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Abstract: The paper presents a generalization of the Fractional
Kalman Filter to a case when correlated system and measurement
noises appear. The algorithm proposed is derived in detail for a lin-
ear generalized discrete fractional order state-space system for both
constant and variable order cases. In order to present the efficiency
of the proposed algorithm, results of numerical simulations are pre-
sented. Results of numerical experiments are compared with the
effect of estimation obtained when using the traditional Fractional
Kalman Filter algorithm.
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1. Introduction

The idea of fractional calculus (generalization of a traditional integer order in-
tegral and differential calculus) idea was mentioned in 1695 by Leibniz and de
L’Hospital. In the end of 19th century, Liouville and Riemann introduced the
first definition of fractional derivative. However, only in the 1960s this idea
started to be interesting for engineers. Especially, when it was observed that
the description of some systems is more accurate when the fractional derivative
is used. A very good example of such plants are systems based on heat transfer
(in general - processes based on diffusion). The experimental results of modeling
heat transfer process in the metal beam were presented in Dzieliński and Siero-
ciuk (2010) and Dzieliński, Sierociuk and Sarwas (2010). The results confirmed
that fractional calculus is a very efficient tool for modeling the relation between
heat flux at the beginning of the beam and temperature at desired point of
the beam. Moreover, when the beam is heterogeneous, the diffusion process
becomes an anomalous diffusion process. In Sierociuk et al. (2013) results of
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successful modeling of heat transfer process in non–solid (heterogeneous) media
using fractional order transfer function based on fractional order partial differ-
ential equation were presented. Results were obtained in frequency domain and
validated also in time domain. The fractional calculus was found also to be an
efficient tool in signal processing. The book of Sheng, Chen and Qiu (2012)
presents several areas of application fractional calculus in signal processing e.g.:
fractional order filters, fractional order noises, etc. The generalization of the
Kalman Filter for discrete fractional order systems with stochastic disturbances
was introduced in Sierociuk and Dzieliński (2006). The more advanced algo-
rithms, including the case when the measurements are available by the network
that introduces packet losses, were presented in Sierociuk, Tejado and Vinagre
(2011). This paper presents also an algorithm for joint estimation and smooth-
ing action. In Kaczorek (2009), a generalization of the discrete model for two
dimensional (2D) positive systems was introduced. The fractional Kalman fil-
ter (FKF) algorithm has been used for estimation of unknown state variables
in the system with ultracapacitor (Dzieliński and Sierociuk, 2008b; Dzieliński
et al., 2010) or in a chaotic secure communication scheme (Kiani et al., 2009).
Similar algorithm to FKF was also used in Benmalek and Charef (2009) for R-
wave detection in the electrocardiogram signal. Moreover, as it was presented
in Romanovas et al. (2009) and Kirkko–Jaakkola, Collin and Takala (2012),
Fractional Kalman like algorithm also has been used to improve measurement
results from MEMS sensors.

2. Fractional calculus

In this paper, the following definition of fractional order difference is used (more
definitions and properties can be found in Oldham and Spanier, 1974; Podlubny,
1999; Monje et al., 2010; Samko, Kilbas and Maritchev, 1993.

Definition 1. The fractional order difference is given by the following equation

∆αxk =

k
∑

j=0

(−1)j
(

α

j

)

xk−j (1)

where α ∈ R is the order of the fractional difference (R is the set of real numbers)
and k is the number of the sample for which the derivative is calculated. The
binomial factor

(

α
j

)

can be obtained from the following relation:

(

α

j

)

=

{

1 for j = 0
α(α−1)...(α−j+1)

j! for j > 0.
(2)

Basing on this definition the generalized discrete fractional order state-space
system is defined as follows:

Definition 2. (Sierociuk and Dzieliński, 2006) The generalized discrete linear
fractional order stochastic system in a state-space representation is given in the
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following form

∆Υxk+1 = Axk +Buk + ωk (3)

yk = Cxk + νk, (4)

where the state vector can be obtained from the following relation

xk+1 = ∆Υxk+1 −
k+1
∑

j=1

(−1)jΥjxk+1−j , (5)

Υk = diag
[ (

α1

k

)

. . .
(

αN

k

) ]

∆Υxk+1 =







∆α1x1,k+1

...
∆αNxN,k+1






,

and xk ∈ R
N is a state vector, yk ∈ R

p is an output, uk ∈ R
q is an input,

(α1...αN ) are orders of system equations and N is the number of these equations,
νk is a measurement (output) noise and ωk is system noise.

Reachability, controllability and observability conditions for commensurate
discrete fractional order state-space systems can be found in Dzieliński and
Sierociuk (2007). Stability conditions for such a systems are given in Dzieliński
and Sierociuk (2008a). Numerical toolkit containing Simulink S-functions for
simulations of discrete fractional order systems is available on Sierociuk (2005).

2.1. Fractional Kalman Filter (FKF)

The Kalman Filter is an optimal state vector estimator using the knowledge
about the system model, input and output signals (Kalman, 1960). A general-
ization of Kalman Filter algorithm for a linear and non-linear discrete fractional
order state-space systems was introduced in Sierociuk and Dzieliń ski (2006).
The generalization was obtained for the assumption that correlation of the sys-
tem noise ωk−1 and the measurement noise νk is equal to zero. Modification
of the FKF algorithm that includes a smoothing action and less restrictive as-
sumptions was presented in Sierociuk, Tejado and Vinagre (2011).

In this paper, the following basic definitions and notations are used:
The state vector prediction x̃k is defined as the random variable xk condi-

tioned on the measurement stream z∗k−1 (Brown and Hwang, 1997) and given
as follows:

x̃k = E[xk|z
∗

k−1]. (6)

In addition, the state estimate vector x̂k is defined as the random vari-
able xk conditioned on the measurement stream z∗k. The measurement stream
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z∗k contains values of the measurement output y0, y1, . . . , yk and input signal
u0, u1, . . . , uk and is given by the following relation:

x̂k = E[xk|z
∗

k]. (7)

Furthermore, the prediction of estimation error covariance matrix is

P̃k = E
[

(x̃k − xk)(x̃k − xk)
T
]

. (8)

Moreover, the covariance matrix of output noise νk in (4) is defined as

Rk = E
[

νkν
T
k

]

,

whereas the covariance matrix of system noise ωk in (3) (see Theorem 1 below)
is defined as

Qk = E
[

ωkω
T
k

]

.

Additionally, the estimation error covariance matrix is given as follows:

Pk = E
[

(x̂k − xk)(x̂k − xk)
T
]

. (9)

All of those matrices are assumed to be symmetric.

Theorem 1. (Sierociuk and Dzieliń ski, 2006) For the discrete fractional order
stochastic system in a state-space representation given by Definition 2, the sim-
plified Kalman Filter (called Fractional Kalman Filter) is given by the following
set of equations:

∆Υx̃k+1 = Ax̂k +Buk

P̃k = (A+Υ1)Pk−1 (A+Υ1)
T

+ Qk−1 +
k
∑

j=2

ΥjPk−jΥ
T
j

x̂k = x̃k +Kk(yk − Cx̃k)

Pk = (I −KkC)P̃k,

where

x̃k+1 = ∆Υx̃k+1 −
k+1
∑

j=1

(−1)jΥj x̂k+1−j , (10)

Kk = P̃kC
T (CP̃kC

T +Rk)
−1,

with initial conditions

x0 ∈ R
N , P0 = E[(x̃0 − x0)(x̃0 − x0)

T ],

and νk and ωk are assumed to be independent and have zero mean value.
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3. Fractional Kalman Filter for correlated noises

In this section, the main result presented in this article, a generalization of the
FKF algorithm for the case of correlated system and measurement noises, is
introduced.

Theorem 2. For the discrete fractional order stochastic system in a state-space
representation, given by Definition 2 the simplified Kalman Filter for correlated
noises (called cFKF) is given by the following set of equations

∆Υx̃k+1 = Ax̂k +Buk (11)

P̃k = (A+Υ1)Pk−1 (A+Υ1)
T

+ Qk−1 +

k
∑

j=2

ΥjPk−jΥ
T
j (12)

x̂k = x̃k +Kk(yk − Cx̃k) (13)

Pk = (I −KkC)P̃k(I −KkC)T (14)

+ Kk(CMT +MCT +R)KT , (15)

where

x̃k+1 = ∆Υx̃k+1 −
k+1
∑

j=1

(−1)jΥj x̂k+1−j (16)

Kk = (P̃kC
T +Mk)(CP̃kC

T + CM +MC +Rk)
−1, (17)

with initial conditions

x0 ∈ R
N , P0 = E[(x̃0 − x0)(x̃0 − x0)

T ],

and νk and ωk are assumed to be zero mean value noises. The correlation
between these noises are given as matrix M defined as follows

M = E
[

ωk−1ν
T
k

]

. (18)

Proof. The proof will be divided into parts connected with respective cFKF
equations.

a) The state vector prediction x̃k+1, given by Equations (11) and (16), is
obtained analogously to state prediction in Fractional Kalman Filter Sie-
rociuk and Dzieliń ski, 2006).
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x̃k+1 = E[xk+1|z
∗

k]

= E[(Axk +Buk + ωk

−
k+1
∑

j=1

(−1)jΥjxk+1−j)|z
∗

k]

= AE[xk|z
∗

k] +Buk

−
k+1
∑

j=1

(−1)jΥjE[xk+1−j |z
∗

k].

In the last term of the equation above we may use the same simplifying
assumption as in the derivation of FKF algorithm

E[xk+1−j |z
∗

k] ≈ E[xk+1−j |z
∗

k+1−j ]

for i = 1, . . . , (k + 1).

This assumption causes that the past state vector will not be updated
using newer data zk. Using this assumption, the following relation is
obtained (the same as in the traditional FKF algorithm)

x̃k+1 ≈ Ax̂k +Buk

−
k+1
∑

j=1

(−1)jΥjx̂k+1−j .

b) The term (x̃k − xk), used in prediction of the covariance error matrix,
given by the Equation (12), is evaluated as follows:

(x̃k − xk) = Ax̂k−1 +Buk−1 −
k

∑

j=1

(

(−1)jΥjx̂k−j

)

− Axk−1 −Buk−1 − ωk−1 +

k
∑

j=1

(

(−1)jΥjxk−j

)

= (A−Υ1)(x̂k−1 − xk−1)− ωk−1

−
k

∑

j=2

[

(−1)jΥj(x̂k−j − xk−j)
]

.

In order to obtain this relation, similar assumption to that used in FKF
derivation, is made. It is assumed that the expected values of terms (x̂l −
xl)(x̂m − xm)T are equal to zero when l 6= m, which finally gives the
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following equation
P̃k = E

[

(x̃k − xk)(x̃k − xk)
T
]

= (A−Υ1)E[(x̂k−1 − xk−1)

(x̂k−1 − xk−1)
T ](A−Υ1)

T

+ E[ωk−1ω
T
k−1] +

k
∑

j=2

ΥjE[(x̂k−j − xk−j)

(x̂k−j − xk−j)
T ]ΥT

j

= (A+Υ1)Pk−1 (A+Υ1)
T
+Qk−1

+

k
∑

j=2

ΥjPk−jΥ
T
j .

c) The update equation is assumed to have the following form:

x̂k = x̃k +Kk(yk − Cx̃k).

The term (x̂k −xk) used in estimation error covariance matrix, defined by
Equation (9), has the following form

(x̂k − xk) = x̃k −Kk(Cxk + νk − Cx̃k)− xk

= (x̃k − xk)−KkC(x̃k − xk)−Kkνk,

which gives the following relation for the covariance matrix of estimation
error

Pk = E[(x̂k − xk)(x̂k − xk)
T ]

= (I −KkC)E[(x̃k − xk)(x̃k − xk)
T ](I −KkC)T

− (I −KkC)E[(x̃k − xk)ν
T
k ]K

T
k

− KkE[νk(x̃k − xk)
T ](I −KkC)T +KkE[νkν

T
k ]Kk.

The term E[(x̃k − xk)ν
T
k ] can be evaluated as follows

E[(x̃k − xk)ν
T
k ] = E [(Ax̂k−1 +Buk−1 + ωk−1

+
k
∑

j=2

(−1)jΥj(x̂k−j − xk−j)

− Axk−1 −Buk−1 − ωk−1

−
k
∑

j=2

(−1)jΥj(xk−j − xk−j)



 νTk





= E[ωk−1ν
T
k ] = M

which finally gives the following relation for estimation error covariance
matrix

Pk = (I −KkC)P̃k(I −KkC)T +Kk(CMT +MCT +Rk)K
T
k

− MTKT
k −KkM.

d) The optimal gain Kk can be obtained from the relation

Kk = min
K

trace(Pk),
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for such a case the optimality condition is

∂trace(Pk)

∂Kk

= 0,

which gives the relation

−2(I −KkC)P̃kC
T + 2Kk(CMT +MCT +Rk)−Mk −Mk = 0.

Finally, this gives the relation for the optimal estimation gain

Kk = (P̃kC
T +MT )(CP̃kC

T + CMT +MCT +Rk)
−1,

which finishes the proof.

4. Variable order case

In this paper the following definition of generalization of fractional order differ-
ence for time-variable order is used:

Definition 3. The fractional variable order difference is given by the following
equation:

∆αkxk =

k
∑

j=0

(−1)j
(

αk

j

)

xk−j (19)

where αk ∈ R is a time-variable order of the fractional variable order difference,
R is the set of real numbers and k is a number of the sample for which the
derivative is calculated.

It is the first type of the variable order generalizations given in Lorenzo
and Hartley (2002). More properties and applications of the fractional variable
order differences and derivatives are provided in Ostalczyk (2010), Ostalczyk
and Rybicki (2008), Sun, Chen, Wei and Chen (2011), Sheng et al. (2012) and
Sierociuk, Podlubny and Petras (2012).

With such a definition, the discrete fractional variable order system will be
defined as follows:

Definition 4. (Sierociuk, 2012) The linear Discrete Fractional Variable Order
System in state-space representation is given as follows:

∆Υk+1xk+1 = Axk +Buk (20)

yk = Cxk, (21)

where

xk+1 = ∆Υk+1xk+1 −
k+1
∑

j=1

(−1)jΥj,k+1xk−j+1 (22)
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Υj,k = diag
[
(

α1,k

j

)

. . .
(

αN,k

j

)
]

∆Υk+1xk+1 =







∆α1,k+1x1,k+1

...
∆αN,k+1xN,k+1







and xk ∈ R
N is a state vector, αi,k ∈ R are time dependent (variable) orders of

system equations (where i is the number of state variable and k is the time of
the order) and N is the number of these equations.

The discrete variable order system and its system properties, for a commen-
surate case, were introduced in Sierociuk (2012).

For the so defined system, the fractional Kalman filter for correlated noises
is generalized as follows:

Theorem 3. For the discrete fractional order stochastic system in a state-space
representation, introduced by Definition 2, the simplified Kalman filter for cor-
related noises (called cVOFKF) is given by the following set of equations

∆Υk+1 x̃k+1 = Ax̂k +Buk (23)

P̃k = (A+Υ1,k)Pk−1 (A+Υ1,k)
T
+Qk−1

+
k

∑

j=2

Υj,kPk−jΥ
T
j,k (24)

x̂k = x̃k +Kk(yk − Cx̃k) (25)

Pk = (I −KkC)P̃k(I −KkC)T (26)

+ Kk(CMT +MCT +Rk)K
T , (27)

where

x̃k+1 = ∆Υk+1 x̃k+1 −
k+1
∑

j=1

(−1)jΥj,k+1x̂k+1−j (28)

Kk = (P̃kC
T +Mk)(CP̃kC

T + CM +MC +Rk)
−1, (29)

with initial conditions

x0 ∈ R
N , P0 = E[(x̃0 − x0)(x̃0 − x0)

T ],

and νk and ωk are assumed to be zero mean value noises. The correlation matrix
between these noises is given as matrix M defined as follows

M = E
[

ωk−1ν
T
k

]

. (30)

Proof. Proof can be conducted analogously to the proof given for Theorem 2.
The main difference is in prediction equations (23) and (24).
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The state vector prediction, given by Equations (23) and (28), is obtained
analogously to the state prediction in fractional Kalman filter (Sierociuk and
Dzieliński, 2006).

x̃k+1 = E[xk+1|z
∗

k]

= E[(Axk +Buk + ωk −
k+1
∑

j=1

(−1)jΥj,k+1xk+1−j)|z
∗

k]

≈ Ax̂k +Buk −
k+1
∑

j=1

(−1)jΥj,k+1x̂k+1−j ,

with the same simplifying assumption as in derivation of FKF and cFKF
algorithms.

The term (x̃k−xk), used in prediction of covariance error matrix is evaluated
as follows:

(x̃k − xk) = Ax̂k−1 +Buk−1 −
k

∑

j=1

[

(−1)jΥj,kx̂k−j

]

= (A−Υ1,k)(x̂k−1 − xk−1)− ωk−1 −
k

∑

j=2

[

(−1)jΥj,k(x̂k−j − xk−j)
]

,

which under similar assumption to that taken in FKF derivation gives the
following equation

P̃k = E
[

(x̃k − xk)(x̃k − xk)
T
]

= (A−Υ1)E[(x̂k−1 − xk−1)(x̂k−1 − xk−1)
T ](A−Υ1,k)

T

+ E[ωk−1ω
T
k−1] +

k
∑

j=2

Υj,kE[(x̂k−j − xk−j)(x̂k−j − xk−j)
T ]ΥT

j,k

= (A+Υ1,k)Pk−1 (A+Υ1,k)
T
+Qk−1 +

k
∑

j=2

Υj,kPk−jΥ
T
j,k.

5. Numerical examples

In this section, numerical examples presenting the efficiency of the proposed
algorithm are given.
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Example 1. Comparison of the proposed algorithm and traditional FKF Let us
assume discrete fractional order system with the following matrices:

A =

[

0 −0.1
1 0.15

]

, B =

[

0.2
0.3

]

C =
[

1 3
]

,N =
[

0.5 0.5
]T

.

Measured parameters of noises are

E[νkν
T
k ] = 0.0366, E[ω1,kω

T
1,k] = 0.0234,

E[ω2,kω
T
2,k] = 0.0132, E[νkω

T
k ] =

[

0.0293 0.022
]

,

where ω1,k and ω2,k are the system noises of x1 and x2 state variables, respec-
tively. Fractional Kalman filter parameters used in the example are:

P0 =

[

1 0
0 1

]

, Q =

[

0.0234 0
0 0.0132

]

,

R =
[

0.366
]

,

M =
[

0.0293 0.022
]

.

Fig.1 presents input and output signals of the estimated system. Fig.2 presents a

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

time [samples]

 

 
Measured output signal
input signal

Figure 1. Input and output signals from the plant

comparison of estimates x̂1 obtained by the traditional FKF and proposed cFKF
algorithms for the original x1 state variable. As it can be seen, the results
obtained by the proposed algorithm are much closer to the original one than
those obtained by FKF. Fig.3 presents a comparison of estimates x̂2 obtained
by the traditional FKF and proposed cFKF algorithms for the original x2 state
variable. Fig.4 shows a comparison of square error (x̂1,k − x1,k)

2 estimation
obtained by FKF and cFKF algorithms. Fig.5 presents a comparison of square
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x

1
 original
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1
 estimated by proposed algorithm

x
1
 estimated by fkf

Figure 2. Comparison of estimates of x1
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3
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time [samples]

 

 

x
2
 original

x
2
 estimated by proposed algorithm

x
2
 estimated by fkf

Figure 3. Comparison of estimates of x2

error of estimation (x̂2,k − x2,k)
2 obtained by FKF and cFKF algorithms.

The sum of squares estimation error for FKF is equal 0.5937, and for the
proposed cFKF algorithm it is equal 0.2238. The efficiency improvement for
the cFKF algorithm for this example was 62%. The presented example con-
firms higher efficiency of proposed cFKF algorithm in the case when noises are
correlated.

Example 2. Comparison results for different noises
In this example more results of comparison between FKF and proposed cFKF

algorithms for different values of noise parameters are presented. The system
matrices are the same as in Example 1. Parameters of the FKF and cFKF
filters are based on measured parameters of noises. The results are summarized
in Table 1. As it can be seen in this table, in all presented results, the efficiency
of the proposed algorithm was higher than the efficiency of the traditional FKF
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x
1
 estimation square error for proposed algorithm

x
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 estimation square error for FKF

Figure 4. Comparison of estimation error for x1
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0.008
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0.012

0.014

0.016

time [samples]

 

 

x
2
 estimation square error for proposed algorithm

x
2
 estimation square error for FKF

Figure 5. Comparison of estimation error for x2

algorithm. As it could be expected, the higher correlation between system and
output noises, the higher efficiency of the cFKF algorithms. The square error,
presented in Table 1, is defined as follows:

e =

k
∑

j=0

(x̂k − xk)(x̂k − xk)
T .

5.1. Variable order case example

In this section, analogous results for fractional variable order system will be
presented.
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Table 1. Results of numerical simulations

impro-
E[νkω

T
k ] E[νkν

T
k ] diagE[ωkω

T
k ] eFKF ecFKF vement

[0.0117, 0.0233] 0.0388 [0.0035, 0.0140] 0.1875 0.0765 59%
[0.1511, 0.0756] 0.2519 [0.0907, 0.0227] 0.7134 0.4746 33%
[0.0885, 0.0708] 0.0885 [0.0885, 0.0567] 3.3349 1.1073 67%
[0.0762, 0.0632] 0.0777 [0.0776, 0.0540] 2.9928 1.2463 58%
[0.0049, 0.0012] 0.0100 [0.0410, 0.0359] 4.2979 3.8756 10%
[0.0023, 0.0002] 0.0090 [0.0109, 0.0101] 1.3366 1.1697 12%

Example 3. Comparison of proposed algorithm and traditional FKF for vari-
able order system Let us assume the discrete fractional variable order system
with the following matrices:

A =

[

0 −0.1
1 0.15

]

, B =

[

0.2
0.3

]

,

C =
[

1 3
]

,

and the system orders

Nk =

[

α1,k

α2,k

]

=

[

0.5 + 0.1 sin( 2π
100k)

0.5 + 0.2 sin( 2π
100k)

]T

. (31)

Measured noise parameters are the same as for the constant order case and
have the following values:

E[νkν
T
k ] = 0.0366, E[ω1,kω

T
1,k] = 0.0234, E[ω2,kω

T
2,k] = 0.0132,

E[νkω
T
k ] =

[

0.0293 0.022
]

,

where ω1,k and ω2,k are the system noises of x1 and x2 state variables, respec-
tively.

Fractional Kalman filter parameters used in the example are:

P0 =

[

1 0
0 1

]

, Q =

[

0.0234 0
0 0.0132

]

,

R =
[

0.366
]

,
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M =
[

0.0293 0.022
]

.

Fig.6 presents input and output signals of the estimated system, and Fig.7
presents variable orders of the system.
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Figure 6. Input and output signals from the plant
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Figure 7. Variable orders of the system

Fig. 8 presents a comparison of estimates x̂1 obtained by the traditional
FKF and proposed cFKF algorithms for the original x1 state variable. As it can
be seen, the results obtained by the proposed algorithm are much closer to the
original ones than obtained by FKF.

On the other hand, Fig. 9 presents a comparison of estimates x̂2 obtained
by the traditional FKF and proposed cFKF algorithms for the original x2 state
variable.
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Figure 8. Comparison of estimates of x1
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Figure 9. Comparison of estimates of x2

Fig. 10 shows a comparison of square error estimation (x̂1,k−x1,k)
2 obtained

for FKF and cFKF algorithms.

Fig. 11 presents a comparison of square error of estimation (x̂2,k − x2,k)
2

obtained by FKF and cFKF algorithms.

The sum of squares estimation error for FKF is equal 0.6057, and for the
proposed cFKF algorithm it is equal 0.2339. The efficiency improvement for
the cFKF algorithm for this example was 61%. The example presented confirms
higher efficiency of the proposed cFKF algorithm in the case when noises are
correlated.
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Figure 10. Comparison of estimation error for x1

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

time [samples]

 

 
x

2
 estimation square error for proposed algorithm

x
2
 estimation square error for FKF

Figure 11. Comparison of estimation error for x2

6. Conclusions

In this paper, an estimation algorithm for discrete fractional order state-space
system with correlated system and measurement noises was presented. The
algorithm proposed is an extension of the Fractional Kalman Filter (FKF) al-
gorithm. Detailed derivation of the proposed algorithm was given. In order to
present the efficiency of the proposed algorithm, the results of numerical sim-
ulation were shown. The results confirm that the proposed algorithm is more
efficient compared to the results obtained with traditional FKF algorithm for
the same situation. The higher the correlation between system and output
noises, the higher the efficiency of the cFKF algorithms. The paper presents
also the generalization of this algorithm for a variable order case. In such a case,
numerical simulations also confirm higher efficiency of the proposed algorithm
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compared to the variable order FKF algorithm (also introduced in this article).
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