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Abstract: This article concerns the optimal stopping problem
for a discrete-time Markov chain with observable states, but with
unknown transition probabilities. A stopping policy is graded via the
expected total-cost criterion resulting from the non-negative running
and terminal costs. The Dynamic Programming method, combined
with the Bayesian approach, is developed. A series of explicitly
solved meaningful examples illustrates all the theoretical issues.
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1. Introduction

In this article, we consider a statistical problem in which we observe the state
of the system completely at each step, but the stochastic law of the system is
unknown. The objective is to stop the process in such a possible way that the
total expected running costs and terminal cost are minimal. We formulate this
model as a Markov decision process (MDP) with unknown transition matrix.

The learning algorithm and the adaptive control problem in MDP have been
studied by many authors: Easley and Kiefer (1988), Wang and Yi (2009), van
Hee (1978), Hernández-Lerma and Marcus (1985), Hernández-Lerma (1989),
Kurano (1972, 1983), Mandl (1974), Martin (1967).

For a general discussion of the Bayesian dynamic decision model, see van
Hee (1978), Martin (1967), Rieder (1975).

†Submitted: January 2013; Accepted: July 2013
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Adaptive control processes, such as the statistical design of sequential sam-
pling problem, may be considered as stopping problems in MDP, White (1969);
the Dynamic Programming (DP) approach proved to be effective here. Another
Bayesian sequential analysis based on the DP approach has been presented in
Ross (1970, 1983).

The statistical decision function approach was studied in DeGroot (1970),
Raiffa and Schlaifer (1961), Wald (1950). The optimization problem in MDP
under the total expected cost criterion can be also considered as a stopping
problem: Hordijk (1974).

In Piunovskiy (2006), constrained discounted MDP was studied using the
Dynamic Programming approach. Recently, constrained optimal stopping prob-
lems were considered using the convex analytic approach in Dufour and Pi-
unovskiy (2010), Horiguchi (2001a,b). The optimal stopping theory is used for
solving selection problems in Stadje (1997), where offers are successively avail-
able and the decision maker has to select one of them. In the article mentioned,
a special case is studied in the framework of incomplete information. A more
specific application, namely, selling an asset, was intensively discussed in the
last years: see Section 10.3.1 in Bäuerle and Rieder (2011), and in Ekström
and Lu (2011) in the continuous-time framework. Among the recent works on
partially observed MDPs, let us mention Easley and Kiefer (1988) and Wang
and Yi (2009). In both these articles, the total discounted expected reward was
studied and, in the latter case, a specific model for the unknown parameter was
presented. Application to the optimal investment-consumption along with the
portfolio optimization is presented in Wang and Yi (2009).

In the current paper, we treat the statistical problem as a stopping problem
in MDP using the Bayesian method and the DP approach. For a special, but
quite general case, we prove that the optimal stopping rule is of threshold type.
A big part of the current paper is devoted to meaningful examples, like pre-
ventive maintenance of a production line. In Section 2, we describe the general
problem under study, and in Section 3 we develop the DP approach combined
with the Bayesian method. Section 4 is for numerous meaningful explicitly
solved examples.

To the best of our knowledge, the pure undiscounted stopping problem with
partial information was not considered earlier. Although the Bayesian approach
is well known, this specific problem leads to a relatively simple Bellman equa-
tion which can be explicitly solved in several specific meaningful situations.
Except for the novelty of the considered mathematical model, the current ar-
ticle contains a series of real-life applications (Section 4) useful for specialists
in production management and for investors working in a random economic
environment.

2. Problem statement

We consider the discrete-time Markov Decision Process (MDP) with the fi-
nite state space S = {1, 2, . . . ,M} and the uncontrolled transition matrix Qη =
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[Qη
ij ]i,j∈S measurably depending on the unknown paramter η ∈ Ξ, where (Ξ,B(Ξ))

is a Borel space. If the current state is i ∈ S, the one-step cost equals c(i). At
any moment, the process can be stopped (sent to the absorbing state ∆ without
any future cost) with the terminal cost C(i). The goal is to minimize the total
expected cost.

This problem can be reformulated as a standard MDP with total cost in the
following way. Let ∆ denote the artificial state meaning the process is stopped,
so that the state space becomes S ∪{∆}. The action space is A = {0, 1}, where
a = 0(1) means ‘do not stop’ (‘stop the process’). Now the transition probability
Q̂η and the one-step cost ĉ in the state i ∈ S ∪ {∆} are defined as

Q̂η(j|i, a) =







Qη
ij , if i, j 6= ∆, a = 0;

1, if j = ∆ and i = ∆ or a = 1;
0 otherwise.

ĉ(i, a) =







c(i), if i 6= ∆ and a = 0;
C(i), if i 6= ∆ and a = 1;
0, if i = ∆.

We assume that the initial probability distribution ν on S∪{∆} of the state
x0 is given, as well as the initial distribution F 0(dη) of parameter η. Below,
x0, x1, x2, . . . is the observable trajectory of the controlled process in the space
S ∪ {∆}. On each step t = 0, 1, 2, . . . , the decision at ∈ A must be chosen.

Let Π be the set of all randomized past dependent control policies π =
{πt}t=0,1,2,... where, πt is a stochastic kernel on the action space A given (S ∪
{∆})×P(Ξ)× (A× (S ∪{∆}))t. Here, P(Ξ) is the Borel space of all probability
measures on (Ξ,B(Ξ)) (see Bertsekas and Shreve, 1978). Define Ω = (S∪{∆})×
Ξ× (A× (S ∪ {∆}))∞ and let F be its associated product σ-algebra. Similarly
to Section 2.2 in Hernández-Lerma and Lasserre (1996), for an arbitrary policy
π ∈ Π, there exists a probability measure P π

ν,F 0 on (Ω,F) such that the unknown

parameter η and the coordinate projections xt (respectively at) from Ω to the
set S ∪ {∆} (respectively A) satisfy
(i) P π

ν,F 0 [η ∈ B] = F 0(B);

(ii) P π
ν,F 0 [x0 = i] = ν(i);

(iii) P π
ν,F 0 [at = l|Ft] = πt(l|ft);

(iv) P π
ν,F 0 [xt+1 = j|Ft ∨ σ{at}] = Q̂η(j|xt, at),

for any B ∈ B(Ξ), i, j ∈ S ∪ {∆}, l ∈ A, where Ft = σ(ft) with f0 = (x0, F
0),

ft = (x0, F
0, a0, x1, a1, . . . , xt).

For more about control policies and strategic measures the Reader is referred
to Bertsekas and Shreve (1978), Dynkin and Yushkevich (1979), Hernández-
Lerma and Lasserre (1996).

The target is to minimize the total expected cost

Eπ
ν,F 0

[

∞
∑

t=0

ĉ(xt, at)

]

−→ inf
π

.
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Here and below, Eπ
ν,F 0 is the mathematical expectation with respect to the

measure P π
ν,F 0 .

Another, equivalent description of the optimal stopping problem can be
found in the article by Dufour and Piunovskiy (2010), devoted to the case of
the complete information.

Note that all the results presented in the current paper obviously hold in
case the state space S is countable.

3. Dynamic programming approach

It is known that the a posteriori probability distributions

F t(Γ) = P π
ν,F 0 (η ∈ Γ|Ft), Γ ∈ B(Ξ), t = 0, 1, 2, . . . ,

along with the observed states xt, form the sufficient statistic: Dynkin and
Yushkevich (1979), Section 3.3 in Ferguson (1967). Such distributions can be
recursively calculated using the Bayes formula, up to the stopping moment. If
the distribution F t−1(dη) is known and transition i = xt−1 → xt = j was
observed, with i, j 6= ∆, then

F t(Γ) =

∫

Γ

Qη
ijF

t−1(dη)
∫

Ξ

Qη
ijF

t−1(dη)
. (1)

(Compare with the formula on p.1048 in Easley and Kiefer, 1988.) Here and

below, the case

∫

Ξ

Qη
ijF

t−1(dη) = 0 is excluded because otherwise the transition

i → j has zero probability. Therefore, all the expressions in the denominators
are positive. Now, the pair (xt, F

t) is a fully observed random process. For the
given current values (xt−1 = i, F t−1), the probability of the new state xt = j
equals

∫

Ξ
Qη

ijF
t−1(dη) and, if xt−1 = i and xt = j, then the new component F t

is non-random, calculated using equation (1). The above calculations are valid
for i, j 6= ∆, at−1 = 0. Action at−1 = 1 (stop the process) at time moment
t − 1 results in the absorption at state (∆, F t−1). The cost function does not
depend on the component F t−1 and coincides with the function ĉ. Below, we
investigate the constructed MDP with complete information.

Assumption 1 All costs are non-negative: c, C ≥ 0.

The dynamic programming approach for MDP satisfying Assumption 1 is
well known. For i ∈ S, the Bellman equation looks as follows:

V (i, F ) = min







c(i) +

∫

Ξ

∑

j∈S

Qη
ijF (dη)V (j,Gij ◦ F ); C(i)







. (2)
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Here, Gij is the operator on the right-hand side of equation (1): for F ∈ P(Ξ),
Gij ◦ F is the probability measure on Ξ defined by

Gij ◦ F (Γ) =

∫

Γ

Qη
ijF (dη)

∫

Ξ

Qη
ijF (dη)

, Γ ∈ B(Ξ).

Obviously, V (∆, F ) ≡ 0.
Before the process is stopped, the Bellman function V (i, F ) depends on the

current state i of the process xt and the current a posteriori distribution F of
parameter η. Equation (2) can be solved by successive approximations

V0(i, F ) = 0, Vn+1(i, F ) = H ◦ Vn(i, F ),

where H is the Bellman operator presented on the right-hand side of formula
(2). According to Corollary 9.17.1 in Bertsekas and Shreve (1978), the Bellman
function V is the minimal non-negative solution of equation (2); see also Section
7.2.8 in Puterman (1994).

Instead of the distributions F t of the parameter η, one can consider the
images F̃ t with respect to the mapping η → Q, probability distributions of
stochastic matrices Q. For fixed i, j ∈ S, let F̃ t

(ij)(dQij) be the marginal dis-

tribution of the component Qij ∈ [0, 1] and let F̃ t
·|(ij)(·|Qij) be the conditional

distribution of all other elements of the Qmatrix under a given value Qij . Then,
according to (1),

F̃ t
(ij)(Γ

(ij)) =

∫

Ξ

1{Qη
ij ∈ Γ(ij)}F t(dη) =

∫

Ξ

1{Qη
ij ∈ Γ(ij)}Qη

ijF
t−1(dη)

∫

Ξ

Qη
ijF

t−1(dη)

,

and the change of variable z = Qη
ij implies

F̃ t
(ij)(Γ

(ij)) =

∫

Γ(ij)

z · F̃ t−1
(ij) (dz)

∫

[0,1]

z · F̃ t−1
(ij) (dz)

, Γ(ij) ∈ B([0, 1]).

Further, for any Γ ∈ B([0, 1]M
2

),

F̃ t(Γ) =

∫

Ξ

1{Qη ∈ Γ}F t(dη) =

∫

Ξ

1{Qη ∈ Γ}Qη
ijF

t−1(dη)
∫

Ξ

Qη
ijF

t−1(dη)

.

In the numenator, we introduce the variables z = Qη
ij ∈ [0, 1] and y ∈ [0, 1]M

2−1;
the latter denotes all the remainder components of the Qη matrix apart from
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Qη
ij . Now, using this change of variables and the Fubini Theorem, we obtain

F̃ t(Γ) =

∫

[0,1]

∫

[0,1]M2
−1

1{y ∈ Γz}1{z ∈ Γ(ij)}z · F̃ t−1
·|(ij)(dy|z)F̃

t−1
(ij) (dz)

∫

[0,1]

z · F̃ t−1
(ij) (dz)

=

∫

Γ(ij)

[

z · F̃ t−1
·|(ij)(Γz|z)

]

F̃ t−1
(ij) (dz)

∫

[0,1]

z · F̃ t−1
(ij) (dz)

,

where Γ(ij) = {z ∈ R : ∃Q ∈ Γ with Qij = z} and Γz ⊂ R
M2−1 is the z-section

of the set Γ (all possible values of the components of the Q matrix, apart from
the component Qij = z, such that Q ∈ Γ).

We see that

F̃ t(Γ) =

∫

Γ(ij)

F̃ t−1
·|(ij)(Γz |z) · F̃

t
(ij)(dz)

meaning that

F̃ t
·|(ij)(dy|z) = F̃ t−1

·|(ij)(dy|z) :

the conditional distribution F̃·|(ij) does not change if one observes the transition
i → j of the xt process.

Let us mention briefly several possible generalizations of the model for which
the presented dynamic programming approach can be developed, too.

Firstly, the one-step cost c(i, η) and the terminal cost C(i, η) can depend on
the unknown parameter η. In this case one should modify the cost ĉ:

ĉ(i, a, F ) =



































∫

Ξ

c(i, η)F (dη), if i 6= ∆ and a = 0;

∫

Ξ

C(i, η)F (dη), if i 6= ∆ and a = 1;

0, if i = ∆.

Secondly, the state space S may be arbitrary Borel and the dynamics of the
process is given by the measurable stochastic kernel Qη(dy|x).

In these situations, the operator for the posterior distribution (1) must be
modified in the following way. If the distribution F t−1(dη) is known and the
current state is xt−1 = x ∈ S, then the joint distribution of η, the cost c, and
the next state y is given by

Px(Γ
η × Γc × Γy) =

∫

Γη

Qη(Γy|x)1{c(x, η) ∈ Γc}F t−1(dη),
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where Γη ∈ B(Ξ),Γc ∈ B(R),Γy ∈ B(S) are arbitrary Borel subsets. This
probability measure can be decomposed as

Px(Γ
η × Γc × Γy) =

∫

Γc×Γy

Pm
x (dc× dy)Φx(Γ

η|c, y),

where Pm
x (Γc×Γy) = Px(Ξ×Γc×Γy) is the marginal distribution of the elements

(c, y), and Φx is a measurable stochastic kernel on Ξ given R×S. (See Bertsekas
and Shreve, 1978.) Now F t(Γη) = Φx(Γ

η|c, y) is the a posteriori distribution
of the parameter η after the cost c = c(x, η) and the next state of the process
y = xt are observed. One should replace the operator Gij with Gxyc:

F t(·) = Gxyc ◦ F
t−1(·) = Φx(·|c, y).

The Bellman equation (2) takes the form

V (x, F ) = min

{
∫

Ξ

[

c(x, η) +

∫

S

Qη(dy|x) V (y,Gxyc(x,η) ◦ F )

]

F (dη);

∫

Ξ

C(x, η)F (dη)

}

.

4. Examples

Consider a game where the player, after paying the entrance fee c > 0, can win
with probability p and lose with probability q = 1−p. After winning, the reward
equals R > 0 and the player will not play any more. After losing, the player can
try again after paying the same fee c, or stop the process with the terminal cost
C ≥ 0. Probability q = η is unknown with a given initial distribution F 0(dη)
on Ξ = [0, 1]. Therefore, we deal with the state space S = {0, 1}, where 0(1)
means the player has lost (has won) the previous game; Q00 = q, Q11 = 1. If
we add the constant R to the total expected cost, we can replace the terminal
rewards with regrets: C(1) = 0, C(0) = C + R, so that Assumption 1 will be
satisfied. The one-step costs are equal c(0) = c, c(1) = 0. Below, we assume

that

∫

[0,1]

ηF 0(dη) ∈ (0, 1).

Since the model is positive, the Bellman function V (i, F ) is non-negative,
and, from equation (2), it immediately follows that

V (1, F ) = min{0 + V (1, F ); 0} = 0;

V (0, F ) = min

{

c(0) +

∫ 1

0

(1− η)dF (η)V (1, G01 ◦ F )

+

∫ 1

0

ηdF (η)V (0, G00 ◦ F ); C(0)

}

.

Here, with some abuse of notation, we replace the distribution F with F (η), the
cumulative distribution function (CDF) of η on the interval [0, 1].
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Since V (1, F ) = 0 does not depend on F , we rewrite the main equation:

V (0, F ) = min

{

c(0) +

∫ 1

0

ηdF (η)V (0, G00 ◦ F ); C(0)

}

, (3)

where, according to (1),

G00 ◦ F (η) =

∫ η

0

ydF (y)

∫ 1

0

ydF (y)

. (4)

If the first (second) expression in (3) is smaller then the optimal action in state
0, having the aposteriori distribution F , is a = 0 (a = 1).

Let Fn = G00 ◦ Fn−1 with the given initial CDF F 0 on the interval [0, 1].
Let

qn =

∫ 1

0

ηdFn(η)

and let
q∞ = min{y : F 0(y) = 1}.

Lemma 1 (a)

Fn(η) =

∫ η

0

yndF 0(y)

q0q1 . . . qn−1
=

∫ η

0

yndF 0(y)

∫ 1

0

yndF 0(y)

; (5)

q0q1 . . . qn =

∫ 1

0

yn+1dF 0(y). (6)

(b) If η ≥ q∞ then limn→∞ Fn(η) = 1; if η < q∞ then
limn→∞ Fn(η) = 0.

(c) The sequence qn is non-decreasing: ∀n = 0, 1, 2, . . ., qn+1 ≥ qn, and
limn→∞ qn = q∞.

Proof. (a) The left equality (5) is valid for n = 0. (Here q0q1 . . . qn−1 = 1.)
If it holds for some n ≥ 0 then

Fn+1(η) =

∫ η

0

ydFn(y)

qn
=

∫ η

0

yn+1dF 0(y)

q0q1 . . . qn
.

If we substitute η = 1, we obtain formula (6).
Now the right equality (5) is also obvious.
(b) According to (5), ∀η ≥ q∞, ∀n = 0, 1, 2, . . ., Fn(η) ≡ 1.
In case F 0(η) = 0, Fn(η) ≡ 0.
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Suppose now that η < q∞ and F 0(η) > 0. Let η̃ ∈ (η, q∞), so that F 0(η̃) < 1.
Since, for any n = 0, 1, 2, . . ., Fn(η) > 0, we can consider

Rn =
1

Fn(η)
= 1 +

∫ 1

η

yndF 0(y)

∫ η

0

yndF 0(y)

.

(See formula (5).)
Now

Rn ≥

∫ 1

η̃

yndF 0(y)

∫ η

0

yndF 0(y)

≥
η̃n[1− F 0(η̃)]

ηnF 0(η)
=

(

η̃

η

)n
[1− F 0(η̃)]

F 0(η)

and limn→∞ Rn = ∞ meaning that limn→∞ Fn(η) = 0.
(c) According to (4),

qn+1 =

∫ 1

0

η2dFn(η)

∫ 1

0

ηdFn(η)

.

Therefore,

qn+1 − qn =
1

∫ 1

0

ηdFn(η)

[

∫ 1

0

η2dFn(η)−

(
∫ 1

0

ηdFn(η)

)2
]

≥ 0

and the limit limn→∞ qn exists.
For any n = 0, 1, 2, . . .,

qn =

∫ q∞

0

ηdFn(η) ≤ q∞.

(Remember that Fn(q∞) = 1.)
Fix an arbitrary ε > 0. Now

qn =

∫ q∞−ε

0

ηdFn(η) +

∫ q∞

q∞−ε

ηdFn(η)

≥ (q∞ − ε)[Fn(q∞)− Fn(q∞ − ε)].

Since Fn(q∞) ≡ 1 and limn→∞ Fn(q∞ − ε) = 0, we conclude that

lim
n→∞

qn ≥ q∞ − ε.

As ε > 0 was arbitrarily small, limn→∞ qn = q∞.
The proof is completed.
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Theorem 1 (a) If

c(0) ≤ C(0)(1 − q∞)

then the optimal action in state 0 is at ≡ 0 (do not stop the process) and, for
all distributions F 0, F 1 = G00 ◦ F

0, . . ., Fn = G00 ◦ F
n−1, . . .,

V (0, Fn) =

c(0)

∫ 1

0

ηn

1− η
dF 0(η)

∫ 1

0

ηndF 0(η)

.

(Other distributions are never realized.)

(b) In case

c(0) > C(0)(1 − q∞)

let n∗ ≥ 0 be the first integer such that c(0) > C(0)(1 − qn).

Then action at = 0 is optimal in state 0 after the first n∗ observations of
that state. If the state 0 is observed (n∗ + 1) times, then it is optimal to stop
the process immediately.

If n ≥ n∗, then V (0, Fn) = C(0); if n < n∗, then

V (0, Fn) = c(0)

n∗−n
∑

i=1

i−2
∏

k=0

qn+k + C(0)

n∗−n−1
∏

k=0

qn+k.

Here, as usual,

0
∑

j=1

zj = 0 and

0
∏

k=1

zk = 1.

Proof. (a) We solve equation (3) by successive approximations:

V0(0, F
n) ≡ 0, (7)

Vi+1(0, F
n) = min{c(0) + qnVi(0, F

n+1); C(0)}.

This solution is given by the formula

Vi(0, F
n) = c(0)

i
∑

j=1

j−1
∏

k=1

qn+k−1. (8)
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The presented formula is correct for i = 0. If it holds for some i ≥ 0 then

c(0) + qnVi(0, F
n+1) = c(0) + qnc(0)

i
∑

j=1

j−1
∏

k=1

qn+k

= c(0)



1 +

i
∑

j=1

j−1
∏

k=0

qn+k





= c(0)



1 +

i+1
∑

j=2

j−1
∏

k=1

qn+k−1





= c(0)
i+1
∑

j=1

j−1
∏

k=1

qn+k−1

and, for any i = 0, 1, 2, . . ., for all n ≥ 0

c(0)

i
∑

j=1

j−1
∏

k=1

qn+k−1 ≤ c(0)

∞
∑

j=1

qj−1
∞ =

c(0)

1− q∞
≤ C(0).

Let us pass to the limit as i → ∞ in the formula (8). (Remember that
qn ≤ q∞ < 1.)

V (0, Fn) = lim
i→∞

Vi(0, F
n) = c(0)

∞
∑

j=1

j−1
∏

k=1

qn+k−1

=

c(0)

∞
∑

j=1

n+j−2
∏

k=0

qk

q0q1 . . . qn−1
=

c(0)

∞
∑

j=1

∫ 1

0

ηn+j−1dF 0(η)

∫ 1

0

ηndF 0(η)

.

Here we used the obvious expression

n+j−2
∏

k=0

qk =

n−1
∏

k=0

qk

j−1
∏

k=1

qn+k−1

and formula (6). Finally, by the Lebesgue monotone convergence theorem,

V (0, Fn) =

c(0)

∫ 1

0

ηn

1− η
dF 0(η)

∫ 1

0

ηndF 0(η)

.

(b) Firstly, let us prove that, for all n ≥ n∗, V (0, Fn) = C(0), so that, if the
state 0 is observed (n∗+1) times, then it is optimal to stop the process. (Under
the optimal policy, the state 0 cannot be observed more times.)
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Suppose that there is N such that for all n ≥ N

V (0, Fn) = c(0) + qnV (0, Fn+1) < C(0).

We know that the sequence qn increases. Since V0(0, F
n) ≡ 0 is not decreasing

with n, the sequence {Vi(0, F
n)}

∞
n=N is also non-decreasing for any i = 1, 2, . . .,

so the limiting sequence
{V (0, Fn)}∞n=N is also non-decreasing and bounded. Thus, there is a limit
W = limn→∞ V (0, Fn) satisfying equation

W = c(0) + q∞W.

On the one hand, W ≤ C(0), but on the other hand

W =
c(0)

1− q∞
> C(0).

The obtained contradiction shows that, for any n, there is K > n such that
V (0, FK) = C(0).

Let n ≥ n∗ be fixed and take the corresponding integer K > n. Now,
considering sequentially i = K − 1,K − 2, . . . , n, we see that

c(0) + qiV (0, F i+1) = c(0) + qiC(0)

> C(0)(1− qi) + qiC(0) = C(0).

(Remember that c(0) > C(0)(1 − qi).) Therefore, V (0, Fn) = C(0).
For n < n∗, let us prove by induction that the presented expression for

V (0, Fn) satisfies the Bellman equation and is smaller than C(0).
For n = n∗ − 1, we have

V (0, Fn) = c(0) + qnC(0) = c(0) + qnV (0, Fn+1)

≤ C(0)(1 − qn) + qnC(0) = C(0).

Suppose the Bellman equation is satisfied at some n ≤ n∗ − 1, V (0, Fn) ≤
C(0), and consider n− 1:

c(0) + qn−1V (0, Fn) ≤ c(0) + qn−1C(0)

≤ C(0)(1 − qn−1) + qn−1C(0) = C(0);

c(0) + qn−1V (0, Fn) = c(0) + qn−1

{

c(0)

n∗−n
∑

i=1

i−2
∏

k=0

qn+k

+C(0)

n∗−n−1
∏

k=0

qn+k

}

= c(0)
n∗−n+1
∑

i=1

i−2
∏

k=0

qn−1+k + C(0)
n∗−n
∏

k=0

qn−1+k.

The proof is completed.
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Remark 1 If we consider maximization of the total expected reward, minimum
in equation (3) should be replaced with maximum. Again, we consider the pos-
itive model with c(0) > 0, C(0) ≥ 0. In this case, the analogue of Theorem 1

is simpler and looks as follows. If c(0)

∫ 1

0

1

1− η
dF 0(η) > C(0) then never stop

the process; otherwise, stop immediately. For the proof, note that the case

V (0, Fn) = c(0) + qnV (0, Fn+1) and V (0, Fn+1) = C(0)

(for some n ≥ 0) is excluded because

c(0) + qn+1V (0, Fn+2) > c(0) + qnC(0) = V (0, Fn) ≥ C(0).

(We omit the trivial situation when qn = qn+1, i.e. the distribution Fn is
degenerate.) Now one should consider only two control policies: never stop
the process, or stop immediately, for which the total expected rewards equal

c(0)

∫ 1

0

1

1− η
dF 0(η) and C(0), correspondingly. The Bellman function is given

by

V (0, F ) =







c(0)

∫ 1

0

1

1− η
dF (η), if c(0)

∫ 1

0

1

1− η
dF (η) > C(0);

C(0) otherwise.

The case V (0, F ) = ∞ is not excluded here.

If there is no information about the unknown probability η = q then it is
standard practice to consider the uniform distribution

F 0(η) =







0, if η < 0,
η, if η ∈ [0, 1],
1, if η > 1.

In this case

q∞ = 1, qn =
n+ 1

n+ 2
,

so that we deal with the part (b) of Theorem 1. Let n∗ ≥ 0 be the first integer
such that (n + 2)c(0) > C(0). Then, when in state 0, the process must be
stopped after observing state 0 (n∗ + 1) times. The Bellman function is given
by the following formulae:

V (1, F ) ≡ 0,

V (0, Fn) = C(0) for n ≥ n∗,

V (0, Fn) = c(0)

[

(n+ 1)

(

1

n+ 1
+

1

n+ 2
+ . . .+

1

n∗

)]

+
n+ 1

n∗ + 1
C(0), if n < n∗.
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CDF Fn(η) appears after the (n + 1)-st observation of state 0; n = 0, 1, 2, . . .;
it has the form

Fn(η) =







0, if η < 0,
ηn+1, if η ∈ [0, 1],
1, if η > 1.

Another special case corresponds to the beta-distribution:

f0(η) =
dF 0(η)

dη
=

{

Γ(ν1+ν2)
Γ(ν1)Γ(ν2)

ην1−1(1− η)ν2−1, if η ∈ [0, 1],

0 otherwise,

where ν1, ν2 > 0 are constants.
In this case

q∞ = 1, qn =
ν1 + n

ν1 + ν2 + n
,

so that we again deal with the part (b) of Theorem 1. Let n∗ ≥ 0 be the first

integer such that

(

ν1 + ν2 + n

ν2

)

c(0) > C(0). Then, when in state 0, the process

must be stopped after observing state 0 (n∗ + 1) times. CDF Fn(η) appears
after the (n+1)-st observation of state 0; n = 0, 1, 2, . . .; it is differentiable and
follows the beta distribution:

fn(η) =
dFn(η)

dη
=

{

Γ(ν1+ν2+n)
Γ(ν1+n)Γ(ν2)

ην1+n−1(1− η)ν2−1, if η ∈ [0, 1],

0 otherwise.

As always, V (1, F ) ≡ 0, V (0, Fn) = C(0) for n ≥ n∗. For n < n∗, the expression
for V (0, Fn), presented in Theorem 1(b), cannot be essentially simplified, unless
ν2 = 1 when

V (0, Fn) = c(0)

[

(n+ ν1)

(

1

n+ ν1
+

1

n+ ν1 + 1
+ . . .

+
1

n∗ + ν1 − 1

)]

+
n+ ν1
n∗ + ν1

C(0).

It is interesting to look at the case of ν1 = ν2 = ν.
If 2c(0) > C(0) then, for any ν > 0, we have n∗ = 0 and V (0, Fn) = C(0)

for all n ≥ 0.
If 2c(0) = C(0) then, for any ν > 0, we have n∗ = 1 and V (0, Fn) = C(0)

for all n ≥ 1; V (0, F 0) = c(0) + 1
2C(0).

If 2c(0) < C(0) then, for small ν (when ν → 0), we again have n∗ = 1. In
case ν → ∞, obviously n∗ → ∞. By the way, in the last case the beta-density
converges to the Dirac measure at point 1

2 for which q∞ = 1
2 and, according to

Theorem 1(a), in this limiting case, it is optimal not to stop the process in state
0 (n∗ = ∞).

Remember that the uniform distribution is the special case of the beta-
distribution when ν1 = ν2 = 1.
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If there is no information about the unknown probability η = q, one can also
use the game-theoretic approach to find admissible actions in state 0.

Let W (π, η) be the total expected loss if the initial state is 0, the control
policy π is applied, and q = η.

For the pessimistic scenario,

min
π

max
η

W (π, η) = C(0)

and the optimal minmax decision is to stop the process because otherwise
maxη W (π, η) is provided by η = 1 (or by the maximal possible probability):
the process remains in state 0 with the positive running cost c(0).

For the optimistic scenario,

min
π

min
η

W (π, η) =

{

c(0), if c(0) < C(0),
C(0) otherwise,

and the optimal decision is to stop the process if c(0) ≥ C(0). If the process is
not stopped in state 0, then minη W (π, η) is provided by η = 0 leading to the
final cost c(0).

For more about the game-theoretic approach see González–Trejo, Hernández–
Lerma and Hoyos–Reyes (2003).

The presented results can be useful on different occasions listed below.
Special cases. (a) Consider a production system that can be stopped for

reconstruction. The system can be in one of three possible states S = {1, 2, 3},
where 1 is the normal state, 2 is the warning state, and 3 means the failure. The
one-step costs c(1) = 0 < c(2) < c(3) are known; the state of the production
system is observable. The rewards coming from the reconstruction, i.e. the
terminal rewards R(1) > R(2) > R(3) ≥ 0, are known.

The cost c(2) is associated with the malfunctioning of the system in the
warning state. We do not consider the possibility to repair the system in this
state because this can be too expensive. Hence transition 2 → 1 is excluded.
On the opposite, the cost c(3) includes the price to repair the system, and the
next state will be 1. This price is acceptable (or even equals zero), e.g. if we
consider the warranty period when the repairman arrives if the failure occurs,
but not in the warning state.

Therefore, the transition probabilities Q21 = 0 and Q31 = 1 are known;
other transition probabilities (Qη

12, Q
η
13, Q

η
22) = η form the unknown parameter

η with a given initial distribution F 0(dη) on Ξ, where the space Ξ of the possible
values of the vector parameter η is obvious:

Ξ = {η ≥ 0 (component-wise) : Qη
12 +Qη

13 ≤ 1, Qη
22 ≤ 1}.

If the Markov chain is never stopped, the total expected cost equals +∞,
so that action 1 (‘stop the process’) will be ultimately applied. If we add the
constant R(1) to the total expected cost, we can replace the terminal rewards
with regrets C(1) = 0; C(2) = R(1) − R(2); C(3) = R(1) − R(3), so that
Assumption 1 will be satisfied.
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Since the model is positive, the Bellman function V (i, F ) is non-negative,
and, from equation (2), it immediately follows that

V (1, F ) = min







c(1) +

∫

Ξ

∑

j∈S

Qη
1jF (dη)V (j,G1j ◦ F ); C(1)







= C(1) = 0.

Therefore, it is reasonable to stop the process in state 1, and the transition
probabilities Qη

1j are of no importance. Below, we omit them and consider
η = Qη

22. With some abuse of notation, we replace the distribution F with
F (η), the CDF of η on the interval [0, 1].

The Bellman equation (2) takes the form

V (2, F ) = min

{

c(2) +

∫ 1

0

(1− η)dF (η)V (3, G23 ◦ F )

+

∫ 1

0

ηdF (η)V (2, G22 ◦ F ); C(2)

}

;

V (3, F ) = min{c(3); C(3)}.

Since V (3, F ) is known and does not depend on F , we omit this argument and
concentrate on the main equation:

V (2, F ) = min

{

c(2) + V (3)[1−

∫ 1

0

ηdF (η)] (9)

+

∫ 1

0

ηdF (η)V (2, G22 ◦ F ); C(2)

}

,

where, according to (1),

G22 ◦ F (η) =

∫ η

0

ydF (y)

∫ 1

0

ydF (y)

.

The obtained equation (9), up to notations, coincides with equation (3). Indeed,
it is sufficient to denote state 2 as 0, put V (0, F ) = V (2, F )− V (3) and replace
c(2) with just c(0) and replace C(2)−V (3) with C(0). The optimal solution to
this stopping problem follows now from Theorem 1. Here C(0) = C(2) − V (3)
may be negative, and we are looking for the minimal solution to equation (3),
bigger than −V (3). Theorem 1 remains valid.

(b) Again consider a production system which can be in one of the three
possible states S = {1, 2, 3}, where 1 is the normal state, 2 is the warning state,
and 3 means the failure. The one-step rewards c(1) > c(2) > 0 are known; the
state of the production system is observable. In state 3, the system must be
repaired, i.e. the process should be stopped with the terminal cost C(3). In state
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1, there is no possibility to stop the process. Only in state 2 the decision maker
must decide whether to stop the process (repair the system) with the terminal
cost C(2) < C(3), or not. The transition probability Qη

22 = η is unknown, with
a given initial distribution F 0(dη) on Ξ = [0, 1]; Q21 = 0; Qη

23 = 1 − η; other
transition probabilities are of no importance, but we assume that Q11 < 1.

The dynamic programming approach leads to the following equations

V (1, F ) = c(1) +Q11V (1, F ) +Q12V (2, F ) +Q13V (3, F );

V (2, F ) = max

{

c(2) +

∫ 1

0

(1 − η)dF (η)V (3, G23 ◦ F )

+

∫ 1

0

ηdF (η)V (2, G22 ◦ F ); − C(2)

}

;

V (3, F ) = −C(3).

Here, like previously, F is the CDF of η and

G22 ◦ F (η) =

∫ η

0

ydF (y)

∫ 1

0

ydF (y)

.

If the transition probabilities Q11, Q12, Q13 are unknown, one should replace
them with their aposteriori estimates.

Clearly, only the second equation must be investigated. After we denote
Ṽ (2, F ) = V (2, F ) + C(3), it takes the form

Ṽ (2, F ) = max

{

c(2) +

∫ 1

0

ηdF (η)Ṽ (2, G22 ◦ F ); C(3)− C(2)

}

.

Since c(2) > 0, C(3) > C(2), the model is positive, and we are looking for
the minimal non-negative solution. If needed, function V (1, F ) can be calcu-
lated/estimated using the first equation:

V (1, F ) =
c(1) +Q12Ṽ (2, F )

1−Q11
− C(3).

Clearly, the obtained equation coincides with (3) if we denote state 2 as 0,
replace C(3) − C(2) with C(0), and consider the maximization problem (see
Remark 1).

The optimal action in state 0 (in the original state 2) is














































never stop the process if

c(0)

∫ 1

0

1

1− η
dF (η) > C(0)

⇐⇒ c(2)

∫ 1

0

1

1− η
dF (η) > [C(3)− C(2)];

stop immediately otherwise.
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This result is understandable. If the total expected reward in the warning state
2, given the a priori distribution F , is smaller than C(3) − C(2), the reward
coming from the repair in the warning state, compared with the failure state,
then stop the process. Otherwise, do not stop. If the process is not stopped
in state 2 then there is no reason to stop it later because, with each transition
2 → 2, the situation improves: the expected a posteriori total reward in state 2
increases.

(c) Playing the game can mean starting a project in a random economical
environment. The entrance fee equals the investment, the reward R is the
revenue in case the project is successful. One can put C = 0 in this case.
The probability p of the favorable environment is unknown, and the question
is whether it is reasonable to restart the project if the previous attempt was
unsuccessful.

(d) Finally, one can consider the standard hide-and-seek game, similar to
that discussed in Chapter III Section 5 of Ross (1983). Suppose that on each
step the object can occupy any of the locations {a, b} with the same probability
1/2, so that it does not matter which location to examine. If the decision maker
looks at the proper location, the probability that the object is discovered equals
α, unknown probability. Thus, in this case p = α/2, the reward for discovering
the object equals R, the entrance fee for each one round is c. The question is
whether to continue this game or stop the process after several trials.

Another modification corresponds to the case when the object is moving
between the possible locations {a, b} according to a Markov chain with unknown
transition probabilities paa, pab, pba, pbb. Suppose the player is unable to search
location b and the probability to discover the object in the location a is α = 1.
Thus, transition probabilities paa and pab are of no importance. We assume that
the initial probability of the object to be in the location b equals pbb. Now we
deal with the game discussed above, where the unknown probability of losing
one round equals η = q = pbb.

Suppose now that on each step the object is in location a with probability
pa, that is, the transition probabilities introduced above equal paa = pba = pa,
pbb = pab = pb = 1 − pa. Again assume the player is unable to search location
b and the probability to discover the object in the location a is α ∈ [0, 1]. Now
we have the game discussed above, where the unknown probability of losing one
round equals η = q = pb+pa(1−α) = 1−αpa. Both probabilities, α and pa may
be unknown, but the developed theory operates with the compound probability
η.

In all these cases, Theorem 1 provides the optimal policy.
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