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Abstract: We study the optimal control of a steady-state dead
oil isotherm problem. The problem is described by a system of
nonlinear partial differential equations resulting from the traditional
modelling of oil engineering within the framework of mechanics of a
continuous medium. Existence and regularity results of the optimal
control are proved, as well as necessary optimality conditions.
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1. Introduction

We are interested in the optimal control of the steady-state dead oil isotherm
problem:



















−∆ϕ(u) = div (g(u)∇p) in Ω,

− div (d(u)∇p) = f in Ω,

u|∂Ω = 0,

p|∂Ω = 0,

(1)

where Ω is an open bounded domain in R
2 with a sufficiently smooth boundary.

Equations (1) serve as a model for an incompressible biphasic flow in a porous
medium, with applications to the industry of exploitation of hydrocarbons. The
reduced saturation of oil is denoted by u, and p is the global pressure. To
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understand the optimal control problem that we consider here, some words
about the recovery of hydrocarbons are in order. For a more detailed discussion
about the physical justification of equations (1) the reader is referred to Gagneux
and Madaune-Tort (1996), Sidi Ammi and Torres (2007b, 2008a) and references
therein. At the time of the first run of a layer, the flow of the crude oil towards
the surface is due to the energy stored in the gases under pressure in the natural
hydraulic system. To mitigate the consecutive decline of production and the
decomposition of the site, water injections are carried out, well before the normal
exhaustion of the layer. The water is injected through wells with high pressure,
by pumps specially drilled to this end. The pumps allow the displacement of
the crude oil towards the wells of production. The wells must be judiciously
distributed, which gives rise to a difficult problem of optimal control: how to
choose the best installation sites of the production wells? This is precisely the
question we deal with in this work. These requirements lead us to the following
objective functional:

J(u, p, f) =
1

2
‖u− U‖

2
2 +

1

2
‖p− P‖

2
2 +

β1

2
‖f‖

2q0
2q0

, (2)

where 2 > q0 > 1 and β1 > 0 is a coefficient of penalization. The first two terms
in (2) make it possible to minimize the difference between the reduced saturation
of oil u, the global pressure p and the given data U and P , respectively. Our
main goal is to present a method to carry out the optimal control of (1) with
respect to all the important parameters arising in the process. More precisely,
we aim at necessary conditions for the admissible parameters u, p and f to
minimize the functional J .

Theoretical analysis of the time-dependent dead oil problem with different
types of boundary and initial conditions has received a significant amount of
attention. See Gagneux and Madaune-Tort (1996) for the existence of weak
solutions to systems related to (1), uniqueness and related regularity results in
different settings with various assumptions on the data. So far, optimal control
of a parabolic-elliptic dead oil system has been studied in Sidi Ammi and Torres
(2007a). Optimal control of a discrete dead oil model has been considered in Sidi
Ammi and Torres (2008b). Here we are interested in obtaining the necessary
optimality conditions for the steady-state case. This is, to the best of our
knowledge, an important open question.

Several techniques for deriving optimality conditions are available in the
literature of optimal control systems governed by partial differential equations
(Lions, 1969, 1971; Mordukhovich, 2006; Pesch et al., 2010; Roub́ıček, 2005;
Schmidt and Schulz, 2010). In this work we apply the Lagrangian approach used
with success by Bodart, Boureau and Touzani for an optimal control problem
of the induction heating (Bodart et al., 2001), and by Lee and Shilkin for the
thermistor problem (Lee and Shilkin, 2005).

The motivation for our work is threefold. Firstly, the vast majority of the
existing literature on dead oil systems deal with the parabolic-elliptic system.
Considering that the relaxation time for the saturation of oil u is very small,
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the time derivative with respect to saturation is dropped. Hence we get the
system (1). Such a steady-state dead oil model represents a reasonably real-
istic situation where we neglect the time derivative. Secondly, some technical
difficulties in dealing with system (1) arise and rely on the fact that there is
no information on the time derivative of the reduced saturation of oil, nor on
the pressure. As a result, one cannot use directly the standard compactness
results to obtain strong convergence of sequences of solutions in appropriate
spaces. This is in contrast with Sidi Ammi and Torres (2007a), where a fully
parabolic system is considered. Thirdly, the choice of the cost functional (2) for
this time dependent problem seems to be quite appropriate from the point of
view of practical applications.

The paper is organized as follows. In Section 2 we give notation and hy-
potheses. Additionally, we recall two lemmas needed in the sequel. Our main
results are stated and proved in the next two sections. Under adequate as-
sumptions (H1) and (H2) on the data of the problem, existence and regularity
of the optimal control are proved in Section 3. In Section 4, making use of
the Lagrangian approach and assuming further the hypothesis (H3), we derive
necessary optimality conditions for a triple

(

ū, p̄, f̄
)

to minimize (2) among all
functions (u, p, f) verifying (1). We end with Section 5 of conclusions.

2. Preliminaries

The following assumptions are needed throughout the paper. Let g and d be
real valued C1-functions and ϕ be a C3 function. It is required that
(H1) 0 < c1 ≤ d(r), g(r), ϕ(r) ≤ c2; c3 ≤ d′(r), ϕ′(r), ϕ′′(r) ≤ c4 for all r ∈ R,

where ci, i = 1, . . . , 4, are positive constants.
(H2) U , P ∈ L2(Ω), where U , P : Ω → R.
(H3) |ϕ′′′(r)| ≤ c for all r ∈ R.

Henceforth we use the standard notation for Sobolev spaces: we denote
‖ · ‖p = ‖ · ‖Lp(Ω) for each p ∈ [1,∞] and

W 1
p = W 1

p (Ω) := {u ∈ Lp(Ω), ∇u ∈ Lp(Ω)} ,

endowed with the norm ‖u‖W 1
p
(Ω) = ‖u‖p + ‖∇u‖p;

W 2
p = W 2

p (Ω) :=
{

u ∈ W 1
p (Ω), ∇2u ∈ Lp(Ω)

}

,

with the norm ‖u‖W 2
p
(Ω) = ‖u‖W 1

p
(Ω) +

∥

∥∇2u
∥

∥

p
. Moreover, we set

V := W 1
2 (Ω);

W :=
{

u ∈ W 2
2q(Ω), u|∂Ω = 0

}

,

Υ :=
{

f ∈ L2q(Ω)
}

,

H := L2q(Ω)×
◦

W
2− 1

q

2q (Ω),
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where
◦

W
l

p (Ω) is the interior of W l
p(Ω).

In the sequel we use the following two lemmas in order to get regularity of
solutions.

Lemma 1. (Rodrigues, 1987; Xu, 1996) Let Ω ⊂ Rn be a bounded domain with
a smooth boundary. Assume that g ∈ (L2(Ω))n and a ∈ C(Ω̄) with minΩ̄ a > 0.
Let u be the weak solution to the following problem:

−∇ · (a∇u) = ∇ · g in Ω

u = 0 on ∂Ω.

Then, for each p > 2, there exists a positive constant c∗, depending only on n,
Ω, a and p, such that if g ∈ (L2(Ω))n, then

‖∇u‖p ≤ c∗ (‖g‖p + ‖∇u‖2) .

Lemma 2. (Ladyzhenskaya et al., 1967) For any function u ∈ Cα(Ω)∩
◦

W
1

2

(Ω) ∩W 2
2 (Ω) there exist numbers N0 and ̺0 such that for any ̺ ≤ ̺0 there is

a finite covering of Ω by sets of the type Ω̺(xi), xi ∈ Ω̄, such that the total
number of intersections of different Ω2̺(xi) = Ω ∩ B2̺(xi) does not increase
N0. Hence, we have the estimate

‖∇u‖
4
4 ≤ c ‖u‖

2
Cα(Ω) ̺

2α

(

∥

∥∇2u
∥

∥

2

2
+

1

̺2
‖∇u‖

2
2

)

.

3. Existence and regularity of optimal solutions

In this section we prove existence and regularity of the optimal control under
assumptions (H1) and (H2) on the data of the problem.

3.1. Existence of optimal solution

The following existence theorem is proved using Young’s inequality together
with the theorem of Lebesgue and some compactness arguments of Lions (1969).
The existence follows from the fact that J is lower semicontinuous with respect
to weak convergence. Recall that along the text constants c are generic, and
may change at each occurrence.

Theorem 1. Under the hypotheses (H1) and (H2) there exists a q > 1, depend-
ing on the data of the problem, such that the problem of minimizing (2) subject
to (1) has an optimal solution

(

ū, p̄, f̄
)

satisfying

ū ∈ W 2
q (Ω) ∩ L2(Ω),

p̄ ∈ L2(Ω) ∩W 1
2q(Ω), f̄ ∈ L2q0(Ω).
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Proof. Let (um, pm, fm) ∈ W 1
2 (Ω) × V × L2q0(Ω) be a sequence minimizing

J(u, p, f). Then we have that (fm) is bounded in L2q0(Ω). By the second
equation of (1) governed by the global pressure and a general result of elliptic
PDEs (Bensoussan et al., 1978), under our hypotheses we have that ∇pm is
bounded in L2q(Ω). Writing now the first equation of (1) as

− div (ϕ′(um)ϕ(um)) = div (g(um)∇pm)

and using Lemma 1, we obtain that ∇um ∈ L2q(Ω). Hypotheses allow us to
express again the first equation of (1) as

−ϕ′(um)△um − ϕ′′(um)|∇um|2 = div(g(um)∇pm).

Hence,
‖um‖W 2

q
(Ω) ≤ c,

where all the constants c are independent of m. Using the Lebesgue theorem
and compactness arguments of Lions (1969), we can extract subsequences, still
denoted by (pm), (um) and (fm), such that

um → u weakly in W 2
q (Ω),

pm → p weakly in W 1
2q(Ω),

fm → f weakly in L2q0(Ω).

Then, by Rellich’s theorem, we have

pm → p strongly in L2(Ω).

Therefore, by using these facts and passing to the limit in problem (1), it follows
from the weak lower semicontinuity of J with respect to the weak convergence,
that the infimum is achieved at

(

u, p, f
)

.

3.2. Regularity of solutions

Regularity of solutions, given by Theorem 2, is obtained using Young’s and
Holder’s inequalities, the Gronwall lemma, the De Giorgi-Nash-Ladyzhenskaya-
Uraltseva theorem, an estimate from Koch and Solonnikov (2001), and some
technical lemmas that can be found in Ladyzhenskaya et al. (1967).

Theorem 2. Let
(

ū, p̄, f̄
)

be an optimal solution to the problem of minimizing
(2) subject to (1). Suppose that (H1) and (H2) are satisfied. Then, there exist
α > 0 such that the following regularity conditions hold:

ū, p̄ ∈ Cα(Ω), (3)

ū, p̄ ∈ W 1
4 (Ω), (4)

ū, p̄ ∈ W 2
2 (Ω), (5)

ū ∈ C
1

4 (Ω), (6)

ū ∈ W 2
2q0(Ω), p̄ ∈ W 2

2q0(Ω), (7)

where q0 appears in the cost functional (2).
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Proof. Firstly, (3) is an immediate application of the general results of Ladyzhen-
skaya et al. (1967), Lions (1969), Solonnikov (1965). To continue the proof of
Theorem 2, we need to estimate ‖∇u‖4 in function of ‖∇p‖4. Taking into ac-
count the first equation of (1), it is well known that u ∈ W 1

4 (Ω) (see Koch and
Solonnikov, 2001) and

‖∇u‖4 ≤ c‖∇p‖4. (8)

Using Lemma 2, we have, for any ̺ < ̺0, that

‖∇p‖
4
4 ≤ c‖p‖2

Cα(Ω̄)̺
2α

{

‖∇p‖
4
4 +

1

̺2
‖∇p‖

2
2

}

.

Therefore, we get (4) for an eligible choice of ̺. Using (8), we obtain that
u ∈ W 1

4 (Ω). On the other hand, by the first equation of (1) and the regularity
(4), we have that u ∈ W 2

2 (Ω). Moreover, it follows, by the fact that u ∈ W 2
2 (Ω),

that p ∈ W 2
2 (Ω). Using again (4) and the fact that W 1

4 (Ω) →֒ C
1

4 (Ω), the
regularity estimate (6) follows. Finally, the right-hand side of the first equation
of (1) belongs to L4(Ω) →֒ L2q0(Ω) as 2q0 < 4. Thus, by (5) we get u ∈ W 2

2q0 (Ω).
Since f ∈ L2q0(Ω), the same estimate follows for p from the second equation of
system (1).

4. Necessary optimality conditions

We define the following nonlinear operator corresponding to (1):

F : W ×W × Υ −→ H

(u, p, f) −→ F (u, p, f) = 0,

where

F (u, p, f) =

(

−∆ϕ(u) − div(g(u)∇p)
− div (d(u)∇p) − f

)

.

Due to the estimate

‖v‖W 1

4q

2−q

(Ω) ≤ c ‖v‖W 2

2q
(Ω) , ∀v ∈ W 2

2q(Ω), 1 < q < 2

(see Ladyzhenskaya et al., 1967), hypothesis (H1) and regularity results (Theo-
rem 2), we have

ϕ′(u)∆u, ϕ′′(u) |∇u|2 , g′(u)∇u∇p, d(u)∇u∇p ∈ L
2q

2−q (Ω) ⊂ L2q(Ω).

Thus, it follows that F is well defined.
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4.1. Gâteaux differentiability

Theorem 3. Let assumptions (H1) through (H3) hold. Then, the operator F

is Gâteaux differentiable and its derivative is given by

δF (u, p, f)(e, w, h) =
d

ds
F (u + se, p + sw, f + sh) |s=0 = (δF1, δF2)

=

(

− div (ϕ′(u)∇e) − div (ϕ′′(u)e∇u) − div (g(u)∇w) − div (g′(u)e∇p)
− div (d(u)∇w) − div (d′(u)e∇p) − h

)

for all (e, w, h) ∈ W ×W × Υ. Furthermore, for any optimal solution
(

ū, p̄, f̄
)

of the problem of minimizing (2) among all the functions (u, p, f) satisfying (1),
the image of δF

(

ū, p̄, f̄
)

is equal to H.

To prove Theorem 3 we make use of the following lemma.

Lemma 3. The operator δF (u, p, f) : W ×W ×Υ −→ H is linear and bounded.

Proof. We have for all (e, w, h) ∈ W ×W × Υ that

δpF2(u, p, f)(e, w, h) = − div (d(u)∇w) − div (d′(u)e∇p) − h

= −d(u)△w−d′(u)∇u·∇w−d′(u)e△p−d′(u)∇e·∇u−d′(u)e∇u·∇p−h,

where δpF is the Gâteaux derivative of F with respect to p. Then, using hy-
pothesis (H1), we obtain that

‖δpF2(u, p, f)(e, w, h)‖2q ≤ ‖∇w‖2q + c‖△w‖2q

+ c‖∇u · ∇w‖2q + c‖e△p‖2q + c‖∇e · ∇u‖2q + c‖e∇u · ∇p‖2q + ‖h‖2q.
(9)

We proceed to estimate the term ‖e∇u·∇p‖2q. Similar arguments can be applied
to the remaining terms of (9). We have

‖e∇u · ∇p‖2q ≤ ‖e‖∞‖∇u · ∇p‖2q

≤ ‖e‖∞‖∇u‖ 4q

2−q

‖∇p‖4

≤ c‖u‖W‖p‖W ‖e‖W .

Then,

‖δpF2(u, p, f)(e, w, h)‖2q ≤ c (‖u‖W , ‖p‖W , ‖f‖Υ) (‖e‖W + ‖w‖W + ‖h‖Υ) .

(10)

On the other hand,

δuF1(u, p, f)(e, w, h)

= − div (ϕ′(u)∇e) − div (ϕ′′(u)e∇u) − div (g(u)∇w) − div (g′(u)e∇p)

= −ϕ′(u)△e− ϕ′′(u)∇u · ∇e − ϕ′′(u)e△u− ϕ′′(u)∇e · ∇u − ϕ′′′(u)e|∇u|2

− g(u)△w − g′(u)∇u · ∇w − g′(u)e△p− g′(u)∇e · ∇p− g′′(u)e∇u · ∇p,
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where δuF is the Gâteaux derivative of F with respect to u. The same arguments
as above give that

‖δuF1(u, p, f)(e, w, h)‖2q ≤ c (‖u‖W , ‖p‖W , ‖f‖Υ) (‖e‖W + ‖w‖W + ‖h‖Υ) .

(11)

Hence, by (10) and (11),

‖δF (u, p, f)(e, w, h)‖H×H×Υ ≤ c (‖u‖W , ‖p‖W , ‖f‖Υ) (‖e‖W + ‖w‖W + ‖h‖Υ) .

Consequently, the operator δuF1(u, p, f) is linear and bounded.
Proof of Theorem 3. In order to show that the image of δF (u, p, f) is equal to
H , we need to prove that there exists a (e, w, h) ∈ W ×W × Υ such that

− div (ϕ′(u)∇e) − div (ϕ′′(u)e∇u) − div (g(u)∇w) − div (g′(u)e∇p) = α,

− div (d(u)∇w) − div (d′(u)e∇p) − h = β,

e|∂Ω = 0,

w|∂Ω = 0,

(12)

for any (α, β) ∈ H . Writing the system (12) for h = 0 as

−ϕ′(u)△e− 2ϕ′′(u)∇u · ∇e− ϕ′′(u)e△u− ϕ′′′(u)e|∇u|2

−g(u)△w − g′(u)∇u · ∇w − g′(u)e△p− g′(u)∇p · ∇e − g′′(u)e∇u · ∇p = α,

−d(u)△w − d′(u)∇u · ∇w − d′(u)e△p− d′(u)∇u · ∇e− d′(u)e∇u · ∇p = β,

e|∂Ω = 0,

w|∂Ω = 0,

(13)

it follows from the regularity of the optimal solution (Theorem 2) that

ϕ′′(u)△u, ϕ′′′(u)|∇u|2, g′(u)△p, g′′(u)∇u · ∇p, d′(u)△p,

d′(u)∇u · ∇p ∈ L2q0(Ω), ϕ′′(u)∇u, g′(u)∇u, g′(u)∇p, d′(u)∇u ∈ L4q0(Ω).

By the general results for the elliptic PDEs (Ladyzhenskaya et al., 1967; Lions,
1969; Solonnikov, 1965), there exists a unique solution of system (13) and hence
there exists an (e, w, 0) verifying (12). We conclude that the image of δF is
equal to H .

4.2. Optimality condition

We consider the cost functional J : W ×W ×Υ → R (2) and the Lagrangian L
defined by

L (u, p, f, p1, e1) = J (u, p, f) +

〈

F (u, p, f),

(

p1
e1

)〉

,

where the brackets 〈·, ·〉 denote the duality between H and H ′.
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Theorem 4. Under hypotheses (H1)–(H3), if
(

u, p, f
)

is an optimal solution to
the problem of minimizing (2) subject to (1), then there exist functions (e1, p1) ∈
W 2

2 (Ω) ×W 2
2 (Ω) satisfying the following conditions:

div (ϕ′(u)∇e1) − d′(u)∇p · ∇p1 − ϕ′′ (u)∇u · ∇e1 − g′(u)∇p · ∇e1 = u− U,

e1|∂Ω = 0,

div (d(u)∇p1) + div (g(u)∇e1) = p− P,

p1|∂Ω = 0,

2q0β1|f |
2q0−2f = p1.

(14)

Proof. Let
(

u, p, f
)

be an optimal solution to the problem of minimizing (2)
subject to (1). It is well known (see, e.g., Fursikov, 2000) that there exist
Lagrange multipliers (p1, e1) ∈ H ′ verifying δ(u,p,f)L

(

u, p, f , p1, e1
)

(e, w, h) = 0
for all (e, w, h) ∈ W ×W × Υ, with δ(u,p,f)L the Gâteaux derivative of L with
respect to (u, p, f). We then obtain
∫

Ω

(

− div (ϕ′(u)∇e) − div (ϕ′′(u)e∇u) − div (g(u)∇w) − div (g′(u)e∇p)
)

e1 dx

+

∫

Ω

(

(u − U)e + (p− P )w + 2q0β1|f |
2q0−2fh

)

dx

+

∫

Ω

(− div (d(u)∇w) − div (d′(u)e∇p) − h) p1 dx = 0

for all (e, w, h) ∈ W ×W × Υ. This last system is equivalent to
∫

Ω

(

(u− U)e− div (d′(u)e∇p) p1 − div (ϕ′(u)∇e) e1

− div (ϕ′′(u)e∇u) e1 − div (g′(u)e∇p) e1

)

dx

+

∫

Ω

((p− P )w − div (d(u)∇w) p1 − div (g(u)∇w) e1) dx

+

∫

Ω

(

2q0β1|f |
2q0−2fh− p1h

)

dx = 0

for all (e, w, h) ∈ W ×W × Υ. In other words,
∫

Ω

(

(u− U) + d′ (u)∇p · ∇p1

− div (ϕ′(u)∇e1) + ϕ′′ (u)∇u · ∇e1 + g′(u)∇p · ∇e1

)

e dx

+

∫

Ω

((p− P ) − div (d(u)∇p1) − div (g(u)∇e1))w dx

+

∫

Ω

(

2q0β1|f |
2q0−2fh− p1h

)

dx = 0

(15)
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for all (e, w, h) ∈ W ×W × Υ. Consider now the system

div (ϕ′(u)∇e1) − d′(u)∇p · ∇p1 − ϕ′′(u)∇u · ∇e1 − g′(u)∇p · ∇e1 = u− U,

div (d(u)∇p1) + div (g(u)∇e1) = p− P,

e1|∂Ω = p1|∂Ω = 0.

(16)

It follows, again by Ladyzhenskaya et al. (1967), Lions (1969) and Solonnikov
(1965), that (16) has a unique solution (e1, p1) ∈ W 2

2 (Ω) × W 2
2 (Ω). Since the

problem of finding (e, w) ∈ W ×W satisfying

− div (ϕ′(u)∇e) − div (ϕ′′(u)e∇u) − div (g(u)∇w) − div (g′(u)e∇p)

= sign(e1 − e1) − div (d(u)∇w) − div (d′(u)e∇p)

= sign (p1 − p1)

(17)

is uniquely solvable on W 2
2q(Ω)×W 2

2q(Ω), by choosing h = 0 in (15), multiplying
(16) by (e, w), integrating by parts, and making the difference with (15), we
obtain that
∫

Ω

(− div (ϕ′(u)∇e) − div (ϕ′′(u)e∇u) − div (g(u)∇w) − div (g′(u)e∇p))

×(e1 − e1) dx +

∫

Ω

(− div (d(u)∇w) − div (d′(u)e∇p)) (p1 − p1) dx = 0

(18)

for all (e, w) ∈ W ×W . Choosing (e, w) in (18) as the solution of system (17),
we have

∫

Ω

sign(e1 − e1)(e1 − e1) dx +

∫

Ω

sign(p1 − p1)(p1 − p1) dx = 0.

It follows that e1 = e1 and p1 = p1. On the other hand, choosing (e, w) = (0, 0)
in (15), we get (14), which concludes the proof of Theorem 4.

5. Conclusion

In this paper, we considered the optimal control of a steady-state dead oil
isotherm problem with Dirichlet boundary conditions, which is obtained from
the standard parabolic-elliptic system, where the relaxation time for the reduced
saturation of oil is very small. The main purpose was to prove existence and
regularity of the optimal control and then necessary optimality conditions. The
proposed method is based on the Lagrangian approach.
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