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Abstract: Multivariate polynomial matrices arise from the treat-
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1. Introduction

In the polynomial approach, pioneered by Rosenbrock (1970), matrices over
R[s], s ≡ d/dt are used to represent linear systems of ordinary differential equa-
tions. This ring is a principal ideal domain with the Euclidean division property
thus allowing for the establishment of canonical forms, e.g., the Smith normal
form. The theory of such systems can be regarded as more or less complete. For
more general linear functional systems e.g. partial differential systems or delay-
differential systems, the resulting system matrices are multivariate. Multivariate
polynomial rings are not principal ideal rings and do not have a Euclidean di-
vision. However, these rings admit Gröbner basis computations. Despite its
importance in single variable matrix theory, the Smith normal form for mul-
tivariate polynomial matrices has received relatively little attention. The few
exceptions are Frost and Storey (1979), Frost and Boudellioua (1986), Lee and
Zak (1983), Lin et al. (2006), and Boudellioua and Quadrat (2010). The com-
putations involved in the reduction of a given square matrix to its equivalent
Smith form have been set out in Boudellioua (2012) using Maple. One of the
motivations of transforming a multivariate polynomial matrix to its Smith form
is to be able to reduce a system of linear functional equations to a system con-
taining fewer equations and unknowns. The reduction involved must, of course,
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preserve relevant system properties from the systems theory point of view. The
reduced equivalent representation simplifies in general the study of such systems.
The results on the reduction to Smith form obtained by the authors mentioned
earlier deal with the case of square matrices. In this paper we extend the results
obtained by Lin et al. (2006) and Boudellioua and Quadrat (2010) to rectangu-
lar matrices. We will consider the case when the reduced matrix corresponds to
a system which consists of only one equation with one unknown. This is equiv-
alent to reducing the given multivariate polynomial matrix to a Smith form
where all the diagonal elements are 1’s, except the last one. In what follows,
let D = K[x1, . . . , xn] denote a commutative multivariate polynomial ring with
indeterminates x1, . . . , xn over an arbitrary but fixed field K.

2. Definitions

Definition 1. Let T ∈ Dq×p, p > q, the Smith form of T is given by

S =
(

diag{Φi} 0
)

(1)

where

Φi =

{

αi/αi−1, 1 ≤ i ≤ r
0, r < i ≤ q,

(2)

r is the normal rank of T , α0 ≡ 1, αi is the gcd of all the i× i minors of T and
Φi’s satisfy the divisibility property

Φ1|Φ2| . . . |Φr. (3)

Definition 2. The general linear group GLp(D) is defined by

GLp(D) =
{

M ∈ Dp×p | ∃N ∈ Dp×p :MN = NM = Ip
}

. (4)

An element M ∈ GLp(D) is called a unimodular matrix. It follows that M is
unimodular if and only if |M | ∈ K\{0}.

Definition 3. Let T1 and T2 denote two matrices in Dq×p; then T1 and T2 are
said to be (unimodular) equivalent if there exist two matrices M ∈ GLq(D) and
N ∈ GLp(D) such that

T2 =MT1N. (5)

Unimodular equivalence has been shown to exhibit fundamental algebraic
properties amongst its invariants. In particular, it preserves the zero structure
of the original matrix which is captured by the determinantal ideals of the
matrix. In fact, for the case when D = K[x1], it is well known that every
matrix with elements in D is equivalent to its Smith form. However, this result
is not valid for the case when D = K[x1, . . . , xn], n > 1.
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Example 1. Consider the matrix over D = R[s],

L(s) =

(

s− 1 s
0 s+ 1

)

, s ≡ d/dt.

Here we have,
α0 = 1,
α1 = gcd(s− 1, s, 0, s+ 1) = 1,
α2 = (s− 1)(s+ 1) = s2 − 1,
Φ1 = α1/α0 = 1,
Φ2 = α2/α1 = s2 − 1.

It can be easily shown here, using elementary row and column operations on
L(s) that:

L(s) =

(

s− 1 s
0 s+ 1

)

∼ S(s) =

(

1 0
0 s2 − 1.

)

Now Consider the matrix over D = R[s, z] as given by Lee and Zak (1983),

T (s, z) =

(

s z + 1
z2 s

)

, s ≡ ∂/∂t, z ≡ ∂/∂x.

In this case,
α0 = 1,
α1 = gcd(s, z + 1, z2, s) = 1,
α2 = s2 − z2(z + 1),
Φ1 = α1/α0 = 1,
Φ2 = α2/α1 = s2 − z2(z + 1).

Unlike the previous example, it can be shown here that

T (s, z) =

(

s z + 1
z2 s

)

6∼ S(s, z) =

(

1 0
0 s2 − z2(z + 1).

)

This example shows that despite the fact that the first order minors of T (s, z)
generate the unit ideal D, T (s, z) is not equivalent to its Smith normal form.

3. Reduction to Smith form by unimodular equivalence

The aim of the reduction is to simplify linear functional systems in the sense
of finding an equivalent presentation which contains only one equation in one
unknown. This generally makes it easier to study the structural properties of
the linear functional system and in some cases can be used to compute its closed-
form solutions. This reduction also finds applications in numerical analysis. The
objective of the equivalence transformation applied to the matrix is to produce
an identity matrix of appropriate size at the top left corner of the original
matrix. The problem of reduction of a multivariate polynomial matrix to its
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Smith form form was first studied by Frost and Storey (1979) but their results
yielded only necessary and not sufficient conditions. Frost and Boudellioua
(1986) later obtained for a class of square matrices necessary and sufficient
conditions. Their result is given in the following:

Theorem 1 (Frost and Boudellioua, 1986). Let D = R[s, z] and T ∈ Dq×q,
with full row rank, then T is equivalent to the Smith form

S =

(

Iq−1 0
0 |T |

)

(6)

if and only if there exists a vector U ∈ Dq which admits a left inverse in D such
that the matrix

(

T U
)

has a right inverse over D.

Lin et al. (2006) generalized this result to the case when D = R[z1, . . . , zn],
n > 1.

Theorem 2 (Lin et al., 2006). Let D = R[z1, . . . , zn] and T ∈ Dq×q, with full
row rank, then T is equivalent to the Smith form

S =

(

Iq−1 0
0 |T |

)

(7)

if and only if there exist a vector U ∈ Dq which admits a left inverse in D such
that the matrix

(

T U
)

has a right inverse over D.

Boudellioua and Quadrat (2010) gave similar conditions for a weaker type
of equivalence between a square matrix and its Smith form using a module
theoretic approach and showed that in this case the condition on the vector U
is not necessary. In the case where the matrix is rectangular, the result given
in Boudellioua and Quadrat (2010) does not lead necessarily to a Smith form.

Theorem 3 (Boudellioua and Quadrat, 2010). Let D = K[x1, . . . , xn] be a
commutative polynomial ring over a field K and T ∈ Dq×p a full row rank
matrix. Then the following two assertions are equivalent:

1. There exists U ∈ Dq×1 which admits a left inverse over D such that the
matrix

P :=
(

T U
)

admits a right inverse over D.
2. The matrix T is unimodular equivalent over D to the matrix:

T̃ =

(

Iq−1 0
0 Q2

)

(8)

where Q2 ∈ D1×(p−q+1).

It is clear that the matrix T̃ in (8) is not necessarily the Smith form of T .
Before we generalize Theorem 2 to the case when the matrix T is not necessarily
square, we first state the following result which is a statement of the positive
answer of the Lin-Bose conjecture (see Lin and Bose, 2001). This theorem,
which will be used later, is given by Fabiańska and Quadrat, 2007.
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Theorem 4 (Section 5 of Fabiańska and Quadrat, 2007). Let D = K[x1, . . . , xn]
be a commutative polynomial ring over a field K and R ∈ Dq×p a full row rank
matrix. Then, the following two assertions are equivalent:

1. The ideal Iq(R) generated by the q × q minors of R is principal, i.e. can
be generated by the greatest common divisor Φ of these minors.

2. There exist R′ ∈ Dq×p, R′′ ∈ Dq×q, and N ∈ GLp(D) such that:

R = R′′R′, det(R′′) = Φ, R′N =
(

Iq 0
)

. (9)

Now we present the main result of this paper which is a consequence of
Theorems 3 and 4.

Theorem 5. Let D = K[x1, . . . , xn] and T ∈ Dq×p, p > q with full row rank,
then T is equivalent to the Smith form

S =

(

Iq−1 0 0
0 Φq 0

)

(10)

where Φq ∈ D is the gcd of the q × q minors of T , if and only if there exists a
vector U ∈ Dq which admits a left inverse in D such that the matrix

(

T U
)

has a right inverse over D and the ideal generated by the q × q minors of T is
principal.

Proof. Let T ∈ Dq×p and suppose that there exists a vector U ∈ Dq which
admits a left inverse in D, satisfying the given condition and that the ideal
generated by the q × q minors of T is principal. Then, since U admits a left
inverse in D, there exists a matrix M1 ∈ GLq(D) such that M1U = Eq, where
Eq is the q-th column of Iq. It follows that

M1

(

T U
)

=

(

T1 0
T2 1

)

(11)

where T1 ∈ D(q−1)×p and T2 ∈ D1×p are given by

(

T1
T2

)

=M1T. (12)

Now, since the matrix on the RHS of (11) admits a right inverse over D, it
follows that T1 also admits a right inverse over D, i.e. there exists a matrix
N1 ∈ GLp(D) such that

T1N1 =
(

Iq−1 0
)

. (13)

Then,

(

T1 0
T2 1

)(

N1 0
0 1

)

=

(

Iq−1 0 0
T3 T4 1

)

(14)
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where T3 ∈ D1×(q−1), T4 ∈ D1×(p−q+1) and

(

T3 T4
)

= T2N1. (15)

It follows that

M1TN1 =

(

Iq−1 0
T3 T4

)

. (16)

Premultiplying the matrix M1TN1 in (16) by the unimodular matrix

M2 =

(

Iq−1 0
−T3 1

)

(17)

yields the matrix

M2M1TN1 =

(

Iq−1 0
0 T4

)

. (18)

Now since the ideal generated by the q × q minors of T is principal, by virtue
of the Lin-Bose Theorem 4, there exists a matrix N2 ∈ GLp(D) with

N2 =

(

Iq 0
0 N̄

)

(19)

such that

M2M1TN1N2 =

(

Iq−1 0 0
0 Φq 0

)

(20)

where T4N̄ =
(

Φq 0
)

.

Conversely, assume that T ∈ Dq×p is equivalent to the Smith form

S =

(

Iq−1 0 0
0 Φq 0

)

, (21)

where Φq ∈ D is the gcd of all the ith order minors of T . It follows that there
exist unimodular matricesM ∈ GLq(D) andN ∈ GLp(D) such that S =MTN .
Now, consider the vector U =M−1Eq, where Eq is the qth column of In, then

M
(

T U
)

(

N 0
0 1

)

= M
(

T M−1Eq

)

(

N 0
0 1

)

=
(

MTN Eq

)

=

(

Iq−1 0 0 0
0 Φq 0 1

)

∼
(

Iq 0
)

(22)

i.e. the matrix
(

T U
)

has a right inverse over D. Clearly, the ideal of the
q × q minors of S is generated by the unique polynomial Φq ∈ D and therefore
the ideal generated by q × q minors of T is principal.
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The problem of finding a vector U ∈ D when it exists such that the condition
in Theorem 5 is satisfied is neither trivial nor random. On simple examples
over a commutative polynomial ring D = K[x1, . . . , xn] with coefficients in a
computable field K (e.g., K = Q), one may take a generic vector U ∈ Dq

with a fixed total degree in the xi’s and compute the D-module ext1D(E,D) =
D1×q/

(

D1×(p+1) (T U)T
)

by means of a Gröbner basis computation and check
whether or not the D-module ext1D(E,D) vanishes on certain branches of the
corresponding tree of integrability conditions (Pommaret and Quadrat, 2000) or
on certain obstructions to genericity (i.e., constructible sets of the K-parameters
of U) (Levandovskyy and Zerz, 2007). See Levandovskyy and Zerz (2007) for a
survey explaining these techniques and their implementations in Singular.

Example 2. Consider the system of linear delay-differential equations

Tψ(t) = 0 (23)

where ψ(t) =









ψ1(t)
ψ2(t)
ψ3(t)
ψ4(t)









and the system matrix T is given by

T =





2dσ
2
+ σ

3
+ σ

2
+ 1 dσ

2
− dσ + d 2dσ + σ

2
dσ

2
+ dσ + d+ σ

2

2dσ + σ
2
+ σ dσ − d 2d+ σ dσ + d+ σ

2d
2
σ + dσ

2
+ dσ + σ d

2
σ − d

2
− 1 2d

2
+ dσ + 1 d

2
σ + d

2
+ dσ





(24)

where D = R [d, σ], d f(t) = ḟ(t), σf(t) = f(t−h) and h ∈ R+. Consider U =
(σ 1 d)T ∈ D3 and P = (T U) ∈ D3×5. Using the package OreModules
in Maple (see Chyzak et al., 2007), we can check that P admits a right inverse
over D. Also using Gröbner bases, we can verify that the ideal of the 3 × 3
minors of T is generated by the polynomial d + σ. Now we can compute a
minimal parametrization, Qm ∈ D5×2 of P (see Chyzak and Robertz, 2005),
where

Qm =
(

QT
1 QT

2

)T
, PQm = 0,

and

Qm =

(

Q1

Q2

)

=













−d 0
0 1
dσ 1
1 −1

−d− σ 0













. (25)

Computing the SyzygyModule F ∈ D2×4 of Q1, i.e. FQ1 = 0 gives

F =

(

σ −1 1 0
1 d 0 d

)

(26)
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where Q3 ∈ D4×2 is a right inverse of F , i.e.,

Q3 =









0 1
0 0
1 −σ
0 0









. (27)

Thus, the matrix N ∈ GL4(D) is given by

N =









0 1 −d 0
0 0 0 1
1 −σ dσ 1
0 0 1 −1









(28)

and the matrix M =
(

TQ3 U
)

−1
∈ GL3(D) is given by

M =





0 −d 1
1 −σ 0
−σ 2d2 + σ2 + dσ + 1 −2d− σ



 . (29)

Now it can be easily verified that the matrix MTN yields the Smith form:

S =

(

I2 0 0
0 d+ σ 0

)

. (30)

and it follows that the system in (23, 24) is equivalent to the following simple
delay-differential equation:

ẋ(t) + x(t− h) = 0. (31)

Conclusions

We have presented a constructive result for the reduction to the Smith form of
a class of rectangular multivariate polynomial matrices. In particular, we have
given necessary and sufficient conditions under which a matrix can be reduced
by unimodular equivalence to a Smith form that corresponds to the reduction
of a linear functional system to a single equation with only one unknown. Fur-
thermore, we have shown that the result can be implemented using modern
symbolic computation software.
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