on [0, T ]κ

T
, then π̂ satisfies the Euler–

Lagrange equation

(Lv[π](t))
∆
=
(

1 + µ∆(t)
)

Ly[π](t) + µσ(t) (Ly[π](t))
∆

(18)

for all t ∈ [0, T ]
κ2

T
.

Proof. If π̂ is a local minimizer to (15)–(16), then, by Theorem 12, π̂ satisfies
the following equation:

Lv[π](t) =

σ(t)
∫

0

Ly[π](τ)∆τ + c.

Using the properties of the ∆-integral (see Theorem 4), we can write that π̂
satisfies

Lv[π](t) =

t
∫

0

Ly[π](τ)∆τ + µ(t)Ly[π](t) + c. (19)

Taking the ∆-derivative to both sides of (19), we obtain equation (18).
Using Theorem 13, we can immediately write the classical Euler–Lagrange

equations for the continuous (10) and the discrete (12) models.

Example 5. Let T = R. Then, µ ≡ 0 and (18) with the Lagrangian (17)
reduces to

(

1 + αβ2
)

π′′(t)− δ
(

1 + αβ2
)

π′(t)− αjβ2 (δ + j) = 0. (20)

This is the Euler–Lagrange equation for the continuous model (10).

Example 6. Let T = Z. Then, µ ≡ 1 and (18) with the Lagrangian (17)
reduces to

(

αjβ2 − αβ2 − 1
)

∆2π(t)+
(

αj2β2 + δαβ + δ
)

∆π(t)+αjβ2 (δ + j)π(t) = 0.

(21)

This is the Euler–Lagrange equation for the discrete model (12).

Corollary 1. Let T = hZ, h > 0, π0, πT ∈ R, and T = Nh for a certain integer
N > 2h. If π̂ is a solution to the problem

Λh(π) =

T−h
∑

t=0

L(t, π(t), π∆(t))h −→ min,

π(0) = π0, π(T ) = πT ,
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then π̂ satisfies the Euler–Lagrange equation

(Lv[π](t))
∆
= Ly[π](t) + h (Ly[π](t))

∆
(22)

for all t ∈ {0, . . . , T − 2h}.
Proof. Follows from Theorem 13 by choosing T to be the periodic time scale hZ.

Example 7. The Euler–Lagrange equation for problem (14) on T = hZ is given
by (22):

(1+αβ2−αβ2jh)π∆∆+(−δ−αβ2δ−αβ2j2h)π∆+(−αβ2δj−αβ2j2)π = 0. (23)

Assume that 1 + αβ2 − αβ2jh 6= 0. Then, equation (23) is regressive and we
can use the theorems well known in the theory of dynamic equations on time
scales (see Section 2.2), in order to find its general solution. Introducing the
quantities

Ω := 1+αβ2−αβ2jh, A := −
(

δ + αβ2δ + αβ2j2h
)

, B := αβ2j(δ+j), (24)

we rewrite equation (23) as

π∆∆ +
A

Ω
π∆ − B

Ω
π = 0. (25)

The characteristic equation for (25) is

ϕ(λ) = λ2 +
A

Ω
λ− B

Ω
= 0

with determinant

ζ =
A2 + 4BΩ

Ω2
. (26)

In general, we have three different cases depending on the sign of the determinant
ζ: ζ > 0, ζ = 0 and ζ < 0. However, with our assumptions on the parame-
ters, simple computations show that the last case cannot occur. Therefore, we
consider the two possible cases:

1. If ζ > 0, then we have two different characteristic roots:

λ1 =
−A+

√
A2 + 4BΩ

2Ω
> 0 and λ2 =

−A−
√
A2 + 4BΩ

2Ω
< 0,

and by Theorems 8 and 11 we get that

π(t) = C1eλ1(t, 0) + C2eλ2(t, 0) (27)

is the general solution to (25), where C1 and C2 are constants determined
using the boundary conditions (11). Using (2), we rewrite (27) as

π(t) = C1 (1 + λ1h)
t
h + C2 (1 + λ2h)

t
h .
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2. If ζ = 0, then by Theorems 10 and 11 we get that

π(t) = K1ep(t, 0) +K2ep(t, 0)

t
∫

0

∆τ

1 + pµ(τ)
(28)

is the general solution to (25), where K1 and K2 are constants, determined
using the boundary conditions (11), and p = − A

2Ω ∈ R. Using Example 3
and (2), we rewrite (28) as

π(t) = K1

(

1− A

2Ω
h

)
t
h

+K2

(

1− A

2Ω
h

)
t
h 2Ωt

2Ω−Ah
.

In certain cases one can show that the Euler–Lagrange extremals are indeed
minimizers. In particular, this is true for the Lagrangian (17) under study. We
recall the notion of jointly convex function (see, e.g., Definition 1.6 of Mali-
nowska and Torres, 2012).

Definition 11. Function (t, u, v) 7→ L(t, u, v) ∈ C1
(

[a, b]T × R
2;R

)

is jointly
convex in (u, v) if

L(t, u+ u0, v + v0)− L(t, u, v) ≥ ∂2L(t, u, v)u0 + ∂3L(t, u, v)v0

for all (t, u, v), (t, u+ u0, v + v0) ∈ [a, b]T × R2.

Theorem 14. Let (t, u, v) 7→ L(t, u, v) be jointly convex with respect to (u, v)
for all t ∈ [a, b]T. If ŷ is a solution to the Euler–Lagrange equation (6), then ŷ
is a global minimizer to (4)–(5).

Proof. Since L is jointly convex with respect to (u, v) for all t ∈ [a, b]T,

L(y)− L(ŷ) =
b
∫

a

[L(t, y(t), y∆(t)) − L(t, ŷ(t), ŷ∆(t))]∆t

≥
b
∫

a

[

∂2L(t, ŷ(t), ŷ
∆(t)) · (y(t)− ŷ(t)) + ∂3L(t, ŷ(t), ŷ

∆(t)) · (y∆(t)− ŷ∆(t))
]

∆t

for any admissible path y. Let h(t) := y(t) − ŷ(t). Using boundary conditions
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(5), we obtain that

L(y)− L(ŷ) ≥
b
∫

a

h∆(t)






−

σ(t)
∫

a

∂2L(τ, ŷ(τ), ŷ
∆(τ))∆τ + ∂3L(t, ŷ(t), ŷ

∆(t))






∆t

+ h(t)

b
∫

a

∂2L(t, ŷ(t), ŷ
∆(t))∆t|ba

=

b
∫

a

h∆(t)






−

σ(t)
∫

a

∂2L(τ, ŷ(τ), ŷ
∆(τ))∆τ + ∂3L(t, ŷ(t), ŷ

∆(t))






∆t.

From (6) we get

L(y)− L(ŷ) ≥
b
∫

a

h∆(t)c∆t = 0

for some c ∈ R. Hence, L(y)− L(ŷ) ≥ 0.
Combining Examples 4 and 7 and Theorem 14, we obtain the central result

to be applied in Section 4.2.

Theorem 15 (Solution to the total social loss problem of the calculus of vari-
ations in the time scale T = hZ, h > 0). Let us consider the economic problem

Λh(π) =
T−h
∑

t=0

[

(

π∆(t)

βj

)2

+ α

(

π∆(t)

j
+ π(t)

)2
]

(

1− hδ

1 + hδ

)
t
h

h −→ min,

π(0) = π0, π(T ) = πT ,

(29)

discussed in Section 3 with T = hZ, h > 0, and the ∆-derivative given by (1).
More precisely, let T = Nh for a certain integer N > 2h, α, β, δ, π0, πT ∈ R+,
and 0 < j ≤ 1 be such that h > 0 and 1 + αβ2 − αβ2jh 6= 0. Let Ω, A and B
be given as in (24).

1. If A2 + 4BΩ > 0, then the solution π̂ to problem (29) is given by

π̂(t) = C

(

1− A−
√
A2 + 4BΩ

2Ω
h

)
t
h

+(π0−C)

(

1− A+
√
A2 + 4BΩ

2Ω
h

)
t
h

,

(30)

t ∈ {0, . . . , T − 2h}, where

C :=
πT − π0

(

2Ω−hA−h
√
A2+4BΩ

2Ω

)
T
h

(

2Ω−hA+h
√
A2+4BΩ

2Ω

)
T
h −

(

2Ω−hA−h
√
A2+4BΩ

2Ω

)
T
h

.
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2. If A2 + 4BΩ = 0, then the solution π̂ to problem (29) is given by

π̂(t) =

(

1− A

2Ω
h

)
t
h

π0+

(

1− A

2Ω
h

)
t
h

[

πT

(

2Ω

2Ω−Ah

)
T
h

− π0

]

t

T
, (31)

t ∈ {0, . . . , T − 2h}.

Proof. From Example 7, π̂ satisfies the Euler–Lagrange equation for problem
(29). Moreover, the Lagrangian of functional Λh of (29) is a convex function
because it is the sum of convex functions. Hence, by Theorem 14, π̂ is a global
minimizer.

4.2. Empirical results

We have three forms for the total social loss: continuous (10), discrete (12),
and on a time scale T (14). Our idea is to compare the implications of one
model with those of another using empirical data: the rate of inflation p from
InflationData.Com (2000-2010) and the rate of unemployment u from Unem-
ploymentData.com (2000-2010), which were collected each month in the USA
over 11 years, from 2000 to 2010. We consider the coefficients

β := 3, j :=
3

4
, α :=

1

2
, δ :=

1

4
,

borrowed from Chiang (1992). Therefore, the time-scale total social loss func-
tional for one year is

ΛT(π) =

11
∫

0

[

16

9

(

π∆(t)
)2

+
1

2

(

4

3
π∆(t) + π(t)

)2
]

e⊖ 1
4
(t, 0)∆t. (32)

Empirical values πE of the expected rate of inflation, π, for all months in each
year, are calculated using (7) and appropriate values of p and u (Inflation-
Data.Com, 2000-2010; UnemploymentData.com, 2000-2010). In the sequel, the
boundary conditions π(0) and π(11) will be selected from empirical data in
January and December, respectively. We shall compare the minimum values
of the total social loss functional (32) obtained from continuous and discrete
models and the value for empirical data, i.e., the value of the discrete functional
ΛD(πE) =: ΛE computed with empirical data πE .

In the continuous case we use the Euler–Lagrange equation (20) with appro-
priate boundary conditions in order to find the optimal path that minimizes ΛC

over each year. Then, we calculate the optimal values of ΛC for each year (see
the second column of Table 1). In the third column of Table 1 we collect empir-
ical values of total social loss ΛE for each year, which are obtained by (12) from
empirical data. We find the optimal path that minimizes ΛD over each year
using the Euler–Lagrange equation (21) with appropriate boundary conditions.
The optimal values of ΛD for each year are given in the fifth column of Table 1.
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Figure 1. The expected rate of inflation π̂(t) during the year 2000 in USA,
obtained from the classical discrete model (12) (upper function) and the classi-
cal continuous model (10) (lower function), with boundary conditions (11) from
January (t = 0) and December (t = 11), together with the empirical rate of
inflation with real data from 2000 (InflationData.Com, 2000-2010; Unemploy-
mentData.com, 2000-2010) (function in the middle).

The paths obtained from the three approaches, using empirical data from 2000,
are presented in Fig. 1. The implications obtained from the three methods in a
fixed year are very different, independently of the year we chose. Table 2 shows
the relative errors between ΛC and ΛE (the third column), ΛD and ΛE (the
fourth column). Our research was motivated by these discrepancies. Why are
the results so different? Is it caused by poor design of the model or maybe by
something else?

We focus on the data collection time sampling and consider it as a cause of
those differences in the results. There may exist other reasons, but we examine
here the data gathering. Let us consider our time-scale model in which we
consider functional (32) over a periodic time scale T = hZ. In each year we
change the time scale by changing h, in such a way that the sum in the functional
makes sense, and we are seeking such value of h for which the absolute error
between the minimal values of the functional (32) and ΛE is minimal. In Table 1,
the sixth column presents the values of the most appropriate h and the fourth
column the minimal values of the total social loss that correspond to them.
Fig. 2 presents the optimal paths for the continuous, discrete and time-scale
models together with the empirical path, obtained using real data from 2000
(InflationData.Com, 2000-2010; UnemploymentData.com, 2000-2010). In the
second column of Table 2 we collect the relative errors between the minimal
values of functional ΛE and Λh.
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Figure 2. The three functions of Fig. 1 together with the one obtained from our
time-scale model (14) and Theorem 15, illustrating the fact that the expected
rate of inflation given by (30) with h = 0.22 approximates well the empirical
rate of inflation.

5. Conclusions

We introduced a time-scale model for the total social loss over a certain time
interval under study. During examination of the proposed time-scale model for
T = hZ, h > 0, we changed the graininess parameter. Our goal was to obtain
the most similar value of the total social loss functional Λh to its real value,
i.e., the value from empirical data. We analyzed 11 years with real data from
(InflationData.Com, 2000-2010; UnemploymentData.com, 2000-2010). With a
well-chosen time scale, we found a small relative error between the real value of
the total social loss and the value obtained from our time-scale model (see the
second column of Table 2). We conclude that the lack of accurate results from
the classical models arise due to an inappropriate frequency of data collection.
Indeed, if one measures the level of inflation and unemployment about once
a week, which is suggested by the values of h obtained from the time-scale
model, e.g., h = 0.11 or h = 0.2 (here h = 1 corresponds to one month), the
credibility of the results obtained from the classical methods gets much higher.
In other words, similar results to the ones obtained by our time-scale model could
be obtained with the classical models, if a higher frequency of data collection
were used. In practical terms, however, to collect the levels of inflation and
unemployment on a weekly basis is not realizable, and the calculus of variations
on time scales (Bartosiewicz and Torres, 2008; Girejko et al., 2010) assumes an
important role.
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year The value of the functional in different approaches
continuous empirical time scales discrete the best h

ΛC ΛE Λh ΛD

2000 37.08888039 457.1493181 487.1508715 2470 0.22
2001 52.78839446 522.8060796 536.0298868 3040 0.11
2002 63.88123645 673.399954 663.2573844 3820 0.11
2003 62.01139398 811.1909476 853.5383036 4520 0.2
2004 61.72908568 703.7663513 699.714732 4130 0.11
2005 56.01553586 672.0977499 665.8735854 4060 0.1
2006 45.73885179 592.0374216 594.1793342 3700 0.1
2007 53.65457721 505.8743517 511.5351347 2910 0.1
2008 73.4472459 785.9852316 746.8126214 4260 0.11
2009 144.2965207 1352.738181 1357.167459 6330 0.22
2010 153.4630805 1819.572063 1865.77131 11400 0.1

11 years 12.89356177 480.5729081 446.1625854 2E+91 0.11

Table 1. Comparison of the values of total social loss functionals in different
approaches.
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