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Abstract: Optimization of product in enzyme kinetics is suc-
cessful by the showers of mathematical analysis with control mea-
sures. Enzymes are an important functional aspects of all biochemi-
cal processes, as they catalyze numerous reaction taking place within
living organisms. With this view, optimization and quantification of
product is stressed upon and in such a context, optimal control ap-
proaches have been applied in our study. In this article, we have
formulated a mathematical model of enzymatic system dynamics
with control measures with a view to optimize the product as well
as process conditions. Here, Pontryagin Minimum Principle is used
for determination of optimal control with the help of Hamiltonian.
We discuss the relevant numerical solutions for the concentration of
substrate, enzyme, complex and product with respect to a specified
time interval by varying control factors.
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1. Introduction

Enzyme kinetics in the light of mathematical modeling has played a significant
role for optimization of product in dynamical reaction systems. For smooth com-
pletion of reaction, all biochemical and most chemical reactions require catalyst
or biocatalyst like enzymes. By acting as a catalyst, an enzyme dramatically
increases the rate of reaction by lowering the activation energy of the reaction
without forming any side products. In the system dynamics of enzymatic re-
action, enzyme binds target molecules or substrates through the active sites,
the most vibrant part of an enzyme. After binding with the substrate, it forms
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enzyme-substrate complex, finally transformed into products through a series
of steps by enzymatic mechanism.

The advantages of enzymatic reactions correlate with the fact that these reac-
tions occur in mild conditions and desirable product is obtained due to speci-
ficity of enzymes. Extensive research has been made in the kinetics of enzy-
matic processes and it has a significant role in optimizing the rate of reactions,
rate of formation of intermediate complex as well as products. Enzyme kinet-
ics with a mathematical bent has been discussed in various books (Rubinow,
1975; Murray, 1989; Segel, 1980; Roberts, 1977). Later, enzyme kinetics based
on mathematical foundation were studied in various disciplines led by the pio-
neer work of Sharpe and Lotka (Sharpe and Lotka, 1923) in Epidemiology and
Ecology. Recently, different analytical techniques have been adopted for better
understanding of enzyme kinetic models (Alicea, 2010; Varadharajan and Ra-
jendran, 2011; Tzafriri and Edelman, 2004). So, mathematical analysis has an
important role in enzymatic reaction environment and helps us to realize the
evaluation of control parameters, optimum control of reaction conditions and
product optimization in relation to kinetically controlled enzymatic systems.
In other words, mathematical models, especially when coupled with modern
computer technique, prove to be effective in searching to optimize and quantify
productivity (Vasic-Racki et al., 2003).

One of the most important aspects of enzyme kinetics is the formation of
enzyme-substrate complex of different nature. In 1902, Brown (Brown, 1902)
proposed the existence of an enzyme-substrate complex in a purely kinetic con-
text with a fixed lifetime to form the product. This was the first time that
the existence of the complex was proposed in an enzymatic dynamics. Later,
formation of complex by the interaction of substrate and enzyme was found a
reversible process. A complex may either form products or revert back again to
substrate. Control measure in this aspect contributes significantly. In this per-
spective, optimal control approach has been applied in the backward reaction in
this study for product optimization. Another control input has been introduced
in the stage of conversion of complex to product for the complete quantification
of enzymatic reaction product.

In our consideration of the enzyme kinetics, a mathematical approach aims at
product optimization by introducing control measures. For continuously oper-
ated reaction process, optimization of productivity by mathematical analysis is
still an emerging field of research. As the nature, stability and conversion rate of
complex are the most fundamental aspects for optimization and quantification
of product, so double control approaches have been applied in case of backward
reversible stage and final forward reaction. Here the model equation is analyzed
in two different avenues, analytical and numerical. For the determination of op-
timal control, Pontryagin Minimum Principle has been adopted and it has been
solved using Hamiltonian. Numerical analysis was done to find out the system
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parameters for which the product can be optimized. Our model parameters
reflect more specifically an enzyme’s true kinetic properties and affinity for a
substrate and thus provide a better characterization of the enzymatic dynamics.
Numerical findings are in agreement with the results of theoretical analysis.

2. Control theoretic approach

One of the most basic enzymatic reactions, proposed by Leonor Michaelis and
Maud Menten (1913), is schematically given by

k1 ko
S—l—Ek:‘ [SE] — P+ E.

—1
That is, one molecule of the enzyme (E) combines with one molecule of the
substrate (S) to form one molecule of the complex (SE). The complex (SE)
can dissociate into one molecule of each of the enzyme and substrate, or it can
produce a product and a recycled enzyme. k; is the rate of formation of enzyme-
substrate complex, k_1 is the rate of dissociation of the complex and ks is the
rate of creation of the product.

Denoting the concentrations [S], [E], [SE] and [P] by s, e, ¢ and p respectively,
the law of mass action applied to this system leads to the following four non-
linear differential equations:

ds — _kies+k_qc

£ — _kies+ k_1c+ koc
€ — kies — k_1c — kac
=55 = kQC

with initial condition s(0) = s, e(0) = eg, ¢(0) = 0 and p(0) = 0.

Here k1, ko, k_1, so and ey are positive constants.

Now we are introducing two control inputs uq(t) and ug(t). ui(t) is introduced
to reduce the rate of backward reaction and wz(t) is introduced to maximize
product formation. That is, here, we are using both of the control variables to
get the maximum amount of product as fast as possible. The schematic diagram
is given by

(2)

k u
S+E = [SE">%P+E.

k_1,u1

The cost function is thus formulated as
J(ur,up) = [[7[Au3(t) + Buj(t) — Np?(t))dt (3)
subject to the state system

45 — _kres+k_1(1—ui(t))e
L= _kies+k_1(1 —ui(t))e+ kaua(t)e

A (4)
% =kies —k_1(1 —ui(t))c — kaua(t)c
d_:: = kg’u,g(t)c.
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The parameters A and B represent the weight constant related to the cost of
production and N is the penalty multiplier. Our aim is to find the optimal
control pair u*=(uj,u3) such that

J(ut,ug) = min (J(ug,us) : (u1,us) € U),

where U = U1 X UQ,
Ui = (u1(t) : wi is measurable and 0 <wu; <1, t € [t;, tf])
and Us = (u2(t) : ug is measurable and 0 < wug < 1, ¢ € [t;,t7]).

Here we use Pontryagin Minimum Principle (Pontryagin et al., 1986; Bonnans
and Hermant, 2009) to find uj(¢) and u5(¢). The Hamiltonian is given by

H = Au3(t) + Bui(t) — Np*(t)
—|—§1(—k16$—|—k (1 —ul(t)) )
+ 52(—k168 +k_ (1 — U (t))c + szg(t) ) (5)
+ &s(kres — k—1(1 —uq(t))e — kaua(t)c)

+ &akaua(t)c.

By using the Pontryagin Minimum Principle and the existence condition of the
optimal control theory (Fleming and Rishel, 1975; Fister et al., 1998; Kirschner
et al., 1997; Bonnard and Sugny, 2009), we obtain the theorem stated below:

THEOREM 1. The cost function J(ui,us) over U is minimum for the optimal
control u*=(uf,u3) corresponding to the interior equilibrium (s*, e*, c*, p*).
There ezist also adjoint functions &1, &2, &3 and &4 which satisfy equation (4).

Proof. Using Pontryagin Minimum Principle (Fleming and Rishel, 1975), the
unconstrained optimal control variables u] and uj satisfy

OH _ O0H __
dur = oug = 0- (6)

Here,
= (Auf + &k (1 —ur(t))e + Eak_1(1 — ui(t))e
= &k_1(1 —ui(t))e) (7)
+ (Buj + &kaus(t)c — E3kaua(t)c + Eakaua(t)c)
+ terms without us (t) and ua(t).

Thus, from (6) and (7), we have

g—% =2Aui —k_1c(&1 + & —83) =0
gu; =2Buj + kac(€2 — & +64) = 0.

By solving, we get
t) = koac(§i+82—83)

24 3
u; (t) — k20(532—B$2—54)' ( )
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Figure 1. Normalized concentration profiles of substrate, enzyme, complex and
product as a function of time for various values of reaction parameters

Due to the boundedness of the standard control,

k_ic(€1+&2—&5) .
0, el t) <
wi(t) = k—lC(%z&*Es), 0< k—lc(%zéz*&) <1 (9)
k_1c(§1+&2—&3)
1, et > L

Hence the compact form of wj(t) is

wi(t) = max(0, min(1, facllitla—ta)y) (10)
In a similar way we can have the compact form of u}(¢) as
u3(t) = max (0, min(1, %)) (11)
According to Pontryagin Minimum Principle (Pontryagin et al., 1986)
d d
and )
H(x(t),u" (t), £(t), t) = min(H (2(), u(?), £(¢), 1)). (13)

The above equations are the necessary conditions for the optimal control input
u1(t), uz(t) and the state system variables. The existence condition for the ad-
joint variable is given by

% =9 _ Le(é + & — &)

Js
lf_f — —%—Ij = k15(€1 +€2 - 53)
W=~ =kl - w(0)(& & - &) (1)

+ koua(t)(§3 — &2 — &)
dea . OH _ 2Np.

The optimality of the system involves the state system with the adjoint system
together with the initial condition. The transversality condition implies &; (ts)=0
(i=1,2,3,4) and s(0)=sg, e(0)=eo, ¢(0)=0 and p(0)=0. [
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Figure 2. Normalized concentration profile of enzyme-substrate complex as a
function of time for various values of control parameters u; = 0, vy = 0.4 and
Uy = 0.9

3. Numerical simulation of the model equations

The dynamics of reaction system kinetics are analyzed using numerical methods.
The present study deals with the application of control measures in the enzyme
kinetic theory with an objective to maximize the product yield by minimizing
the backward reaction of the intermediate complex. In this section, we show
the analytical expressions for the time dependent variation of the substrate s,
enzyme e, substrate-enzyme complex ¢ and product p as a function of time ¢
for various values of reaction parameters to characterize the reaction process.
Also, we investigate the effect of change of the dynamical reaction system with
changes in the reaction parameters taking into consideration the optimal control
approach.

Fig. 1 represents the kinetic profile diagram of the substrate s, enzyme e, com-
plex ¢ and product p considering the parameter values of k; = 5, ks = 5 and
k—_1 = 0.1 in the absence of any control measures. As expected, according to
the enzyme kinetic behavior, the substrate concentration falls off with time and
becomes zero (s=0) when ¢ > 1 hour as it is consumed with the progress of
the reaction. Consumption is rapid at the initial stages due to initial higher
rate of collision between substrate and enzyme but gradually slows off with
time possibly due to the backward reaction. The enzyme is the catalyst with
concentration diminishing as the reaction proceeds but is recovered at the end
of the reaction when the formation of the enzyme-substrate reaction is com-
plete. The enzyme-substrate complex concentration ¢ increases gradually from
its initial point (¢(0) = 0) and reaches maximum in the interval [0, 0.3]. This
complex is then further transformed into the desired product but it also tends
to revert back to the substrate and hence if a control measure is applied this
backward process to arrest reversibility, yield of the product is expected to be at
its maximum value. Furthermore, product yield is also expected to be optimum
by implementing control parameters to the product forming process from the
complex. From Fig. 1, it is inferred that the formation of product increases
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Figure 3. Normalized concentration profile of enzyme-substrate complex as a
function of time for various values of control parameters us = 0.8 and ug = 1

progressively from the initial stage of reaction (p(0) = 0) and finally attains a
maximum value when ¢ = 1.5 hours. The yield of the product rises with reaction
time and finally becomes steady at its optimum value.

Table 1. Values of parameters used for models dynamics calculations.

Para- | Definition Recommended
meter Value
k1 Rate of
forward reaction 5 (mole/litre) " hour™" (Alicea, 2010; Varadhara-
jan, 2011)
ko Rate of
product formation | 5 hour™* (Alicea, 2010; Varadharajan, 2011)
k_1 Rate of
backward reaction | 2 hour™! (Alicea, 2010)

Now, the effect of increasing the value of the control parameter uq, the changes
in concentration of the enzyme-substrate complex, are observed in Fig. 2. It
is noticed here that the yield of the complex rises by a significant proportion
as the control value is raised from w3 = 0 to w3 = 0.4 and finally 0.9. This
is in accordance with the real system in that as the control for the backward
reaction is raised, the tendency of the intermediate complex to revert back to the
substrate and enzyme decreases and this contributes to accumulation of more of
the complex, as noted. Due to this reason, the complex remains somewhat more
time in the reaction dynamics and longer retention of complex means it directs
the probability of maximum conversion of enzyme-substrate to enzyme-product
intermediate.

Variation in the control parameter us contributes to the conversion of the
enzyme-substrate complex to the ultimate product. In Fig. 3, the variation
in concentration of the complex with varying us values is exhibited. It is found
that for a lower value of wug, i.e., at us = 0.8, the complex concentration is
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Figure 4. Normalized concentration profile of enzyme as a function of time for
various values of control parameters u; = 0, u; = 0.4 and u; = 0.9

higher than that for ue = 1. This is in corroboration with the fact that for
higher values of ug, the accumulation of the complex is much lower as it is
rapidly converted into the product. So, minimization of the reverse reaction by
employing the control parameter u; and maximizing the complex breakdown
process by using the control wue, significantly focuses on product optimization
and maximum yield of it. So, completion of reaction takes much less time by
enhancing the rate of degradation of complex to product with specified control
measures.

Fig. 4 displays the change in concentration of the free enzyme required for the
enzymatic reaction with different values of u;. When the value of u; changes
from w1 = 0 to u; = 0.4 and finally 0.9, the consumption of the enzyme in-
creases. As a result, the concentration of the free enzyme decreases. This may
be attributed to the fact that when the backward reaction is controlled by w1,
the formation of the enzyme-substrate complex is favored. So, the feasibility
of the forward reaction increases due to which more substrate molecules col-
lide with more of the enzyme to generate the intermediate complex molecules.
Consequently, more enzyme molecules are consumed in the process so that a
lower amount of enzyme is observed. However, the original amount of enzyme
is recovered in all the cases irrespective of control application. The favorable for-
mation of the complex is associated with the optimizing amount of the product
and so it is apparent that the change in control parameter u; broadly influences
the enzyme kinetic behavior regarding quantity of the product.

In Fig. 5, the concentration of the enzyme with control parameter us is given.
The curves show a rise in the concentration of the enzyme at higher values of
us = 1, which corresponds to a fast recovery of the enzyme when the complex
breaks down to generate the product and releases the enzyme. The reaction is
thus speeded up and it is possible to obtain greater amount of product within
a specified time period (¢ 2 2 hours ).
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Figure 5. Normalized concentration profile of enzyme as a function of time for
various values of control parameters us = 0.8 and ug = 1
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Figure 6. Normalized concentration profile of substrate as a function of time
for various values of control parameters u; = 0, u; = 0.4 and u; = 0.9

Fig. 6 represents the change in substrate concentration with variation of control
parameter u;. It is indicated that with increasing control for the backward re-
action, the substrate is readily consumed up and the equilibrium of the reaction
tends to shift towards the formation of the enzyme-substrate complex. Here
the control parameter us is not considered as it is insignificant with respect to
substrate.

At the end, we have come to the most important stage of the dynamics i.e.,
product formation. The former explanations regarding control are quite fac-
tual for the optimization and quantity of product too. As indicated in Fig. 7
and 8, both the rate of product formation and yield of the product are higher
for. Higher value of u1=0.9 induces the higher growth rate of enzyme-substrate
complex from the initial stage of reaction (¢t = 0). So, one can get maximum
concentration of enzyme-substrate complex within a very limited period of time
by adopting this control approach. Again, accumulation of complex pushes the
reaction towards forward direction which ultimately leads to the formation of
the desired product. Now, if we apply control us=1, the synchronized effect re-
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Figure 7. Normalized concentration profile of product as a function of time for
various values of control parameters u; = 0, u; = 0.4 and u; = 0.9
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Figure 8. Normalized concentration profile of product as a function of time for
various values of control parameters us = 0.8 and us = 1

sults in product optimization within a very limited period of time (¢ = 1.5 hours
). An important facet is that here the kinetics undergoes irreversible shift from
reversible dynamics which leads to the higher progression rate of reaction with
time. So, optimal control strategy is successful for optimization and quantity
increase of the product by influencing the enzyme reaction dynamics. Our ap-
proximate analytical expression of concentrations of substrate, complex, enzyme
and product are compared with numerical results and satisfactory agreement is
noted.

4. Discussion and conclusion

The dynamic profile of the basic enzyme kinetic reactions has been presented.
A control theoretic approach has been adopted with a view to optimize product
formation. Here, analytical solutions of non-linear reaction dynamics are pre-
sented using Pontryagin Minimum Principle to determine the optimal control
and Hamiltonian method was used to solve it.
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The new approach in this article is that the optimal control theory is applied
to the backward process and to the final product formation from the complex.
Optimization and quantitative increase of the product are observed with higher
controls. Control involved in the backward process actually influences the reac-
tion in the forward direction so that formation of the substrate-enzyme interme-
diate complex is favored. Moreover, control applied in the second stage of the
reaction enables the rapid breakdown of the complex to yield the product and
recover the enzyme. So, for higher controls, we get an earlier binding between
the substrate and the enzyme, which ultimately gives the product within much
less time. Higher control in the reaction dynamics signifies the conversion of a
substantial amount of substrate to the product due to irreversibility when even-
tually the enzyme is recovered and the complex concentration is diminished.
In conclusion, the numerical analysis of enzyme kinetic reaction offers better
predictability and understanding of control with respect to product optimiza-
tion. Thus, the proposed control model of enzymatic reaction is more functional
and provides an idea for faster product formation and its optimization. The pa-
rameters of the model correlate significantly with the physical factors affecting
reaction dynamics. In this way, accurate prior prediction of system dynamics by
analytical analysis and numerical simulation regarding product formation can
be achieved for purposes of experimental studies.
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